103. Notes on Fourier Series (II) : Convergence Factor.

By Shin-ichi Izumi and Tatsuo Kawata.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.i.A., Dec. 13, 1937.)

1. R. Salem has proved the following theorem: ${ }^{1)}$

If $f(x)$ is a continuous function with period 2π and its Fourier coefficients be a_{n} and b_{n}, then the relation

$$
\begin{equation*}
\lim _{s \rightarrow 0}\left\{\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \log n}\right\}=f(x) \tag{1}
\end{equation*}
$$

holds good almost everywhere.
In this relation we must notice that the series in the bracket of the right hand side is convergent for every positive value of s and for almost all x.

One of the present authors ${ }^{2}{ }^{2}$ has proved that

$$
\begin{equation*}
\lim _{s \rightarrow 0}\left\{\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \sqrt{\log n}}\right\}=f(x) \tag{2}
\end{equation*}
$$

almost everywhere for squarely integrable function $f(x)$.
The object of this paper is to prove that (1) is true for any integrable function and there is the corresponding relation for the function in $L^{p}(1 \leqq p \leqq 2)$.
2. Theorem. If $f(x) \varepsilon L^{p}(1 \leqq p \leqq 2)$ and is periodic with period 2π and a_{n} and b_{n} are its Fourier coefficients, then we have

$$
\begin{equation*}
\lim _{s \rightarrow 0}\left\{\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \frac{\sin }{1+s(\log n)^{1 / p}}}{1 x}\right\}=f(x) \tag{3}
\end{equation*}
$$

almost everywhere.
Actually we can replace the factors $\left\{\frac{1}{1+s(\log n)^{1 / p}}\right\}$ by the more general sequence $\left\{\psi_{n}(s)\right\}$ which satisfies certain conditions. ${ }^{3)}$ But we make here no attention to this.

For the proof we make use of the theorem:
Lemma. If $f(x) \varepsilon L^{p}(1 \leqq p \leqq \mathscr{2})$, then

$$
\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{(\log n)^{1 / p}}
$$

[^0]converges for x in a set E with measure 2π. And for every x in E the n-th partial sum of the series (3) is $o\left((\log n)^{1 / p}\right)$.

The case $p=1$ is due to Hardy-Littlewood-Plessner, the case $p=2$ due to Kolmogoroff-Seliverstoff-Plessner and the remaining case was recently proved by Littlewood-Paley. ${ }^{1)}$

From Lemma we can easily verify that the series in the left hand side of (3) converges in E for all $s(>0)$ and the n-th partial sum is $o\left((\log n)^{1 / p}\right)$.

We will prove the theorem for the case $p=1$. The other case can be proved quite similarly.
3. Let us put

$$
\begin{equation*}
f(x, s)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \log n} \tag{4}
\end{equation*}
$$

which converges almost everywhere by Lemma.
By the twice application of the Abel's lemma and by Lemma, we have

$$
\begin{aligned}
f(x, s) & =\lim _{N \rightarrow \infty}\left\{\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \log n}\right\} \\
& =\sum_{n=0}^{\infty} K_{n}(x) \Delta^{2}\left(\frac{1}{1+s \log n}\right),{ }^{2)}
\end{aligned}
$$

where

$$
\begin{aligned}
K_{0}(x) & =\frac{1}{2} a_{0} \\
K_{n}(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin ^{2} \frac{n t}{2}}{\sin ^{2} \frac{t}{2}} d t \quad(n>1) \\
\Delta a_{p} & =a_{p}-a_{p+1}, \quad \Delta^{2} a_{p}=\Delta\left(\Delta a_{p}\right)
\end{aligned}
$$

We will suppose that $f(x) \geqq 0$. Since $K_{n}(x) \geqq 0$ and $\left\{\frac{1}{1+s \log n}\right\}$ is a convex sequence, $f(x, s) \geqq 0$. We have

$$
\begin{aligned}
\int_{-\pi}^{\pi} \varliminf_{s \rightarrow 0} f(x, s) d x & \leqq \int_{-\pi}^{\pi} \lim _{\sigma \rightarrow 0}\left[l_{\sigma \leq s \leq 1} \text { u. . } f(x, s)\right] d x \\
& \leqq \lim _{\sigma \rightarrow 0} \int_{-\pi}^{\pi} \text { l. u. . . . } f(x, s) d x \\
& =\lim _{\sigma \rightarrow 0} \int_{-\pi}^{\pi} \text { l. .u. . . . }\left[\sum_{n=0}^{\infty} K_{n}(x) \Delta^{2}\left(\frac{1}{1+s \log n}\right)\right] d x .
\end{aligned}
$$

