## PAPERS COMMUNICATED

## 9. Some Theorems on a Cluster-set of an Analytic Function.

By Kiyoshi Noshiro.<br>Mathematical Institute, Hokkaido Imperial University, Sapporo.

(Comm. by S. Kakeya, m.I.A., Feb. 12, 1937.)

1. Let $f(z)$ be uniform and meromorphic in a finite connected domain $D$. We shall first state some notations- $\mathfrak{D}$ : the value-set of $f(z)$ in $D, F$ : the boundary set of $\mathfrak{D}, H$ : the set of all cluster values ${ }^{1)}$ at the boundary of $D, \bar{M}$ : the closure of $M, C M$ : the complementary set of $M$. It is evident that $F \subset H \subset \bar{D}$ and they are all closed sets. In general the equality $F=H$ does not hold. For example, if we take $w=f(z)=z^{2}$ and $D: 0<\arg z<\frac{3 \pi}{2}, R_{1}<|z|<R_{2}$, then $\mathfrak{D}$ is a ring: $R_{1}^{2}<|w|<R_{2}^{2}$ and $H$ consists of two segments $\left(-R_{2}^{2},-R_{1}^{2}\right),\left(R_{1}^{2}, R_{2}^{2}\right)$ and two circles $|w|=R_{1}^{2},|w|=R_{2}^{2}$. Now suppose that $F=H$. Then we see easily that for any value $\alpha \in \mathfrak{D}, f(z)$ never takes $\alpha$ at infinite times, for otherwise $\alpha$ would be a cluster value, so that $\alpha$ would belong to $F=H$. This is a contradiction. Next we shall show that $f(z)$ is exactly $p$-valent in $D$, if a certain value $\alpha \in \mathscr{D}$ is taken $p$ times. Consider a closed circular domain $K$ contained entirely interior to $\mathfrak{D}$. The set of points $z$, each of which has an image in $\bar{K}$, in general, consists of a finite or an enumerable infinity of connected domains $\overline{\Delta_{i}}$ in $D$. However, since $H=F$, each $\bar{\Delta}_{i}$ must lie completely in the interior of $D$ and so the number of $\bar{\Delta}_{i}$ is finite. Then $f(z)$ takes in $D$ any value $\alpha \in K$ exactly at the same number of times, say $p$ times, since this holds in each $\Delta_{i}$ by the principle of arguments. Now, let $\alpha$ and $\beta$ be two finite points in $\mathfrak{D}$. Then we can find a finite sequence of closed circular dises, $\bar{K}_{0}, \bar{K}_{1}, \ldots \ldots, \bar{K}_{n}$ such that each $\bar{K}_{i} \subset \mathfrak{D}, \alpha \in K_{0}, \beta \in K_{n}$ and $K_{i} \cdot K_{i+1} \neq 0$ where $i=0,1, \ldots \ldots, n-1$. Hence $f(z)$ takes $\alpha$ and $\beta$ at the same number of times, then $f(z)$ is exactly $p$-valent in $D$, i. e. $f(z)$ takes in $D$ any value $p$ times. Conversely, if $f(z)$ is exactly $p$-valent, then it follows that $H=F$. Let $\alpha$ be an arbitrary finite value in $\mathfrak{D}$ and $a_{i}$ be an $\alpha$-point of order $p_{i}$. If there are $n \alpha$-points in total, then clearly $p=\sum_{i=1}^{n} p_{i}$. Let $\bar{K}_{i}$ be a small circle: $\left|z-a_{i}\right| \leqq \rho$, lying within $D$, such that $\bar{K}_{j} \cdot \bar{K}_{j^{\prime}}=0 \quad\left(i \neq j^{\prime}\right)$, and denote by $\mathfrak{D}_{i}$ the value-set of $f(z)$ in $K_{i}$. Then there is a circle $C:|w-\alpha|<\sigma$, contained in $\prod_{i=1}^{n} \mathfrak{D}_{i}$, any value of which can be taken at least $p_{i}$ times in each $K_{i}(i=1,2, \ldots \ldots, n)$, provided that $\sigma$ is sufficiently small. Consequently it follows that $\alpha$ cannot be a cluster-value, for otherwise there be a point $z^{\prime} \in D-\sum_{i=1}^{n} \bar{K}_{i}$ such

