PAPERS COMMUNICATED

101. A Theorem Concerning the Fourier Series of a Quadratically Summable Function.

By Tatsuo Kawata.
Mathematical Institate, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.i.A., Dec. 13, 1937.)

1. Recently Mr. R. Salem ${ }^{1)}$ has proved the following theorem:

If $f(x)$ is a bounded periodic function with period 2π and its Fourier coefficients are a_{n}, b_{n}, then the following relation holds for almost all values of x,

$$
\begin{equation*}
\lim _{s \rightarrow 0}\left[\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \sqrt{\log n}}\right]=f(x) . \tag{1}
\end{equation*}
$$

Actually he proved the relation (1) replacing more general sequence $\left\{\psi_{n}(s)\right\}$ for $\{1 /(1+s \sqrt{\log n})\}$. The object of the present paper is to prove the validity of (1) under the condition that $f(x) \in L_{2}$, i. e. is quadratically summable. In this form the theorem says more than the well known theorem of Kolmogoroff-Seliverstoff-Plessner ${ }^{2)}$ concerning the convergence factor of the Fourier series of a quadratically summable function. But we can prove our theorem by using the theorem of Kolmogoroff-Seliverstoff-Plessner.
2. Theorem 1. If $f(x) \in L_{2}$ and is periodic with period 2π and a_{n}, b_{n} are its Fourier coefficients, then the relation (1) holds for almost all values of x.

Theorem 2. In Theorem 1, we can replace the sequence $\{1 /(1+s \sqrt{\log n})\}$ by the sequence $\left\{\psi_{n}(s)\right\}$ which satisfies the following conditions:
1°. $\left\{\psi_{n}(s)\right\}$ is the decreasing and convex sequence of positive functions, $0<s \leqq 1\left(\psi_{0}(s)=1\right)$.
2. $\lim _{s \rightarrow 0} \psi_{n}(s)=1$, (n fixed).
3. $\lim _{n \rightarrow \infty} \psi_{n}(s)=0$, (s fixed, >0).
4°. $\psi_{n}(s)=O(\sqrt{\log n})$, $(s$ fixed, $>0)$.
5°. $\psi_{n}(s)$ has a finite number of maxima for any fixed n.
The proof of Theorem 2 is quite similar as that of Theorem 1 and so we only prove Theorem 1.

Let E_{1} be the set of x such that

1) R. Salem, Sur une méthode de sommation, valable presque partout, pour les séries de Fourier de fonction continue, Comptes Rendus, 205 (1937), pp. 14-16.
" , Sur une généralisation du procédé de sommation de Poisson, ibid., 205 (1937), pp. 311-313.
2) See, Zygmund, Trigonometrical series, Warsaw (1935), pp. 253-255.

$$
\sum_{n-2}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{\sqrt{\log n}}
$$

converges. Then $m E_{1}=2 \pi$. This is the theorem of Kolmogoroff-Seliverstoff-Plessner. And for $x \in E_{1}$,

$$
\sum_{n=2}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)=o(\sqrt{\log N})
$$

We can easily verify that for $x \in E_{1}$,

$$
f(x, s)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \sqrt{\log n}}
$$

converges and its N-th partial sum is $o(\sqrt{\log n})$ for every value of s. The Parseval relation shows that

$$
\begin{align*}
\lim _{\rightarrow 0} \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x, s)-f(x)|^{2} d x & =\lim _{\beta \rightarrow 0} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)\left(\frac{1}{1+s \sqrt{ } \log n}\right. \tag{2}\\
& =0 .
\end{align*}
$$

From the kown result concerning the convergence in mean, we see that there exists a sequence $\left\{s_{n}\right\}\left(\lim _{n \rightarrow \infty} s_{n}=0\right)$ such that

$$
\lim _{s \rightarrow \infty} f\left(x, s_{n}\right)=f(x)
$$

for almost all values of x.
Now let $f(x)=f^{+}(x)-f^{-}(x)$, where

$$
\begin{aligned}
& f^{+}(x)=f(x) \text {, if } f(x) \geqq 0, \quad f^{-}(x)=-f(x) \text {, if } f(x)<0, \\
& =0 \text {, otherwise, }=0 \text {, otherwise. }
\end{aligned}
$$

