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1. Introduction and the theorems. Let R be a space and let
B(R) be a completely additive family of "measurable" subsets of R.
We assume that R itself belongs to B(R). Let P(z,E) denote the
transition probability that the point z eR is transferred, by a simple
Markoff process, into the set Ee B(R) after the elapse of a unit-time.
We naturally assume that P(z, E) is completely additive for Ee B(R)
if z is fixed, and that P(x, E) is "measurable" (with respect to B(R))
in z if E is fixed. Then the transition probability P<)(z, E) that the
point z is transferred into E after the elapse of n unit-times is given

by P(’)(x, E)= IP(’-D(X’ dy) P(y, E)D (n= 1, 2, P(I’(x, E)=P(x, E)).
We have surely,

(1) P()(x, E) O, P(’)(x,R)----1 (n=l, 2, ...).

We now assume that there exists a non-negative set function (E)
which satisfies the conditions"

(2) (E) is completely additive for EeB(R) and (R)= 1.

(3) {The space B(R), if metrised by the distance d(E,E)=
(E+E-E. E), is (complete and) separable.

(4) I(dx)P(x,E)=(E) for any EeB(R).

have, from (4), |(dx)P(’)(x, E)=(E) for any n.We Hence the

mass distribution (E) is stable with respect to the time. Such Mar-
koff process (with a stable distribution (E)) is fairly general; it in-
chdes the deterministic transition process in the ergodic theory of the
incomplessible stationary flow, originated by G.D. Birkhoff and J. von
Neumann. In fact, let T be a one-to-one point transformation of R
on R which maps any set Ee B(R) on the set T.EeB(R) in measure-
preserving way: (E)=(T.E). Let CE(x) be the characteristic func-
tion of E and put P(x,E)=CE(T.x), then it is easy to see that
this P(x,E) defines a Markoff process with stable distribution (E).
Another example is given by the Markoff process with symmetric -P(x, E) -p(x, y) (dy), p(x, y):--p(y, x). Thus our generaldensity"

JE

1) The definite integral over R will be denoted by (dx).
2) The completeness of the metrical space B(R) follows from the complete addi-

tivity of B(R). The separability hypothesis may be taken away, by suitably modify-
ing the proof below. However, for the sake of brevity, I here assume it.
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P(z, E) applies to the deterministic transition process z-. T.z as well
as to the indeterministic (probabilistic) transition process.

Let (L) denote the set of all the real-vahed measurable functions
f(x) which are -integrable. (L) is surely a Banach space with the

llfll=i-lf(x) l(d). We will prove the following theorems.norm

Theorem 1. For any fe (L),

f()(z) IP(")(x, dy)f(y) (m- 1, 2,...)

exists -almost everywhere and belongs to (L) in such a way that
Ilf()ll<=llfll. For any re(L)and for any m (=1,2,...), there cor-
responds f(-) e (L), ilf(-) < i[fll, such that

I(dx)f(x) P(")(x, E)= If(-)(x) (dx) for all Ee B(R)

Theorem 2. For any fe (L), there corresponds f(*), f(-*) e (L)
such that

(5) " :1 n =
f(*)(x) P(x, dy)f(*)(y) -almost everywhere,

(6)

j f(- anu B(R)

In the deterministic case P(x, E) CT. x), f()(x) and f(-)(x)
corresponds to f(T=-x) and f(T-.x) respectively. Theorem 2 is an
extension of J. yon Neumann’s mean ergodic theorem for (L) to the
indeterministic case. Thus the problem of the Markoff process is re-
duced, in a certain sense, to the de,ruination of all the possible stable
distributions. Under some topological assumptions, such determination
is possible. This will be indicated in 3. As a physical app]ication
of the Markoff process with stable distribution, an interpretation may
be given to the H-theorem of the statistical mechanics.

