PAPERS COMMUNICATED

101. A Theorem Concerning the Fourier Series of a Quadratically Summable Function.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Dec. 13, 1937.)

1. Recently Mr. R. Salem¹⁾ has proved the following theorem :

If f(x) is a bounded periodic function with period 2π and its Fourier coefficients are a_n , b_n , then the following relation holds for almost all values of x,

(1)
$$\lim_{s\to 0} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s\sqrt{\log n}} \right] = f(x).$$

Actually he proved the relation (1) replacing more general sequence $\{\psi_n(s)\}\$ for $\{1/(1+s_1/\log n)\}$. The object of the present paper is to prove the validity of (1) under the condition that $f(x) \in L_2$, i.e. is quadratically summable. In this form the theorem says more than the well known theorem of Kolmogoroff-Seliverstoff-Plessner²⁾ concerning the convergence factor of the Fourier series of a quadratically summable function. But we can prove our theorem by using the theorem of Kolmogoroff-Seliverstoff-Plessner.

2. Theorem 1. If $f(x) \in L_2$ and is periodic with period 2π and a_n , b_n are its Fourier coefficients, then the relation (1) holds for almost all values of x.

Theorem 2. In Theorem 1, we can replace the sequence $\{1/(1+s_1/\log n)\}$ by the sequence $\{\psi_n(s)\}$ which satisfies the following conditions:

1°. $\{\psi_n(s)\}$ is the decreasing and convex sequence of positive functions, $0 < s \leq 1(\psi_0(s)=1)$.

2°. $\lim_{s\to 0} \psi_n(s) = 1$, (*n* fixed).

3°. $\lim_{n \to \infty} \psi_n(s) = 0$, (s fixed, >0).

4°. $\psi_n(s) = O$ $(\sqrt{\log n})$, (s fixed, >0).

5°. $\psi_n(s)$ has a finite number of maxima for any fixed n.

The proof of Theorem 2 is quite similar as that of Theorem 1 and so we only prove Theorem 1.

Let E_1 be the set of x such that

¹⁾ R. Salem, Sur une méthode de sommation, valable presque partout, pour les séries de Fourier de fonction continue, Comptes Rendus, **205** (1937), pp. 14-16.

[&]quot;, , Sur une généralisation du procédé de sommation de Poisson, ibid., 205 (1937), pp. 311-313.

²⁾ See, Zygmund, Trigonometrical series, Warsaw (1935), pp. 253-255.

T. KAWATA.

$$\sum_{n=2}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{\sqrt{\log n}}$$

converges. Then $mE_1=2\pi$. This is the theorem of Kolmogoroff-Seliverstoff-Plessner. And for $x \in E_1$,

$$\sum_{n=2}^{N} (a_n \cos nx + b_n \sin nx) = o(\sqrt{\log N}).$$

We can easily verify that for $x \in E_1$,

$$f(x,s) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s \sqrt{\log n}}$$

converges and its N-th partial sum is $o(\sqrt{\log n})$ for every value of s. The Parseval relation shows that

(2)
$$\lim_{\to 0} \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x,s) - f(x)|^2 dx = \lim_{s \to 0} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \left(\frac{1}{1 + s \sqrt{\log n}} - 1\right)^2 = 0.$$

From the kown result concerning the convergence in mean, we see that there exists a sequence $\{s_n\}(\lim s_n=0)$ such that

$$\lim_{s\to\infty}f(x,s_n)=f(x)$$

for almost all values of x.

Now let $f(x)=f^+(x)-f^-(x)$, where

$$f^+(x) = f(x)$$
, if $f(x) \ge 0$, $f^-(x) = -f(x)$, if $f(x) < 0$,
= 0, otherwise, = 0, otherwise.

Then $f^+(x), f^-(x) \ge 0$ and $f^+(x), f^-(x) \le |f(x)|$. Write

$$f^{+}(x) \sim \frac{1}{2} \alpha_{0} + \sum_{n=1}^{\infty} (\alpha_{n} \cos nx + \beta_{n} \sin nx),$$

$$f^{-}(x) \sim \frac{1}{2} \gamma_{0} + \sum_{n=1}^{\infty} (\gamma_{n} \cos nx + \delta_{n} \sin nx),$$

then clearly $a_n - \gamma_n = a_n$, $\beta_n - \delta_n = b_n$. Similar arguments as above show that there exist a set S_1 and a sequence $\{s_n\}$ such that $mS_1 = 2\pi$ and for $x \in S_1$, $f^+(x, s)$ converges and the N-th partial sums are $o(\sqrt{\log N})$ and $\lim_{n \to \infty} f^+(x, s_n) = f^+(x)$. By applying the Abel's transformation twice, we have, if $x \in S_1$

(3)
$$f^{+}(x,s) = \lim_{N \to \infty} \left\{ \frac{1}{2} \alpha_{0} + \sum_{n=1}^{N} \frac{\alpha_{n} \cos nx + \beta_{n} \sin nx}{1 + s\sqrt{\log n}} \right\}$$