Then $f^{+}(x), f^{-}(x) \geqq 0$ and $f^{+}(x), f^{-}(x) \leqq|f(x)|$.
Write

$$
\begin{aligned}
& f^{+}(x) \sim \frac{1}{2} \alpha_{0}+\sum_{n=1}^{\infty}\left(\alpha_{n} \cos n x+\beta_{n} \sin n x\right), \\
& f^{-}(x) \sim \frac{1}{2} \gamma_{0}+\sum_{n=1}^{\infty}\left(\gamma_{n} \cos n x+\delta_{n} \sin n x\right),
\end{aligned}
$$

then clearly $\alpha_{n}-\gamma_{n}=a_{n}, \beta_{n}-\delta_{n}=b_{n}$. Similar arguments as above show that there exist a set S_{1} and a sequence $\left\{s_{n}\right\}$ such that $m S_{1}=2 \pi$ and for $x \in S_{1}, f^{+}(x, s)$ converges and the N-th partial sums are $o(\sqrt{\log N})$ and $\lim _{n \rightarrow \infty} f^{+}\left(x, s_{n}\right)=f^{+}(x)$. By applying the Abel's transformation twice, we have, if $x \in S_{1}$

$$
\begin{align*}
f^{+}(x, s) & =\lim _{N \rightarrow \infty}\left\{\frac{1}{2} \alpha_{0}+\sum_{n=1}^{N} \frac{\alpha_{n} \cos n x+\beta_{n} \sin n x}{1+s \sqrt{\log n}}\right\} \tag{3}\\
& =\lim _{N \rightarrow \infty}\left\{\sum_{n=0}^{N-2} K_{n}(x) \Delta^{2} \frac{1}{1+s \sqrt{\log n}}\right. \tag{4}\\
& \left.+K_{N-1}(x) \Delta \frac{1}{1+s \sqrt{\log (N-1)}}+S_{N}(x) \frac{1}{1+s \sqrt{\log N}}\right\},
\end{align*}
$$

where $S_{n}(x)$ is the N-th partial sum of the series in the bracket of the right hand side of (3) and

$$
K_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin ^{2}(n t / 2)}{\sin ^{2}(t / 2)} d t, \quad(n>0), \quad K_{0}(x)=\alpha_{0}
$$

and

$$
\Delta a_{p}=a_{p}-a_{p+1} .
$$

In this, we must replace 1 for $\frac{1}{1+s \sqrt{\log n}}$ if $n=0$. The last term in the bracket of (4) tends to zero as $N \rightarrow \infty$ and the same is also easily verified for the second term. Thus

$$
f^{+}(x, s)=\sum_{n=0}^{\infty} K_{n}(x) \Delta^{2} \frac{1}{1+s \sqrt{\log n}},
$$

where we notice that $K_{n}(x)$ and $\Delta^{2} \frac{1}{1+s \sqrt{\log n}}$ are positive and $f^{+}(x, s)$ is also positive. Now take two numbers s_{p}, s_{p+1} from $\left\{s_{n}\right\}$ such that $s_{p+1} \leqq s<s_{p}$. Then we have

$$
\begin{aligned}
& 0 \leqq f^{+}(x, s) \leqq \sum_{n=0}^{\infty} K_{n}(x) \Delta^{2} \frac{1}{1+s_{p} \sqrt{\log n}}+\sum_{n=0}^{\infty} K_{n}(x) \Delta^{2} \frac{1}{1+s_{p+1} \sqrt{\log n}} \\
&+\sum_{n_{s}{ }^{-2}}^{n_{s}+^{2}} K_{n}(x) \Delta^{2} \frac{1}{1+s \sqrt{\log n}} \\
&=f^{+}\left(x, s_{p}\right)+f^{+}\left(x, s_{p+1}\right)+\frac{1}{n_{s}} \int_{0}^{2 \pi}|f(x+t)| \frac{\sin ^{2}\left(n_{s} t / 2\right)}{\sin ^{2}(t / 2)} d t
\end{aligned}
$$