Remark. On reading the manuscript, S. Kakutani obtained that,)

if f(x) is bounded and measurable, the mean convergence in (5) may
be replaced by the -a]most-everywhere convergence, by modifying J. L.
Doob’s arguments.) This is more precise than (5), since from this re-
suit and the theorem 1 (5) may easily be deduced.) It is noted, how-
ever, that Doob did not obtain the mean convergence (5), nor its
"conjugate" (6). The Doob-Kakutani’s proof appeals to Birkhoff-Khint-
chine’s ergodic theorem and to the measure theory in infinite product
space. Our proof is operator-theoretical; it is a direct adaptation
of the mean ergodic theorem in Banach spaces.

3) See the following paper of S. Kakutani.
4) Trans. Amer. Matt Soc., 44 (1938), 87-150.
5) See S. Kakutani: loc. cit.
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2. Poof of the theorems. The set (M) of all the bounded
measurable functions f(z) constitutes a Banach space with the norm
Ilfll,=sup If(z)I. In the same way the set (M) of all the measurable
Junctions f(z) which are -essentially bounded also constitutes a Banach
space with the norm Ilfll=ess. sup If(z)I. Any element fe (M’) ((M))
may be considered as an element e(L), and (M;)((M)) is dense in

(L) by the topology defined by the norm I[.
Proof of theorem 1. Let fe (M3, then f)(z) is well defined and

Ill()IIM, <: IlfilM, by (1). We have Ill() II- [f()(x) ,(dx) [,(dx)
{JP(’Xz, dy)If(Y)I}=llfllM by (4). Next let fe(L) be non-negative

and putf(x)=min. (f(x), n). Then, since f(x) is a bounded function,

)(z) is well defined and f)(z) <f+l(X) < llf)ll < Ilf < llfl[.
Hence by Levi’s theorem, the finite

lim’()=lim P()(, dy)f,(y)= dy)
d d

A(y)} [F’)(, dy)f(y){lira
J

exists o-almost everywhere. Thus f()() lira ff )(z) e (L) and Ilf)

I]fil. This proves the first part of the theorem.

Since/x)(x,E) is a bounded funetion, o(dx)f(x)t)(x, E) exists

for any fe (L) and we have from (4)

(7) suo E) < E) =<
Let re(M), then by (4), o(d)f()IX)(,E) is o-absolutely eontinu-

is defined and llf(-)IIM =< filM. Next let fe (L) be non-negative and

1.i_lo(d)f,(z)/x’)(, E) for any EeB(R), the left hand member is

absolutely continuous, by Vitali-Hahn-Saks’ theorem. Thus, in this ease
also f(-)e (L) is defined. By (7), we have Ill(-)[l Ilf[[. The last
part of theorem is hereby proved.

Remark. The operation P’f-f()(P :f-f(-)) is thus a linear

operation on (L) to (L) with the norm one. P(P) also defines an

operation on (M’) to (M’) (on (M) to (M)) with the norm one. This

remark is the key to the proof of theorem 2.
Proof of theorem . Let fe (M’), then by (1)

(8) 1__ ]f(,) --_ IlfllM, (n= 1, 2, ...).
T n=l M"
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Thus, by (3) and the diagonal method, we obtain a sequence of integers
{n’}, n’<: (n+l)’, such that

lira 1 () (d) F*(E) exists for all Ee R(R).

By (8) and Vitali-Hahn-Saks’ theorem, F*(E) is -absolutely continu-

Let F*(E)= I f*(z) (d), f*e (L). Then it is easy toOU$. see
JE

1 Nf<"> for any g e (M)that f* is the weak limit of the sequence --we have lira 1 f)() g() (d) f*)()g() (d). Hence by

the mean ergodic in Banach spaces,s we see that the sequence

i  tro i. the to

 e. e ce are a.
1 p.f eonverges1 and since (’) is strongly den in (),

stronNy for any fe(L). That P.f(*)=f(*)is proved at Ne same gme.
Thus (5) is prove. The prf of (6) may obined analogously.

3. The determit of the sb dtbuti. t R a
compactum and let B(R) denote the family of all the Borel of R.
We aume the Markoff proce to sasfy the continuity hythis:

.P(z, dy)f(y)is a continuous function of z for continuous(9)
function f(y).