(4)
$$= \lim_{N \to \infty} \left\{ \sum_{n=0}^{N-2} K_n(x) d^2 \frac{1}{1+s\sqrt{\log n}} + K_{N-1}(x) d \frac{1}{1+s\sqrt{\log (N-1)}} + S_N(x) \frac{1}{1+s\sqrt{\log N}} \right\},$$

where $S_n(x)$ is the N-th partial sum of the series in the bracket of the right hand side of (3) and

$$K_{n}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin^{2}(nt/2)}{\sin^{2}(t/2)} dt , \quad (n > 0) , \quad K_{0}(x) = a_{0}$$

and

$$a_p = a_p - a_{p+1}.$$

In this, we must replace 1 for $\frac{1}{1+s\sqrt{\log n}}$ if n=0. The last term in the bracket of (4) tends to zero as $N \rightarrow \infty$ and the same is also easily verified for the second term. Thus

$$f^+(x,s) = \sum_{n=0}^{\infty} K_n(x) \Delta^2 \frac{1}{1 + s\sqrt{\log n}}$$
,

where we notice that $K_n(x)$ and $d^2 \frac{1}{1+s\sqrt{\log n}}$ are positive and $f^+(x,s)$ is also positive. Now take two numbers s_p, s_{p+1} from $\{s_n\}$ such that $s_{p+1} \leq s < s_p$. Then we have

$$\begin{split} 0 &\leq f^{+}(x,s) \leq \sum_{n=0}^{\infty} K_{n}(x) \varDelta^{2} \frac{1}{1+s_{p}\sqrt{\log n}} + \sum_{n=0}^{\infty} K_{n}(x) \varDelta^{2} \frac{1}{1+s_{p+1}\sqrt{\log n}} \\ &+ \sum_{n_{s}=2}^{n_{s}+2} K_{n}(x) \varDelta^{2} \frac{1}{1+s\sqrt{\log n}} \\ &= f^{+}(x,s_{p}) + f^{+}(x,s_{p+1}) + \frac{1}{n_{s}} \int_{0}^{2\pi} |f(x+t)| \frac{\sin^{2}(n_{s}t/2)}{\sin^{2}(t/2)} dt \,, \end{split}$$

for some n_s which tends to ∞ as $s \rightarrow 0$. Hence we have

$$\overline{\lim_{s\to 0}} f^+(x,s) \leq 2f^+(x) \leq 2|f(x)|.$$

Similarly there exists a set S_2 such that for $x \in S_2$,

$$\overline{\lim_{s\to 0}} f^{-}(x,s) \leq 3 |f(x)|.$$

Thus for $x \in S_1 \cdot S_2$ we have

$$\overline{\lim_{s\to 0}} |f(x,s)| \leq \overline{\lim_{s\to 0}} f^+(x,s) + \overline{\lim_{s\to 0}} f^-(x,s) \leq 6 |f(x)|.$$

Now let

$$f_M \sim \sum_{n=M+1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

and

$$f_M(x,s) = \sum_{n=M+1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s\sqrt{\log n}}, \qquad (x \in E_1).$$

Then there exists a set E_M such that $mE_M = 2\pi$ and for $x \in E_M$,

T. KAWATA.

(5)
$$\overline{\lim_{s\to 0}} |f_M(x,s)| \leq 6 |f_M(x)|.$$

Thus in $\prod E_M$, $\lim_{s\to 0} |f_M(x,s)|$ is finite for every M. Squaring and integrating both sides of (5), we have

$$\int_{-\pi}^{\pi} \{\overline{\lim_{s\to 0}} |f_M(x,s)|\}^2 dx \leq 6\pi \int_{-\pi}^{\pi} |f_M(x)|^2 dx = 6\pi \sum_{n=M+1}^{\infty} (a_n^2 + b_n^2).$$

Hence we get

$$\lim_{M\to\infty}\int_{-\pi}^{\pi}\{\overline{\lim_{s\to 0}}|f_M(x,s)|\}^2dx=0.$$

Therefore there exist a set E and a sequence M_k such that $mE=2\pi$, and for $x \in E$

$$\lim_{K\to\infty} \lim_{s\to 0} |f_{M_k}(x,s)| = 0.$$

Now for $x \in E$,

$$\lim_{s,s'\to 0} |f(x,s) - f(x,s')| \leq \lim_{s,s'\to 0} |\sum_{n=1}^{M_k} (a_n \cos nx + b_n \sin nx) \\ \times \left(\frac{1}{1 + s\nu/\log n} - \frac{1}{1 + s'\nu/\log n}\right) \\ + 2 \lim_{s\to 0} \left|\sum_{n=M_k+1}^{\infty} (a_n \cos nx + b_n \sin nx) \frac{1}{1 + s\nu/\log n}\right| \\ = 2 \lim_{s\to 0} \left|\sum_{n=M_k+1}^{\infty} (a_n \cos nx + b_n \sin nx) \frac{1}{1 + s\nu/\log n}\right|$$

which is arbitrarily small by taking k large. Thus $\lim_{s\to 0} f(x, s)$ exists for $x \in E$. The fact that the limiting value is f(x) is an immediate consequence of (2). Thus we complete the proof.

384