for some n_{s} which tends to ∞ as $s \rightarrow 0$.
Hence we have

$$
\varlimsup_{s \rightarrow 0} f^{+}(x, s) \leqq 2 f^{+}(x) \leqq 2|f(x)|
$$

Similarly there exists a set S_{2} such that for $x \in S_{2}$,

$$
\varlimsup_{s \rightarrow 0} f^{-}(x, s) \leqq 3|f(x)|
$$

Thus for $x \in S_{1} \cdot S_{2}$ we have

$$
\varlimsup_{s \rightarrow 0}|f(x, s)| \leqq \varlimsup_{s \rightarrow 0} f^{+}(x, s)+\varlimsup_{s \rightarrow 0} f^{-}(x, s) \leqq 6|f(x)| .
$$

Now let

$$
f_{M} \sim \sum_{n=M+1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

and

$$
f_{M}(x, s)=\sum_{n=M+1}^{\infty} \frac{a_{n} \cos n x+b_{n} \sin n x}{1+s \sqrt{\log n}}, \quad\left(x \in E_{1}\right)
$$

Then there exists a set E_{M} such that $m E_{M}=2 \pi$ and for $x \in E_{M}$,
(5)

$$
\lim _{s \rightarrow 0}\left|f_{M}(x, s)\right| \leqq 6\left|f_{M}(x)\right| .
$$

Thus in $\Pi E_{M}, \varlimsup_{s \rightarrow 0}\left|f_{M}(x, s)\right|$ is finite for every M. Squaring and integrating both sides of (5), we have

$$
\int_{-\pi}^{\pi}\left\{\lim _{s \rightarrow 0}\left|f_{M}(x, s)\right|\right\}^{2} d x \leqq 6 \pi \int_{-\pi}^{\pi}\left|f_{M}(x)\right|^{2} d x=6 \pi \sum_{n-M^{\prime}+1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) .
$$

Hence we get

$$
\lim _{M \rightarrow \infty} \int_{-\pi}^{\pi}\left\{\varlimsup_{s \rightarrow 0}\left|f_{M}(x, s)\right|\right\}^{2} d x=0
$$

Therefore there exist a set E and a sequence M_{k} such that $m E=2 \pi$, and for $x \in E$

$$
\lim _{K \rightarrow \infty} \varlimsup_{\mathrm{g} \rightarrow 0}\left|f_{M_{k}}(x, s)\right|=0 .
$$

Now for $x \in E$,

$$
\begin{array}{r}
\lim _{s, s^{\prime} \rightarrow 0}\left|f(x, s)-f\left(x, s^{\prime}\right)\right| \leqq \lim _{s, s^{\prime} \rightarrow 0} \mid \sum_{n=1}^{M_{k}}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
\times\left(\frac{1}{1+s \sqrt{\log n}}-\frac{1}{1+s^{\prime} \sqrt{\log n}}\right) \\
+2 \lim _{s \rightarrow 0}\left|\sum_{n-M_{k}+1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \frac{1}{1+s \sqrt{\log n}}\right| \\
=2 \lim _{s \rightarrow 0}\left|\sum_{n-M_{k}+1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \frac{1}{1+s \sqrt{\log n}}\right|
\end{array}
$$

which is arbitrarily small by taking k large. Thus $\lim _{s \rightarrow 0} f(x, s)$ exists for $x \in E$. The fact that the limiting value is $f(x)$ is an immediate consequence of (2). Thus we complete the proof.