For such Markoff proce P(z,E) we may prove the following re-
sulk.
t (C) deno the Banach spe of all the real-valued continuous

functions f(t) on R with the norm l[fl[c=sup f(z). Then, i) the Mar-
koff proce P(z, E) mtisfying (9) may characteris as the linear
omtion P on (C) (C) which ma sitive element f(f(z) 0 for
z eR) on pive element P.f of (C) in such a way that P.f=f if
f(z)l, ii) Sin (C) is separable and since we have (1), the quence
of distbuons of t form

P.(,E)= )(z0, E) (i= 1, 2,... lim (m-n)= )

for fixed z0,

is compact a t of continuous linear functionals on (C). That
there exis a partial quence {P%(, E)} and a set unction P(z0, E)

6) K. Yosida: Proc., 14 (1938), 292-294, S. Kakutani: Proc., 14 (1938), 295-300
and F. Riesz: Journal of London Math. Soc., 13 (1938), 274-278. That mean ergodic
theorem is valid for individual point of the Banach space was stressed on by the
writer in the preceding note: Pro, 1; (1939), 255-259.
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completely additive for F_,eB(R) such that /(xo, dy)f(y)=lim
J

(x0, dy)f(y) for any f (C). Such limit distribution P(z0, E) is stable,
since by (9) we have

for any fe(C), iii) t (E) be any sble distbution and let a
quence of elemen , fi, e (C) dense in (C). By (5) and the
diagonal meth, we may find a sequence of ingers {n’} and a t

EoeB(R) of -measure zero such that lim f(x)exis for

x e R-Eo, i= I, 2,... Hence lira -P. ,(x, dy)f(y) exis for any

  R-Eo.
e R-Eo, fe (C). Then, since sble,

=j{j#(dx)P(x, dy)} S(’ for any S (C).

Thus it is prov that any sble distribution (E) of P(z, E) may
obtained a "convex eombinaon" of the limit distributions

P(z,E). In this way we may exnd Kryloff-Bogoliouff’s rul
to the indeterministic transition proee. It is to no that similar
rults may obtained for Markoff prs with enumembly infini
humor of ible states. However tNs idea w partly and unconsci-
oly d in a joint work with S. kumni2

4. An inrren of E-orm. t R the interval
(0, 1) and let B(R) be the t of all the Borel of R. We ume
that P(z,E) is given by Borel-meable density in the following
manner

(10) P(x, E)=IEP(X, y)dy, jp(x, y)dxl
The uniform distribution dx is thus sble for P(x, E).

t a non-netie f() sueh tha f()
infini. hen we have

7) Ann. Math., 38 (1937), 65-113.
8) Jap. J. Math., 16 (1939), 47-55.
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(11)

H(z) z log z.

The proof follows from (10) and the convexity of the function H(z).
If, moreover, we assume the measurability of p<’)(y)=inf, p<)(, )

(P()(x, E)=Ip()(x, y)dy) and Ip()(y)dy0 for a certain s, we obtain

(2) sup IIf(-")(y)- 1 dy < (n= 1, 2, ...)
s()_>0. s- (1+)

for certain constants , >0. The proof may be obtained easily by
modifying the ergodic principle of A. Kolmogoroff.9)

The above result may serve as an interpretation of the H-theorem

in the statistical mechanics. For, by f(x)0 and _lf(x)dx=l, f(x)
may be considered as the weight of the "state" x at the origin of the
time. Then, irrespective of the initial weight f(x), the weight f(-’)(x)
of the state after the elapse of n unit-times tends to the uniform

weight (f(-*)(x)----1) as n--)oo, in such a way that (6), (11) and (12)
hold. The hypothesis (10) may be considered as a generalised symmetric
condition, and the hypothesis concerning p(’)(y) amounts to a kind of
irreducibility of the transition process P(x, E). Thus the results may
serve as a precision to the arguments of R. yon Mises in his book.)

9) Math. Ann., 104 (1931), 415-458.
10) Wahrscheinlichkeitsrechnung (1931). For the discussion of this {} I owe to K.

Husimi and S. Kakutani.


