80. A Relation between the Length of a Plane Curve and Angles Stretched by it.

By Sôichi Kakeya and Kinjiro Kunugr.

(Comm. by S. Kakeya, m.i.A., Oct. 12, 1937.)
Let us consider a continuous plane curve C, defined by the equation: $x=\varphi(t), y=\psi(t)$ where $\varphi(t)$ and $\psi(t)$ are one-valued and continuous functions of t in $[0,1]=[0 \leqq t \leqq 1]$. For brevity, let us call a continuous plane curve without double point a Jordan curve. A Jordan curve is therefore a continuous transformation of the segment [0,1$]$ which is biuniform with a possible exception: $\varphi(0)=\varphi(1), \psi(0)=\psi(1)$. We shall denote this transformation by $(x, y)=f(t)$. Let T be a set of numbers contained in $[0,1]$. As t ranges over T, the point (x, y) ranges over a sub-set A of C. A will be called a generalized arc of C, and denoted by $f(T)$. The minimum value τ_{0} and the maximum value τ_{1} of $\bar{T}^{1)}$ are called extreme values of A.

Let now C be rectifiable, and let $U=[a, b]$ be an interval contained in $[0,1]$. The arc $f\{U\}$ will be denoted by $\mathfrak{A}(a, b)$. Devide [a,b] into n sub-intervals by the points $t_{0}=a<t_{1}<t_{2}<\cdots \cdots<t_{n}=b$. To the value $t_{m}(m=0,1,2, \ldots \ldots, n)$, there corresponds the point $p_{m}=f\left(t_{m}\right)$ of the curve. Denote by (p_{m-1}, p_{m}) the segment between two points p_{m-1}, p_{m}, and by $\left(\overline{p_{m-1}, p_{m}}\right)$ its length. We define as usual the length of the arc $\mathfrak{A}(a, b)$ as the limit of the sum $\sum_{m=1}^{n} \overline{\left(p_{m-1}, p_{m}\right)}$ (the length of the polygon whose vertices are p_{m}), when the greatest of the lengths $t_{m}-t_{m-1}$ tends to 0 , and denote it by $l(a, b)$. The complement of \bar{T} (in regard of $\left[\tau_{0}, \tau_{1}\right]$) is decomposed into at most enumerable infinity of contiguous intervals $\left(a_{r}, b_{r}\right)$. We call $l(A)=l\left(\tau_{0}, \tau_{1}\right)-\sum_{r=1}^{\infty} l\left(a_{r}, b_{r}\right)$ the length of the generalized arc $A^{2}{ }^{2}$

If $A_{1}, A_{2}, \ldots \ldots, A_{k}$ are a finite number of generalized arcs of C such as $A=\sum_{\nu=1}^{k} A_{\nu}$, we have, as usual

$$
l(A) \leqq l\left(A_{1}\right)+l\left(A_{2}\right)+\cdots \cdots+l\left(A_{k}\right)
$$

We can divide the interval [τ_{0}, τ_{1}] into n sub-intervals by the points of $T: t_{0}<t_{1}<t_{2}<\cdots \cdots<t_{n}$, so that the sum $\sum_{m=1}^{n}\left(\overline{p_{m-1}, p_{m}}\right)$ converges to $l\left(\tau_{0}, \tau_{1}\right)-\sum_{r=1}^{\infty} l\left(a_{r}, b_{r}\right)+\sum_{r=1}^{\infty}\left(\overline{f\left(a_{r}\right), f\left(b_{r}\right)}\right)=l(A)+\sum_{r=1}^{\infty}\left(\overline{f\left(a_{r}\right), f\left(b_{r}\right)}\right)$ as n tends to infinity.

Theorem 1. Let A be a generalized arc of a rectifiable Jordan curve C, whose extreme values are τ_{0}, τ_{1}. Suppose that A is contained in a circle of radius $S(S>0)$, and that to each point p of A, we can associate two half-lines $p q, p q^{\prime}$ with the properties:

[^0](1) These half straight lines $p q, p q^{\prime}$ make a given angle θ $(0<\theta<\pi)$.
(2) The angle $q p q^{\prime}$ has no common points with the arc $\mathfrak{A}\left(\tau_{0}, \tau_{1}\right)$ of C except p.
(3) $p q, p q^{\prime}$ are situated in a given side of the curve C.

Then the length of A does not exceed a fixed number $l_{1}=l_{1}(\theta, S)$ depending only on θ and S, namely $l(A) \leqq l_{1}$. Moreover we can set

$$
l_{1}(\theta, S)=2 S\left\{\left[\frac{4 \pi}{\theta}\right]+1\right\} / \sin \frac{\theta}{4} .
$$

Proof. Let p be a point of the generalized arc A. We have two half-lines $p q, p q^{\prime}$ making the angle θ at p, which have no common points with the are $\mathfrak{A}\left(\tau_{0}, \tau_{1}\right)$, and are situated in the prescribed side of the curve C.

