79. On the Boundary Values of Analytic Functions.

By Sôichi Kakeya, m.I.a.
Mathematical Institute of Tokyo Imperial University.
(Comm. Oct. 12, 1937.)

I. We consider a simple closed rectifiable curve C on Gaussian plane, and we give a continuous function $f(t)$ on C. If there exists a function $\boldsymbol{F}(z)$ which is analytic within C and is continuous up to the boundary C, satisfying $F(t)=f(t)$ on C, then we must have

$$
\begin{equation*}
\int_{C} f(t) t^{m} d t=0, \quad m=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

since z^{m} is analytic within and on C.
The equations (1) are also sufficient, under a certain condition, for the existence of such an analytic function $F(z)$ as above. For example, (1) is sufficient if $f(t)$ is given to be analytic along $C .^{1)}$ Also it is sufficient if the curve C is analytic. ${ }^{2)}$

The paper is devoted to prove the sufficiency of (1), in the case where C has the following property P :

To every point t on C, we can so associate a pair of opposite sectors (the sides of one sector being the elongations of the other's) of center t that 1) it varies continuously with $t, 2$) its radius ρ and central angle $\omega(0<\omega<\pi)$ are fixed, and 3) the one sector lies within C while the other lies without C.

Any curve with continuous tangent, for example, evidently possesses the property P. For such curve, we can give previously any angle ω less than π, taking ρ sufficiently small, and make the sectors symmetric with respect to the tangent.
II. For proving the existence of such function $F(z)$ as above, it is sufficient to see that $F(z)$ is analytic within C and tends uniformly to $f(t)$ when z tends to t along the bisector of the inner sector corresponding to t. Because any point z within C which approaches to t on C should approach to t_{1} on C, which is near to t and the bisector of whose corresponding sectors passes through z. So $F(z)$, approaching $f\left(t_{1}\right)$, will tend to $f(t)$. This is based upon the fact that the said bisector generates continuously the inner side of the curve C.

When the required function $\boldsymbol{F}(\boldsymbol{z})$ should exist, it must be represented, within C, by Cauchy's integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{f(t)}{t-z} d t \tag{2}
\end{equation*}
$$

So we are only to show, under the condition (1), that this integral (2) (which is evidently analytic within C) tends uniformly to $f\left(t_{0}\right)$ when z tends to t_{0} along the said bisector at t_{0}.

1) S. Kakeya, Tohoku Math. Journ., 5 (1914), p. 42.
2) J. L. Walsh, Trans. Amer. Math. Soc., 30 (1928), p. 327.

The integral (2) is also analytic in the outside of C, being zero at infinity. The coefficient of $\frac{1}{z^{k}}(k=1,2,3, \ldots \ldots)$ in the expansion of (2) at infinity is $\frac{-1}{2 \pi i} \int_{C} f(t) t^{t-1} d t$. Hence the condition (1) is equivalent to that

$$
\begin{equation*}
\int_{C} \frac{f(t)}{t-z^{\prime}} d t=0 \tag{3}
\end{equation*}
$$

for all z^{\prime} in the outside of C.
Under these remarks, we now proceed to the proof.
III. Taking a fixed point t_{0} on C, we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{f\left(t_{0}\right)}{t-z} d t=f\left(t_{0}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{f\left(t_{n}\right)}{t-z^{\prime}} d t=0 \tag{5}
\end{equation*}
$$

where z and z^{\prime} denote respectively any points within and without C. So the equation

$$
\begin{equation*}
\lim _{z \rightarrow t_{0}} \frac{1}{2 \pi i} \int_{C} \frac{f(t)}{t-z} d t=f\left(t_{0}\right) \tag{6}
\end{equation*}
$$

which we are to prove, under the condition (3), is equivalent to

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{C} \frac{f(t)}{t-z} d t-\frac{1}{2 \pi i} \int_{C} \frac{f(t)}{t-z^{\prime}} d t \\
& \rightarrow \frac{1}{2 \pi i} \int_{C} \frac{f\left(t_{0}\right)}{t-z} d t-\frac{1}{2 \pi i} \int_{C} \frac{f\left(t_{0}\right)}{t-z^{\prime}} d t \tag{7}\\
& \int_{C} \frac{\left\{f(t)-f\left(t_{0}\right)\right\}\left(z-z^{\prime}\right)}{(t-z)\left(t-z^{\prime}\right)} d t \rightarrow 0 \tag{8}
\end{align*}
$$

uniformly for $z \rightarrow t_{0}$ along the bisector. Here z^{\prime} may be any point without C. So we take as z^{\prime} the point which is symmetric for z with respect to t_{0}. Then $z \rightarrow t_{0}$ is equivalent to $\left|z-z^{\prime}\right| \rightarrow 0$.

