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1. For a topological group G, which is locally compact and separ-
able, the uuiqueness o Haar’s left-invariant measure is proved by
J.v. Neumann. Although the method used by him is very interesting
and powerful, his proo is somewhat long. The notion o right-zero-
invariance is not necessary or the proof. In this paper we shall give
a simplified proof. The essential improvement consists in the adoption
of the /ght-invariant measure in the second group, in constructing the
measure of the topological product G G. Since the separability plays
no essential r6le in our proof, it can also be, by slight modifications,
applied to the case of a non-separable group (the case o a locally
bicompact topological group, which is treated by Weil)), and more-
over we can prove, in the same manner, the theorem o the uniqueness
o Haar’s measure even or the case, when the field G is no longer a
topological .group, that is, G is simply a topological space S, and when
the transitive group G of homeomorphic transformations of on itself
is g/vea

2. We beg/n with some definitions"
Given a topological space and a group G o homeomorphic trans-

formation of on itself, a set unctions/ o (not necessarily non-
negative) is called G-nrrt i for any Borel set E o and or any
e G we have/(E)=/(E). A Borel set E o is called

if p(EziaE)=06) for any a e G, and G is called ergodic on S, if for any
G-invariant totally additive non-negative set function7 p and for any
G-/-invariant Borel set E of S we have either p(E)= 0 or I(G-E)=O.8
In the special case, when S and G coincide, that is, when S is a topo-

1) We shall understand in the following by "uniqueness" always "uniqueness up
to a constant factor."

2) J. v. Neumann: The uniqueness of Haar’s measure, Recueil Math., 1 (43)
(1936).

3) A. Weil- Sur les groupes topologiques et les groupes mesurs, C. R. 202 (1936).
4) Cf. J. v. Neumann" On the uniqueness of invariant Lebesgue measure, Bull.

Amer. Math. Soc., 42 (1936) (Abstract).
5) In this paper we consider only those set functions, which are defined and are

finite for all Borel sets whose closure is bicompack (If the space is separable, the
notion of compactness and that of bicompactness coincide.) If is non-negative, (E)
is defined for any non-bicompact Borel set as the least upper bound of all (F), where
F is a bicompact Borel set c E. (E) might be infinite in this case.

6) We denote by AJB the symmetric difference A+B--A.B of two sets A and
B. This is the sum o two sets in Boolean sense.

7) We do not assume that (U) 0 for open set U.
8) Cf. J. v. Neumann and F.J. Muray On rings of operators, Annals of Math.,

37 (1936), p. 195.
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logical group G and G is a group of left (right)-multiplication of G,
G-invariant set function of S (=G) is called left (right)-invariant, G-
/-invariant set is called left (right)-z-invariant and G is called left
(right)-ergodic if G is ergodic on itself, considering G as a group of
transformations of itself by left (right)-multiplication.

With this notion of ergodicity, the proof of the theorem of unique-
ness is now divided into two parts--the proof of the following two facts-

I. If G is lefl-ergodic, then the left-invariant measure, of G is

II. G is lefl-ergodic,
G being supposed to be locally compact and separable.)

3. Proof of/. If the left-invariant measure of G is not unique,
then there will be two left-invariant measures ,/_, two Borel sets E,
E, and a real number a such that z(E):> a(E) and (E.)<:: ap(EJ.
Consider the set function (E)=z.(E)-a(E). Z is defined for any
Borel set and is left-invariant, Since/ is of bounded variation in any
compact part of G, G can be divided into two Borel sets P and N-
G=P+N, P.N=O, in such a way that for any Borel set EP(E N)
we have /(E) 0 ((E) 0).) Since / is left-invariant, P and N
are left-/-invariant.

Now, consider the total variation P of . fi is defined by fi(E)
=(E.P)-(E.N). Since P is totally additive, non-negative and left-
invariant and since, as is easily seen, P and N are left-fi-invariant, we
have by the assumption of ergodicity, that either fi(P)=0 or fi(N)=0.
On the other hand, since there are two Borel sets E and E with
(E) > 0 and /(E) <:: 0, we have fi(P) z(E-P) /(E) :> 0 and
(N)- (E,..N)-(E) O, and thus we are led to the con-
tradiction.

Hence the left-invariant measure of G is unique.
4. Proof of II. Let/ be a left-invariant totally additive non-

negative set function defined on G and let E be a left-/-invariant Borel
set of G. It is to be proved that either p(E)=0 or (G-E)=0 hold

Consider the product space G x G and introduce into it a measure
Z+, which is induced by the measure / of the x-axis (the first G)
and by the measure 2 of the a-axis (the second G). As the measure

of the x-axis take the left-invariant measure/ in question and as

1) Since the case of a locally bicompact topological group is treated in 5, the
treatment of a locally compact separable group is superfluous. But the relation between
uniqueness and ergodicity is more prominent in this case.

2) Here we use the conditions of separability and of local compactness. If G is
compact, then is of bounded variation on G and the proof is immediate. Let K be
the least upper bound of /(E) for all Borel sets E of G, and choose a sequence {En}
of Borel sets of G such that (En)> K--1/2% (n:1,2 ). It will be clear, that
G=P+N., where P:lim En and /r:G-P, gives the desired decomposition. If G

is not compact, we proceed as follows: Since G is separable and locally compact, G
is divided into a countable number of (not necessarily disjoint) open sets U (i= 1, 2
whose closure is compact. Each Ui is then divided into positive part Pi and negative

part N" Ui,:Pi,+lVi,, P-/r:O, and if we put P---,,P and N-G-P, G=P+N
i=l

will be the desired decompositiom
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the measure of the a-axis take an arbitrary right-invariant measure
of G.