We now consider the unit circle: $x^{2}+y^{2}=1$ on the plane of C, and draw two radius $o u$, $o u^{\prime 2)}$ which are parallel to $p q, p q^{\prime}$ respectively in the same sense. We shall denote by $I(p)$ the arc $u u^{\prime}$ of the unit circle, and by $\frac{1}{n} I(p)(n=2,3, \ldots \ldots)$ the sub-arc of $I(p)$, whose middle point coincides with that of $I(p)$ and whose length is $\frac{\theta}{n}$.

Let $q_{\nu}(\nu=0,1,2, \ldots \ldots, \mu-1)$ be μ points on the unit circle, whose coordinates in polar form are $\left(1, \frac{2 \pi \nu}{\mu}\right)$. If we set $\mu=\mu(\theta)=\left[\frac{4 \pi}{\theta}\right]+1$, then for any $p, \frac{1}{2} I(p)$ will contain at least one of these μ points. Denote by A_{ν} the set of all points p of A for which $q_{\nu} \in \frac{1}{2} I(p)$. A_{ν} is a generalized arc of C. Let $\tau_{0}^{\nu}, \tau_{1}^{\nu}$ be the extreme values of A_{ν}, and divide the interval $\left[\tau_{0}^{\nu}, \tau_{1}^{\nu}\right]$ into n sub-intervals by the points of $T_{\nu}{ }^{3}$: $t_{0}<t_{1}<t_{2}<\cdots<t_{n}$. Let us evaluate the sum $\sum_{m=1}^{n}\left(\overline{p_{m-1}, p_{m}}\right) ; p_{m}=f\left(t_{m}\right)$.

As the rotation does not alter the mutual positions of the curve and segments, we can suppose, without loss of generality, that $q_{r}=(0,1)$. Then the arc $\mathfrak{A}\left(\tau_{0}^{\nu}, \tau_{1}^{\nu}\right)$ satisfies the following condition (γ) : It has no points in common (except p_{m}) with the half-line $p_{m} p_{m}^{\prime}$ issued vertically from p_{m} in the positive direction of the y-axis. Hence, the generalized arc A_{ν} has no more than one point contained in the same straight line which is parallel to the y-axis. Let $\left(x_{m}, y_{m}\right)$ be the coordinates of the point p_{m}. The correspondence between x_{m} and p_{m} is biuniform. Moreover, these half-lines $p_{m} p_{m}^{\prime}$ must be situated in the same side of the curve C.

Let $p_{n_{1}}, p_{n_{2}}, p_{n_{3}}, p_{n_{4}}$ be any four of the points p_{m}. We suppose that $n_{1}<n_{2}<n_{3}<n_{4}$. Then their abscissae $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, x_{n_{4}}$ give a per-

1) $[x]$ is the greatest integer which does not exceed x.
2) We denote by o the origin of the plane.
3) T_{ν} is the set of all t such as $f(t) \in A_{\nu}$.
mutation of their mutual positions. For example, to the case: $x_{n_{2}}<$ $x_{n_{3}}<x_{n_{1}}<x_{n_{4}}$ we associate the permutation (2314). There are 24 such permutations. In the cases corresponding to the permutations (1423), (4231), (2314), (3142) and their inverses, the are $\mathfrak{A}\left(\tau_{0}^{\nu}, \tau_{1}^{\nu}\right)$ should have common points with some of vertical half-lines $p_{n_{1}} p_{n_{1}}^{\prime}, p_{n_{2}} p_{n_{2}}^{\prime}, p_{n_{3}} p_{n_{3}}^{\prime}$, $p_{n,} p_{n,}^{\prime}$, which contradicts the condition (γ). In the cases corresponding to (1342), ($\mathbf{3} 421$), (4213), (2134) and their inverses, the arc $\mathfrak{A}\left(\tau_{0}^{\nu}, \tau_{1}^{\nu}\right)$, which satisfies the condition (γ), should have the vertical half-lines $p_{n_{2}}$ $p_{n_{2}}^{\prime}$ and $p_{n_{3}} p_{n_{3}}^{\prime}$ in the opposite side of the curve, which contradicts the property (3). Consequently only the cases corresponding to the 8 permutations: (1234), (2341), (3412), (4123) and their inverses are possible. Thus we see that, regarding the order of $x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n}$, there are only two possible cases: viz. there exists an index m_{0} (which may be 0) such that

$$
\begin{align*}
& \text { (1) } x_{m_{0}}<x_{m_{0}+1}<\cdots \cdots<x_{n}<x_{0}<x_{1}<x_{2}<\cdots \cdots<x_{m_{0}-1} \tag{1}\\
& \text { (2) } x_{m_{0}}>x_{m_{0}+1}>\cdots \cdots>x_{n}>x_{0}>x_{1}>x_{2}>\cdots \cdots>x_{m_{0}-1}
\end{align*}
$$