[^0]that $f\left(z^{\prime}\right)$ lies in $C$, then $w^{\prime}=f\left(z^{\prime}\right)$ could be taken at least $p+1=\sum_{i=1}^{n} p_{i}+1$ times in $D$ and this is contrary to the assumption. If the infinity belongs to $\mathfrak{D}$, we see that it cannot also be a cluster value, repeating a similar argument to the above. Thus we have

Theorem 1. Let $f(z)$ be uniform and meromorphic in a finite domain $D$. Suppose $H=F$. Then $f(z)$ is exactly p-valent in $D$, if a certain value is taken $p$ times. Conversely if $f(z)$ is exactly $p$-valent in $D$, then it follows that $H=F$.

Let $D$ be simply connected. Make a sequence of polygonal domains $D_{n}$, such that $\bar{D}_{n} \subset D_{n+1}, D_{n} \rightarrow D$ and each $D_{n}$ is simply connected, and denote the value-set of $f(z)$ for $D-D_{n}$ by $\Delta_{n}$. Then the closure $\bar{\Delta}_{n}$ is a continuum. Therefore $H$ is a continuum, since $H=\prod_{n=1}^{\infty} \bar{\Delta}_{n}$. Consequently, if $H=F$, the value-set $\mathfrak{D}$ is simply connected. Thus we have a precise form of Mr. Satô's theorem ${ }^{(1)}$

Theorem 2. Let $f(z)$ be regular in a finite simply connected domain $D$ and let $f^{\prime}(z) \neq 0$ in $D$. Then $f(z)$ is univalent in $D$, provided that $\boldsymbol{H}=\boldsymbol{F}$.

Any inverse element $P(w-\alpha), \alpha \in \mathfrak{D}$ is analytically continuable along any way contained in $\mathfrak{D}$, where $\mathfrak{D}$ is simply connected as we remarked above. Applying a known theorem "Monodromiesatz," the analytic function determined by the element $P(w-\alpha)$ is uniform in $\mathfrak{D}$, and so $f(z)$ is univalent in $D$. By a similar argument, we obtain

Theorem 3. Let $f(z)$ be a uniform regular function in a finite domain $D$, such that $f^{\prime}(z)$ never vanishes in $D$, and suppose that the value-set $\mathfrak{D}$ is simply connected. Then $D$ is simply connected, provided that $H=F$.

In other words, we get
Theorem 4. Let $f(z)$ be uniform and regular in a finite domain D. Suppose that $H=F$ and that the value-set $\mathfrak{D}$ is simply connected. Then $f^{\prime}(z)$ has at least one zero-point in $D$, provided that $D$ is multiply connected.
For example; consider $w(z)=z+\frac{1}{z-a}+\frac{1}{z-b}, a \neq b$. Then the level curve: $|w(z)|=R$ consists of three simple closed regular curves if $R$ is sufficiently large. Consequently the finite domain $D$ enclosed by these curves is triply connected and the value-set $\mathfrak{D}$ is a circular domain $|w|<R$. In this case $w(z)$ is exactly 3 -valent in $D$ and $w^{\prime}(z)$ vanishes there.
2. In the previous case, $\boldsymbol{H}$ does not contain any interior point, since $H=F$ and $F$ is the boundary of $\mathfrak{D}$. But, if $H \neq F$, then $H$ may contain an interior point. Here we will obtain a necessary condition that $H$ should have an interior point. Let $\alpha_{0}$ be an interior point of $H$ and $K$ be a circular domain with centre $a_{0}$ lying entirely within $H$. It is clear that $K \cdot \mathfrak{D} \neq 0$, since every $\alpha \in K$ is a cluster value. Select a point $a_{1}$ within $K \cdot \mathfrak{D}$, such that $a_{1}=f\left(z_{1}\right), f^{\prime}\left(z_{1}\right) \neq 0$, then the inverse regular

