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(Comm. by S. KAKEYA, M.I.A., Oct. 12, 1940.)

In a previous paper entitled Concircular geometry I,D we have con-
sidered, in a Riemaunian space, curves defined by

which may be regarded as a generalization of circles in ordinary eucli-
dean space, and we have called them geodesic circles. If a conformal
transformation

(0.2) p g,w
of the fundamental metric tensor g transforms any geodesic circle
into a geodesic circle, then the functiou must satisfy the following
partial differential equations

(0.3) p,----p,,-p{}-p,fl-i--g=p=,g,=,g,, (,= lo__g,).u
We have called such a conformal transformation a concircular trans-
formation.

In the present Note, we shall consider the integrability conditions-)

of the partial differential equations (0.3).
1. The function p satisfying the equations

(I.I) p,,. p, pv+ PaPt g,,v

where the semi=colon denotes the covariant derivative, we have

(1.2)
where

(1.3)

Consequently, putting

(1.4) p g’p,
we obtain, from (1.2),

(1.5) p;

1) K. Yano, Concircular geometry I. Concircular transformations. Proc. 16
(1940), 195-200.

2) This problem was also studied by A. Fialkow, Conformal geodesics, Trans.
Amer. Math. Soc. 45 (1939), 443-473.
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The equations (1.5) show that a curve u(t)whose tangential direc-
tion coincides with that o the vector /, is a geodesic. We shall call
such a curve -curve.

Thus we have the
Theorem L If the conformal transformation (0.2) is a concircular

one, the p-curves are geodesics.
Let us now consider a hypersurface defined by

(1.6) fl(u) const.

This hypersurface is also represented by the equations of the forme

(1.7) u=u(u’) (i, j, k, i, , ...,/- i)
the u’s being parameters on the hypersurface. If we substitute the
u’s given by (1.7) into (1.6), (1.6) must be reduced to an identity.

Consequently, differentiating (1.6) logarithmically with respect to
u, we have

B;=0(1.8)
where

(1.9)

(1.10)
where
(L)

Substituting

Differentiating (1.8) once more covariantly, we obtain

p,. B;.B’ +pH;,=0

/BB’(&} B(}

Cg+flP

into (1.10) and taking account of (1.8), we have

(1.12) Cga+ p.I-I]h" O

Contracting g, we have, from (1.12),

then (1.12) becomes
(1.13)

where
(1.14)

1 P,gH;"
--1

But we know, on the other hand, that the M] are vectors normal
to the hypersurface with respect to the index /4 and is a vector
also normal to the hypersurface, so that we conclude from (1.13) that

1) For the notations, see K. Yano, Sur les &luations de Gauss darts la gomStrie
c0nforme des espaces de Riemann, Proc. 15 (1939), 247-252 and Sur les kluations de
Codazzi dans la gomtrie conforme des espaces de Riemann, Prec. 1 (1939), 340-344.



356 K. Yo. [Vol. 16,

(1.15) M}=0

not being identically zero. Thus we have the
Theorem II. If the conformed transformation (0.2) is a concircular

one, the hypersurfaces p=const, are totally umbilical.
We shall call these hyperfaces p-hypersurfaces.
We shall now differentiate

(1.16) p ,= ,-!-pp,
covariantly, then we obtain

p P..,=.. a+ p+pp.
Substituting (1.2) and (1.16) in the above equations, we find

p ,; ,; a-l-(C,a--l- pp,)p,-I- p(g,,-I- p,p,,)

Commutating and and subtracting, we obtain

(1.17) ,+ ,p.,,ap R.a.v a, v-

Multiplying (1.17) by p, and summing up for the index , we.have

,;-;,=0,
because of the identity

app R.,, ppR, O

Multiplying these equations by p" and summing up for p, we obtain

(1.18) .v " P--- Pv.

We put next = in (1.17)and sum up, then we find

’R..= (n-)(-- ).

Substituting (1.18) in these equations, we obtain finally

(1.19) R.apa (n- 1)( ’: ’-’P"
papa

which shows that the vector is in a Ricci-direction, thus we have the
Theorem III. If the conformal transformation (0.2) /s a con-

circular one, the p-curves are Ricci-curves.
2. In the preceding paragraph, we have seen that there exists,

in our Riemannian space, a family of o totally umbilical hypersurfaces
the orthogonal trajectories of which are geodesic Ricci-curves. In the
present paragraph, we shall show that if these geometrical conditions
are satisfied, our Riemannian space admits at least a solution of the
partial differential equations (1.2).