[^1]Now we can find n_{s} such that $d^{2}\left(\frac{1}{1+s \log x}\right)$ is decreasing for $x \geqq n_{s}$ and is increasing for $x \leqq n_{s}$. Thus we have

$$
\begin{align*}
& \int_{-\pi}^{\pi} \varlimsup_{s \rightarrow 0} f(x, s) d x \leqq \lim _{\sigma \rightarrow 0} \int_{-\pi}^{\pi} \lim _{\sigma \leq s \leq i} \mathrm{~b}_{\mathrm{i}}\left[\sum_{\nu=0}^{n_{s}-3} K_{n}(x) d^{2}\left(\frac{1}{1+s \log n}\right)\right. \tag{5}\\
&+\sum_{\nu=n_{s}-2}^{n_{s}+2} K_{n}(x) d^{2}\left(\frac{1}{1+s \log n}\right) \\
&\left.+\sum_{\nu-n_{s}+3}^{\infty} K_{n}(x) d^{2}\left(\frac{1}{1+\sigma \log n}\right)\right] d x \\
& \leqq \lim _{\sigma \rightarrow 0} \int_{-\pi}^{\pi}[f(x, 1)+f(x, \sigma) \\
&\left.+\operatorname{lom}_{\sigma \leq s \leq 1} \sum_{n_{s}-2}^{n_{s}+2} K_{n}(x) d^{2}\left(\frac{1}{1+s \log n}\right)\right] d x \\
& \leqq c_{1} \int_{0}^{2 \pi} f(x) d x
\end{align*}
$$

4. Let us consider the general integrable function $f(x)$. Let us put

$$
f(x)=f^{+}(x)-f^{-}(x),
$$

where

$$
\begin{array}{rlrl}
f^{+}(x) & =f(x), & f^{-}(x) & =0, \\
& =0, & & \text { if } \quad f(x) \geqq 0 ; \\
& =f(x), \quad \text { if } f(x)<0 .
\end{array}
$$

Then $|f| \geqq f^{+} \geqq 0$ and $|f| \geqq f^{-} \geqq 0$. Thus we get from (5)

$$
\begin{align*}
\int_{-\pi}^{\pi} \varlimsup_{s \rightarrow 0}|f(x, s)| d x & \leqq \int_{-\pi}^{\pi}\left\{\varlimsup_{s \rightarrow 0} f^{+}(x, s)+\varlimsup_{s \rightarrow 0} f^{-}(x, s)\right\} d x \tag{6}\\
& \leqq c_{2} \int_{-\pi}^{\pi}|f(x)| d x
\end{align*}
$$

where $f^{+}(x, s)$ and $f^{-}(x, s)$ represent the series in left hand side of (4), constructed from $f^{-}(x)$ instead of $f(x)$.

Now let the Fejér sum of the Fourier series of $f(x)$ be $\sigma_{n}(x)$ and form $\sigma_{n}(x, s)$ from $\sigma_{n}(x)$ as before. Then we have by (6)

$$
\int_{-\pi}^{\pi} \varlimsup_{s \rightarrow 0}\left|f(x, s)-\sigma_{n}(x, s)\right| d x \leqq c_{3} \int_{-\pi}^{\pi}\left|f(x)-\sigma_{n}(x)\right| d x
$$

which tends to zero as $n \rightarrow \infty$. Thus the known result concerning the mean convergence shows that there exist a sequence of integers $\left\{n_{k}\right\}$ and a set F such that $m F=2 \pi$ and

$$
\begin{equation*}
\lim _{n_{k} \rightarrow \infty} \varlimsup_{s \rightarrow 0}\left|f(x, s)-\sigma_{n_{k}}(x, s)\right|=0 \tag{7}
\end{equation*}
$$

for x in F.
5. We have

$$
\begin{aligned}
\lim _{s, s^{\prime} \rightarrow 0}\left|f(x, s)-f\left(x, s^{\prime}\right)\right| \leqq \varlimsup_{s \rightarrow 0} & \left|f(x, s)-\sigma_{n_{k}}(x, s)\right| \\
& +\varlimsup_{s^{\prime} \rightarrow 0}\left|f\left(x, s^{\prime}\right)-\sigma_{n_{k}}\left(x, s^{\prime}\right)\right|
\end{aligned}
$$

Letting $n_{k} \rightarrow \infty$, we reach the result that

$$
\lim _{s \rightarrow 0} f(x, s)
$$

exists almost everywhere. The fact that the limit function $g(x)$ is equal to $f(x)$, is immediate. For (7) yields us

$$
\lim _{n_{k} \rightarrow \infty}\left|g(x)-\sigma_{n_{k}}(x)\right|=0 .
$$

Since $\sigma_{n_{k}}(x)$ tends to $f(x)$ almost everywhere, $g(x)=f(x)$ almost everywhere. Thus the theorem is proved.

[^0]: 1) R. Salem, Comptes Rendus, 205 (1937), pp. 14-16, 205 (1937), pp. 311-313. In the latter paper, Salem remarked that more generally for a bounded function, (2) holds good.
 2) T. Kawata, Proc. 13 (1937), 381-384.
 3) Cf. Salem, loc. cit. and T. Kawata, loc. cit.
[^1]: 1) See Zygmund, Trigonometrical series, 1935. pp. 58-59, pp. 252-255.
 2) We must replace $\frac{1}{1+s \log n}$ by 1 , if $n=0$.