1) This journal, vol. 12, p. 332.
element $z=P\left(w-\alpha_{1}\right)$ maps the circle $\bar{K}_{1}:\left|w-\alpha_{1}\right| \leqq \rho_{1}$, contained within $K$, conformally on a closed simply connected domain $\bar{\Delta}_{1}$, if $\rho_{1}$ is sufficiently small. Next, since every $\alpha \in K_{1}$, which denotes the interior of $K_{1}$, is a cluster value, we can select a point $a_{2}$ within $K_{1}$, such that $a_{2}=f\left(z_{2}\right), f^{\prime}\left(z_{2}\right) \neq 0$ and $z_{2} \in D-\bar{u}_{1}$, then the element $z=P\left(w-a_{2}\right)$ maps $\bar{K}_{2}:\left|w-a_{2}\right| \leqq \rho_{2}$, contained within $K_{1}$, conformally on a closed domain $\bar{\Delta}_{2}$ interior to $D-\bar{\Delta}_{1}$, if $\rho_{2}$ is sufficiently small. Repeating this process, we have two sequences $\left\{\bar{K}_{n}\right\}$ and $\left\{\bar{U}_{n}\right\}$ with the following properties: $\bar{K}_{n} \subset K_{n-1}$ and $\bar{\Delta}_{n} \subset D-\left(\bar{\Delta}_{1}+\bar{\Delta}_{2}+\cdots \cdots \bar{\Delta}_{n-1}\right)$ and $\bar{K}_{n}$ is the image of $\bar{\Delta}_{n}$ by $w=f(z)$. Consequently $f(z)$ takes every value, belonging to $\prod_{n=1}^{\infty} \bar{K}_{n}$, at infinite times. Thus we have

Theorem 5. Let $f(z)$ be uniform and meromorphic in $D$ and let $H$ be the cluster-set. Then $f(z)$ takes some values at infinite times, provided that $H$ contains an interior point.
More precisely, if we denote by $\Gamma$ the set of values taken at infinite times, then $I(H) \subset \bar{\Gamma}$, where $I(H)$ means the interior part of $H$.

As an immediate result, we get
Theorem 6. Under the same condition as in theorem 5, if $f(z)$ does not take any value infinite times, then the set $H$ contains no interior point.
Next, suppose that $H$ does not contain any interior point. Since $\Delta=\bar{D}-H=(\mathfrak{D}+F) C H=\mathfrak{D} \cdot C H+F \cdot C H=\mathfrak{D} \cdot C H, \Delta$ is an open set and can be decomposed into its components $\Delta_{i}(i=1,2, \ldots \ldots)$, each of which is a connected domain. By the same argument in the proof of theorem 1 , any value of each $\Delta_{i}$ is taken by $f(z)$ at the same (finite) number of times, say $p_{i}$ times. Denote the maximum of $p_{i}$ by $p$ and let $p$ be finite. Then $f(z)$ takes every value at most $p$ times in $D$. Evidently we have only to consider a value belonging to $\mathfrak{D} \cdot H$. Let $\alpha$ be such a value. If $f(z)$ takes $\alpha$ at least $p+1$ times in $D$, then, describing a small circle $K$ with centre $\alpha$, every value, lying within $K$, can be taken by $f(z)$ at least $p+1$ times in $D$, while $K \cdot \sum \Delta_{i} \neq 0$. This leads to a contradiction. Thus we have

Theorem 7. Let $f(z)$ be uniform and meromorphic in D. Suppose that $H$ contains no interior point and the number $p=\max p_{i}$ is finite. Then $f(z)$ is $p$-valent in $D$.
In connection with theorem 6, the following example is somewhat interesting. Consider an integral function $w(z)=e^{-z^{2}} \cos z$. Take as $D$ an angular domain: $|\arg z|<\frac{\pi}{4}-\delta(\delta>0)$. Since $w(z) \rightarrow 0$ uniformly as $z \rightarrow \infty$ in $D$, the set $H$ is identical with the image of both sides of $D$ and $\Gamma$ contains only one point, that is, $w=0$, for $w(z)$ vanishes at $z=\frac{(2 n+1) \pi}{2}$. It is clear that $H$ never contains any interior point.


[^0]:    1) We call $a$ a cluster value of $f(z)$ at $z=\zeta$, if there exists a sequence $z_{n} \rightarrow \zeta$, $z_{n} \neq \zeta, z_{n} \in D$, such that $f\left(z_{n}\right) \rightarrow a$.