Let us choose a coordinate system in which u’=const, defines the
family of totally umbilical hypersurfaces and u--const. (i,j,k, ...-
1, 2, 3, ..., n-1) define the orthogonal trajectories of the totally umbilical
hypersurfaces.
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Then we have at first

The curves defined by

u const, us const u- const.

being geodesics, we have

du du" du" du’
hence

from which we obtain

(2.2)

On account of the equations g=0 and g-0, we have, from (2.2),

g 0.

These equations show that the function g must be of the form

(2.3) g,,-g,,,(u")

The hypersurfaces defined by u u, u- u, ..., u*- u- u const.
being totally umbilical, we have

(2.4) B u
3u

From (2.4) and (2.5), we find

(2.6) {} J{} =g,H
Putting =n in this equation, we find

(2.7) {}=gkH or Y k+ u u’/=gH"

On account of the relations =0 and g,=O, we have, from (2.7),

1 ,g gH’.(2.8)

The equations (2.8) show that the functions g ve the foD

(2.9) g a(u)(U).

1) Cf. K. Yano: Conformally separable qtic differential forma Proc. 16
(1940), 83-86.
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The equations (2.1), (2.3) and (2.9) show that the fundamental
quadratic differential form ds=gdudu must be written as

(2.10) ds2 a(u)fs,(uqdudu’-t- g,,(u )d du

We know moreover that the curves defined by u=const., ...,
u-=const. u=u are Ricci-curves. We have then the equations of
the form

R., du’ du
du" du"

from which we find
R,,--gaR,, 0,

or

(2.11) R=0.

To calculate the components R of the Ricci-tensor, we shall,
taking account of (2.10), write down the values of the Christoffel
symbols as follows"

(2.12)

1-tff -t- f- f +-j lg a-/21-- loga

,, og ’Ak2- u
1 .. log__a =1 log a{}=-o g, {A}={} .

1 _,,{}=0, {?}={}=0, {}=-o
where

We have then

ff and

1 - log a n- 1 log a -I-! log{.}
2 uu’* 2 u’u 2

The above equations and (2.11) show that

(2.13) a(u) g(u)h(u")

then the fundamental form must be of the form

(2.14) ds2 " ’ " " ",,(u )f,(u )du du +g..(u )du du ol)

The fundamental form being reduced to the form (2.14), we shall

1) / Fialkow" Conformal geodesics, loc. cir. p. 471.
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now consider a unction p(u) defined by

p log C (u)g,.(u )du",(2.15) log O’
n 1)

then we have

l/,ag,..

I/ag du

du
gE/a

du /
/

[(1 d loga +1" du" 2

Putting =3", r=k; /=3", =n; F=n, =n respectively and taking
account of (2.12), we have

p; -pp ,/ag g d log______a

2Iu/agdu du
g

dloga +1 dlogg.. _g.. dg...du" 2 du" du

o.g,,, g.. d log a

2I/ag.. du" du

These equations show tha
/ag,., g.,, d log ap,; -po,, g.,.

2I/g. du" du"

Thus we have proved that the function defined by (2.15) is a
solution of the partial differential equations (1.2). Thus we have the

Theorem IV. A necessary and suffwient condition that a Rieman-
nian space admit a solution of the partial differential equations (1.2)
is that the Riemannian space contain a family of totally umbilical
hypersurfaces whose orthogonal trajectories are geodesic Ricci-curves.

Remark. The differential equations of a generalized circle defined
by the present author) are given by

1) This function was suggested to the author by Prof. A. Kawaguchi.
2) K. Yano, Sur les circonfrences gnraliss dans les espaces connexion con-

forme, Proc. 14 (1938), 329-332.
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These equations show that if a curve belongs to any two of the
following classes of curves, it belongs also to the third-

(I) geodesic circles (II) Ricci-curves (III) generalized circles.
The -curves belong to the first and the second class, then they

belong also to the third, that is to say, the p-curves may be regarded
as generalized circles.