Draw two half-lines $p_{m} p_{m}^{\prime \prime}, p_{m} p_{m}^{\prime \prime \prime}$ from p_{m}, making the angles $\pm \frac{\theta}{4}$ with the vertical lines $p_{m} p_{m}^{\prime}$. Then all the points $p_{m^{\prime}}\left(m \neq m^{\prime}\right)$ are situated below the angle $p_{m}^{\prime \prime} p_{m} p_{m}^{\prime \prime \prime}$, and every segment (p_{m-1}, p_{m}) ($m=$ $1,2, \ldots \ldots, n$), except $\left(p_{m_{0}-1}, p_{m_{0}}\right)$, is one side of a triangle whose other two sides are on the adjacent sides of the angles constructed above.

Each of these two sides of the triangle has constant direction. Hence it is easily seen that the length $\sum_{m=1}^{n}\left(p_{m-1}, p_{m}\right)$ does not exceed $\left.\frac{2 S}{\sin \frac{\theta}{4}}+\overline{\left(p_{m_{0}-1}, p_{m_{0}}\right.}\right)$. But, we can choice the suitable values $t_{0}<t_{1}<$ $t_{2}<\cdots \cdots<t_{n}$ of T_{ν} and make n tend to infinity, so that the sum $\sum_{m=1}^{n}\left(p_{m-1}, p_{m}\right)$ converges to $l\left(A_{\nu}\right)+\sum_{\nu=1}^{\infty} l\left(\overline{f\left(a_{r}\right), f\left(b_{r}\right)}\right)$. Moreover we can suppose that in this case the values $t_{m_{0}-1}$ and $t_{m_{0}}$ tend to two fixed values v, v^{\prime} respectively such that the interval $\left(v, v^{\prime}\right)$ is one of the contiguous intervals (a_{r}, b_{r}) belonging to the complement of \bar{T}_{ν}. Thus we have $l\left(A_{\nu}\right) \leqq l=2 S / \sin \frac{\theta}{4}$.

Since $A=\sum_{\nu=0}^{\mu-1} A_{\nu}$ and consequently $l(A) \leqq \sum_{\nu=0}^{\mu-1} l\left(A_{\nu}\right), l(A)$ can not exceed the number $\mu \cdot l=2 S\left\{\left[\frac{4 \pi}{\theta}\right]+1\right\} / \sin \frac{\theta}{4}$. Q. E. D.

Theorem 2. Let C be a rectifiable Jordan curve contained in a circle of radius $R(R>0)$. Suppose that to every point p of C, we can associate a circle with center p and radius $r(r>0)$, and two diameters $q p q_{1}, q^{\prime} p q_{1}^{\prime}$ of the circle making the angle $\theta(0<\theta<\pi)$, which satisfy the following condition (α) : the curve C has no common points with two sectorial domains bounded by $q p q_{1}, q^{\prime} p q_{1}^{\prime}$ and two arcs $q q^{\prime}$, $q_{1} q_{1}^{\prime}$ of the circumference.

Then the length of the curve C does not exceed a number $l_{0}=$ $l_{0}(\theta, r, R)$ depending only on θ, r and R, namely $l(C) \leqq l_{0}$.

Proof. Divide the whole plane into squares by straight lines which are parallel respectively to the x - and y-axis and pass through the points $\left(m \frac{2 r}{\nu(\theta)}, 0\right)$ and $\left(0, m \frac{2 r}{\nu(\theta)}\right)$, where $\nu(\theta)$ is a function of θ, and $m=0, \pm 1, \pm 2, \ldots \ldots$. We have thus a net covering the whole plane, whose meshes are squares of side $\frac{2 r}{\nu(\theta)}$. All squares which have common points with C (in the interior or on the sides) can be contained in a square whose side has length $2\left(R+\frac{2 r}{\nu(\theta)}\right)$. Hence, the number of former squares is not greater than

$$
\lambda=\lambda(\theta, r, R)=\left[\left(2+\frac{R \nu(\theta)}{r}\right)^{2}\right] .
$$

Denote by $Q_{\mu}, \mu=1,2,3, \ldots \ldots, \lambda^{\prime} ; \lambda^{\prime} \leqq \lambda$, the closed square which has common points with the curve C, and put $C_{\mu}=Q_{\mu} \cdot C . C_{\mu}$ are generalized arcs of C.