Denote the length of the arc $\widehat{t_{0} t}$ by s, and the arc containing t_{0}, for which $s \leqq \sigma$, by C_{0}. Take σ so small that

$$
\begin{equation*}
\left|f(t)-f\left(t_{0}\right)\right| \leqq \varepsilon \quad \text { on } C_{0} \tag{9}
\end{equation*}
$$

Corresponding to this σ, there exists a constant $M(\sigma)$, independent of z, z^{\prime}, such that

$$
\begin{equation*}
\frac{1}{|t-z|\left|t-z^{\prime}\right|} \leqq M(\sigma) \quad \text { on } C-C_{0} . \tag{10}
\end{equation*}
$$

The determination of σ and $M(\sigma)$ can be made independently of the position of t_{0}.

If we can find a constant N independent of σ, z, z^{\prime} and t_{0} such that

$$
\begin{equation*}
\int_{C_{0}} \frac{|d t|}{|t-z|\left|t-z^{\prime}\right|} \leqq \frac{N}{\left|z-z^{\prime}\right|} \tag{11}
\end{equation*}
$$

then we get

$$
\begin{align*}
\left|\int_{C} \frac{\left\{f(t)-f\left(t_{0}\right)\right\}\left(z-z^{\prime}\right)}{(t-z)\left(t-z^{\prime}\right)} d t\right| & \leqq\left|\int_{C_{0}}\right|+\left|\int_{C-C_{0}}\right| \\
& \leqq \varepsilon N+2 G M(\sigma) S\left|z-z^{\prime}\right| \tag{12}
\end{align*}
$$

where G is the greatest magnitude of $f(t)$ and S is the whole length of C. Since ε can be taken arbitrarily, the inequality (12) shows that (8) holds good.

Hence there remains only to prove the existence of a constant N of (11).

Evidently, we can find such a constant σ_{0} that, if $\sigma \leqq \sigma_{0}$ the are C_{0} lies wholly without the angles of the sectors corresponding to t_{0}. We may confine ourselves to such a small σ. Let the projection of t on the bisector of the complementary angles of the sectors be t^{\prime}, then there exists a positive constant λ depending on ω such that

$$
\begin{align*}
& |t-z| \geqq \lambda\left|t^{\prime}-z\right| \\
& \left|t-z^{\prime}\right| \geqq \lambda\left|t^{\prime}-z^{\prime}\right|=\lambda\left|t^{\prime}-z\right| \tag{13}
\end{align*}
$$

since t lies in the said complementary angles. Hence we have

$$
\begin{equation*}
\int_{C_{0}} \frac{|d t|}{|t-z|\left|t-z^{\prime}\right|} \leqq \frac{1}{\lambda^{2}} \int_{C_{0}} \frac{|d t|}{\left|t^{\prime}-z\right|^{2}}=\frac{1}{\lambda^{2}} \int_{-\sigma}^{\sigma} \frac{d s}{x^{2}(s)+r^{2}} \tag{14}
\end{equation*}
$$

where $x(s)=\left|t_{0}-t^{\prime}\right|, r=\left|t_{0}-z\right|=\frac{\left|z-z^{\prime}\right|}{2}$ and s is measured with the sense.

Changing the variable by

$$
\begin{equation*}
s=r u, \quad d s=r d u \tag{15}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{-\sigma}^{\sigma} \frac{d s}{x^{2}+r^{2}}=\frac{1}{r} \int_{-\frac{\sigma}{r}}^{\frac{\sigma}{r}} \frac{d u}{\left\{\frac{x(r u)}{r}\right\}^{2}+1} \tag{16}
\end{equation*}
$$

Since our associated sectors varies continuously with t_{0}, we see that any chord of C_{0} makes such an angle θ, with the line $t_{0} t^{\prime}$, that

$$
\begin{equation*}
\frac{\pi}{2}-\frac{\omega}{2}+\delta>\theta>-\left(\frac{\pi}{2}-\frac{\omega}{2}+\delta\right) \tag{17}
\end{equation*}
$$

where $\delta(>0)$ can be made so small as $0<\frac{\pi}{2}-\frac{\omega}{2}+\delta<\frac{\pi}{2}$ by taking
σ_{0} suitably small. In this case, we evidently have ${ }^{\text {1) }}$

$$
\begin{equation*}
s \leqq x \sec \left\{\frac{\pi}{2}-\frac{\omega}{2}+\delta\right\}=x \mu \quad \text { (say, for brevity). } \tag{18}
\end{equation*}
$$

And hence

$$
\begin{equation*}
\int_{-\frac{\sigma}{r}}^{\frac{\sigma}{r}} \frac{d u}{\left\{\frac{x(r u)}{r}\right\}^{2}+1} \leqq \int_{-\frac{\sigma}{r}}^{\frac{\sigma}{r}} \frac{d u}{\left(\frac{u}{\mu}\right)^{2}+1} \leqq \int_{-\infty}^{\infty} \frac{d u}{\left(\frac{u}{\mu}\right)^{2}+1}=\mu_{\pi} . \tag{19}
\end{equation*}
$$

Thus we get the inequality (11), by putting

$$
\begin{equation*}
N=\frac{\mu \pi}{\lambda^{2}} \tag{20}
\end{equation*}
$$

which completes our proof.

1) Even in the case where the variation of our sectors is not continuous, we can get a certain limitation on the whole length of the curve, if it lies within a given limited domain. See the next paper of Kakeya and Kunugi, in this proceeding.