Let (z) be the characteristic function of E (defined in G). (z)
is a Borel-measurable function in G and consequently (az) is Borel-
measurable in G x G. (z) itself, considered as a function of x and a,
is also Borel-measurable in G G. Since, as is easily seen,
(a: fixed) is a characteristic function of E,a-E and since, by assump-
tion /(E,#aE)=O for any a e G, we have

I (ax) d/(x) 0
G

for any a e G, and consequently

.II (x)- (ax) dl(x)d(a)=O
GG

Therefore, applying the theorem of Fubini:

I I(x) (ax) ld(a)= 0
G

for almost all x (with respect to/) of G. In other words, there is a
Borel set M of l-measure zero on x-axis, such that for any x e G-Mo
there corresponds a Borel set E of 2-measure zero on the a-axis, for
which from a e G-E it follows (x)=(ax), or equivalently (x)=(z)
for any z e G-E.x. Let y be any other point of G-Mo. Then there
corresponds, in the same manner, a set E of 2-measure zero on the
a-axis, for which from z e G-E.y it follows (y)=(z). Since the set
E.x and E.y of excluded points, by the right-invariance of 2, is of
-measure zero, there will be a point z e G-E-x-E.y and for this
z we have (x)=(y)=(z). Since x and y are arbitrarily chosen from
G-Mo, we have thus proved that (x) is constant in G-Mo, that is,
either E M0 or G-Mo E and consequently either (E)=0 or
(G-E)=0.

The uniqueness of the left-invariant measure is hereby completely
proved.

5. The case of a locally bicompact topological group is now to be
treated. It is report by A. Weil) that he has succeeded in proving
the existence and the uniqueness of Haar’s measure for such a group.
Since the detail of his proof is not published unywhere, we shall give
in this section a brief summary of our proof.

The existence of Haar’s measure in any locally bicompact topological
group can be proved in just the same manner, as it was done by S.
Banach’-) for the case of a locally compact separable group. To our
regret, we have to rely upon the well-ordering hypothesis. Since the

1) A. Weil, loc. cir. As is remarked by J. v. Neumann, the method used by A.
Weil is entirely different from that of v. Neumann. (Cf. J. v. Neumann, loc. cit., p.
723).

2) Cf. Appendix of S. Saks’ Book: The Theory of the Integral, Warszawa-Lwow,
1937.
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necessary modifications are almost obvious, we shall not go into the
detail and shall proceed to the proo of the theorem of uniqueness.

If we follow the preceding proof, we are hindered at a point,
where we divide G into positive part P and negative part N with
respect to p. Indeed, since G is in general not semi-bicompact (that
is, G is not a sum of a countable number of bicompact sets), the
decomposition G---, U of G into open sets U,-whose closure is hi-
compact, might perhaps require more than a countable number of such
sets;in such a cae, P=P, where P is a positive part o U,
might no longer be Borel-measurab]e and moreover there might exist
a bicompact Bore] set E P such that p(E)<: 0.

In order to avoid such complications, we shall consider only a local
part o G. Take an arbitrary open et U whose closure is bicompact,
such that U-x:U. It will be ufficient, if we can show that the
assumption of the existence of a totally additive left-invariant et func-
tion p and two Borel ets E, E2: U, such that /(Ex):> 0 and
/@(E2) <: 0, would lead us to the contradiction.

Consider the open set U3.1) U3 is bicompact and can therefore be
divided into positive part P and negative part N with respect to p.

Since p is ]eft-invariant we have p((P,P).U)-O or any U2.2’

Consider the toal variation of p again. We have also ((P,aP).U)
-0 or any U2 and, denoting by () the characteristic unction of
P, we have

UU2

for any right invariant measure 2 of G. Therefore we have, from the
theorem o Fubini, the existence of a Bore] set M0 U with P(Mo)-0,
such that

.I 0

for any e U-M0 that is, there corresponds to any e U-M0 a Borel
setE of -measure zero, such that from a e U2-E it follows (z) (az),
or equivalently, () (z) for any z e (U2-E).. Since U US-
and (E,.:r)=O (owing to the right-invariance of ), we have ,(:r,)=,(z)
for any z e U-E* with (E*)=O.

The rest of the proof will now be obvious, since, using the condi-
tion that (U):> 0, it can be performed in just the same manner as
in the preceding.

1) Un is a set of all of G, which is representable as z-z-z zn, where
ie U (i-1, 2 n).

2) This relation may be proved as follows: Since (P-aP).Uc P we have

p((P-aP).U) 0 and since (P-aP).U ::. U-aP c aUS-aP---aN, we have

p((P-aP).U) "< O, and combining these two, we have p((P-aP).U)=O. Since the

relation ,u((aP-P).U)=O may be proved in the same manner, we have ((PJaP).U)
--/((P-aP). U) + /((aP-P). U)-O.
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teab. The last part of the proof may also be done as follows :
From (1) we have

Since is right-invariant

and since U U.z for any z e

In the same manner, we have from (1), multiplying the integrand
by (a),

Since (2) and (3) hold for any z e H-M0, and from the relation

.Il- f(e))gl()"t- If()gl()--"I(U) > 0, a le one

nd [e(e)g() mus siie, we have from (2)

0 in U-
1) The author wishes to express his hearty thanks to Mr. M. Fukamiya for his

kind advices concerning this method.
2) This method is also applicable to the case of a locally compact separable group.