Let μ be fixed, and let (a, b) be the center of the square Q_{μ}. Describe a circle S_{μ} with center (a, b) and radius $\frac{r}{2}$. To each point p of C_{μ}, we can associate a circle $S(p)$ with center p and two diameters $q p q_{1}, q^{\prime} p q_{1}^{\prime}$ making the angle θ, which satisfy the condition (a). The circle S_{μ} is contained in the interior of $S(p)$ and the point p lies within S_{μ} Consequently the domains between two diameters $q p q_{1}, q^{\prime} p q_{1}^{\prime}$ cut off, from the circumference of S_{μ}, two distinct arcs which we denote by $I(p)$ and $I^{\prime}(p)$. The lengths of these arcs are greater than $2 r\left(\frac{1}{2}-\frac{\sqrt{2}}{\nu(\theta)}\right) \sin \frac{\theta}{2}$, and this is greater than $\frac{r}{2} \sin \frac{\theta}{2}$, if $\nu(\theta) \geqq 8$.

We say that two points p_{1}, p_{2} of C are connected in S_{μ}, if the arc $\mathfrak{A}\left(t_{1}, t_{2}\right), p_{1}=f\left(t_{1}\right), p_{2}=f\left(t_{2}\right)$ of C has no points on the outside of the circle S_{μ}. We can denote it by $p_{1} \sim p_{2}$ in S_{μ}. If $p_{1} \sim p_{2}$ in S_{μ} and $p_{2} \sim p_{3}$ in S_{μ}, then we have also $p_{1} \sim p_{3}$ in S_{μ}. Thus the points of C_{μ} are classified, collecting the points connected each other in S_{μ} in the same class A^{μ}.

Let us see now that there exist at most $N(\theta)=\left[16 \pi: \sin \frac{\theta}{2}\right]$ classes A^{μ}. To prove this, we first confirm that, if we take one point p_{ν} from each of these classes, then any three of $\frac{1}{4} I\left(p_{\nu}\right)$ has no point in common. For, if $\frac{1}{4} I\left(p_{\nu}\right)$ and $\frac{1}{4} I\left(p_{\nu^{\prime}}\right)$ have a point in common, then the common part $I\left(p_{\nu}\right) \cdot I\left(p_{\nu^{\prime}}\right)$ will contain an arc of length $\frac{3}{4} \frac{r \sin \frac{\theta}{2}}{2}$. And hence, if we set $\nu(\theta)>2 \sqrt{2}: \sin \left(\frac{3}{16} \sin \frac{\theta}{2}\right)$ or $\left[24: \sin \frac{\theta}{2}\right]+1$, then $I^{\prime}\left(p_{\nu}\right)$ and $I^{\prime}\left(p_{\nu^{\prime}}\right)$ will also have common points. Now each class considered above, determines an arc $\mathfrak{A}\left(\tau, \tau^{\prime}\right)$ of C, where τ, τ^{\prime} are the extreme
values of t such as $f(t) \sim p$ in S_{μ}, p being a point of the class. Let $\mathfrak{Y}\left(\tau_{\nu}, \tau_{\nu}^{\prime}\right)$ and $\mathfrak{A}\left(\tau_{\nu^{\prime}}, \tau_{\nu}^{\prime}\right)$ be the arcs determined by the classes of $p_{\nu}, p_{\nu^{\prime}}$. We can suppose that $\tau_{\nu}<\tau_{\nu}$. Then the curve C goes from the point p_{ν} to the outside of the circle S_{μ} and then comes to $p_{\nu^{\prime}}$. And, afterwards C can not have a point without S_{μ}. Thus we see that no three of $\frac{1}{4} I\left(p_{\nu}\right)$ can have points in common. From this result, it follows immediately that $\frac{1}{2} N(\theta) \cdot \frac{1}{4} \frac{r \sin \frac{\theta}{2}}{2} \leqq \pi r$ or that $N(\theta) \leqq\left[16 \pi: \sin \frac{\theta}{2}\right]$.

Thus we have at most $\lambda \cdot N(\theta)$ generalized arcs (classes) $A_{\nu} \quad(\nu=1$, $2, \ldots \ldots, n, n \leqq \lambda N(\theta))$, which satisfy the following condition (β) : to each point p of A_{ν}, we can associate two straight lines $q p q_{1}, q^{\prime} p q_{1}^{\prime}$ making the angle θ at p, and whose two opposite angles have no points in common with the arc $\mathfrak{A}\left(\tau, \tau^{\prime}\right)$ of the curve C. Thus, by Theorem 1 , we have $l\left(A_{\nu}\right) \leqq l_{1}\left(\theta, \frac{r}{2}\right)$.

On the other hand, since $C=\sum_{\nu=1}^{n} A_{\nu}$, we get $l(C) \leqq \sum_{\nu=1}^{n} l\left(A_{\nu}\right) \leqq$ $\lambda N(\theta) l_{1}$.
Q. E. D.

[^0]: 1) \bar{T} is the set of all points of T together with its limiting points.
 2) $l(A)$ is the linear measure of \bar{A} on C.
