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1. Let K(x,y) be bounded and measurable in the square
0 1, 0 y 1. Consider the integral operator K which trans-
forms the Banach space (L)) in (L).

(1) f--, Kf=g" g(y)=Ilof(X) K(x, y)dx.
It is to be noted that such an operator is not always completely con-
tinuous in (L). This may be shown by an example ( 3). We can,
however, prove the following

Theorem 1. Let N(z, y) and K(z, y) be bounded and measurable
in 0 x 1, 0 y 1. Then the integral operator P defined by the

bounded Kernel P(x, y)= 0N(x, z) K(z, y)dz is completely continuous as

an operator which maps (L) in (L).
Remark. The integral operator (1) may also be considered as a

linear operator which maps (L) in (M), (M) in (M) or (M) in (L).
Proof of Theorem 1 Denote by N and K the integral operators

which correspond to the kernels N(x, y) and K(x, y) respectively. P
may be considered as a combination of two operators N and K per-
formed successively in this order, where N is an operator which maps
(L) in (M) and K is the one which maps (M) in (L)" fe (L)--, Nf=
g e (M) --. Kg(=Pf)=h e (L).

The unit sphere IIflI 1 of (L) is mapped by N on a set con-
tained in the sphere g llM <= n of (M), where n=l. u. b. IN(x, y) !.

0<_, /<:1
Hence it is sufficient to prove the

Theorem 2. The integral operator K with bounded kernel K(x, y)
is completely continuous as an operator which maps (M) in (L).

Proof" We extend the definition domain of K(x, y) to the infinite
square oo <2 x <:+ o, oo <: y <:+ oo, by putting K(x, y) 0 if the
point (x, y) is outside the square 0 x 1, 0 y 1. Let Kg h,
where g e (M), g IIM 1. By Fubuni-Tonelli’s theorem, we have

1) (L)is the space of all the measurable functions f(x) which are absolutely

integrable in 0 __< z 1. For any fe (L), we define its norm by IlfllL If(x) ldx.
0

2) A linear operator which maps the Banach space E in another Banach space E
is called to be completely continuous if it maps the unit sphere i! 1 of E on a
compact (in E) set of E,.

3) (M) is the space of all the bounded measurable functions defined in 0 =< z 1.
For any fe(M) we define its norm by IlfllM--ess. max. If@)]-
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The last integral (which is independent of the particular choice of
g (M), with Ilgll 1) tends to zero as tends to zero, by Lebesgue’s
theorem. Further we have ih(y) k for any y(0 y 1) and for
any g (M) with gH 1, where k=l. u. b. K(z, y)I. Thus by Kol-

0_, y_l

mogoroff-Riesz’s theoremD the image by K of the unit sphere ]]gllM 1

of (M)is compact (in (L)) in the topology of (L).
Remark. Another proof given below does not appeal to Kolmo-

goroff-Riesz’ theorem.
Consider P as a succession of two operators N and K, each trans-

forming (L) in (L). N is weakly completely continuous as an operator
which maps (L) in (L); viz. N maps the unit sphere IIfll l of (L)
on a set of (L) which is weakly compact in (L).2) Thus any sequence
{f} with IIf,,IIL 1 contains a subsequence (f%} such that the sequ-

ence {g%} (g%=Nf%) converges weakly to some element (function) go
of (L). As the conjugate space of (L) is (M), we have, by the bounded-
ness of K(z, y)

[lg,(X) K(x, y)dx,-[ go(x)K(x, y)dx for any y(O ylim 1).

We have 1. u.<b. Ih%(y) < n. k, h%(y)= og%() g(, y)d. Hence by
0y_

Lebesgue’s theorem, the sequence {h%(y)} must converge to

 polo y L).

2. Let (1) denote the Banach space consisting of all the set
functions (E), which are completely additive for Borel set of the
interval 0 1. For any e () the norm of is given by
total variation of (E) in 01. A bounded measurable kernel
K(, y) defines an integral operator which maps () in ()"

--. K,=," (E)=I dy I0(dx)K(, y).

Such an operator is not always completely continuous in (). The ex-
ample for the space (L) shows this fact. Corresponding to Theorem 1
we may give the

1) A. Kolmogoroff- Ober Kompaktheit der Funktionenmengen bei der Konver-
genz im Mittel, Nachr. Ges. Wiss. GSttg., Math.-phys. Kl. 1931, 60-63.

M. Riesz: Sur les ensembles compacts de fonctions sommables, Acta Litt. Sci.
Szeged, 6 (1933), 136-142.

2) K. Yosida and S. Kakutani: Applications of Mean Ergodic Theorem to the
problem of Markoff’s process, Proc. 14 (1938), 333.
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Theorem 3. Le N(, y) and K(, y) be bounded and measurable
in 0 x 1, 0 y 1. Then the integral operator P defined by the

bounded kernel P(, y)= 0N(, z)K(z, y)dz is completely continuous as

an operator which maps (R) in (R).
Proof" This may be carried out as in the case of Theorem 1.

Firstly, N may be considered as a bounded linear operator which maps
(M)" --K=g. g(y)=l(dx) K(x, y).

j0

Secondly, K is a completely continuous linear operator which maps
(M) in (I)"

Remark. Another proof analogous to the remark above is also
possible. Firstly, N is weakly completely continuous as an operator
which maps (!I) in (L). Secondly K is a linear operator which maps
the weakly convergent sequence of (L) into the strongly convergent
sequence of

3. Example. We shall construct in this chapter a bounded
measurable kernel K(z, y) defined in 0 x 1, 0 y 1, such that the
corresponding integral operator is not completely continuous as an
operator which maps (L) in (L).

Put
1 1 2k 2k+ 1K(x, y)=2 if 2--- < z <: y

2_ 2 2

1 1 2k-t-1K(x,y)=0 if 2---<:_ 2.- 2

n=l, 2,

K(x, y) is defined in 0 <2 z 1, 0 <:: y 1. At the points where x 0
or y=0 put K(x, y)=l. This K(x, y) is a required one. It is clear
that K is bounded and measurable. In order to prove that the cor-
responding integral operator is not completely continuous, put

A(x)=2" if l__<x_< 1
2" 2"-

0 elsewhere in 0 x 1.

Then we have "f."L=l (n=1,2,...)and

is not compact in (L) in the topolo of (L). For we have, by ey
calculation, g-g ][L= 1 for any m n.

The importance of this example consists in the fact that K(x, y)
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may be considered as a density of transition probability of a simple
Markoff’s proces (See the following paper of K. Yosida: Operator-
theoretical Treatment of the Markofffs Process.))

1) After the present paper was completed, we found that Theorem 1 was already
obtained by J. Sirvint in another way. Cf. J. Sirvint: Sur lea travformations int-
grales de l’espace L, C.R. URS 18 (1938), 255-257. He also obtained an example
of a bounded and measurable kernel of the said property. His example coincides with
ours up to an additive constant 1.


