# 79. Concircular Geometry II. Integrability Conditions of $\rho_{\mu \nu}=\phi g_{\mu \nu}$. 

By Kentaro Yano.<br>Mathematical Institute, Tokyo Imperial University.<br>(Comm. by S. Kakeya, m.I.A., Oct. 12, 1940.)

In a previous paper entitled Concircular geometry $I,{ }^{1)}$ we have considered, in a Riemannian space, curves defined by

$$
\begin{equation*}
\frac{\delta^{3} u^{\lambda}}{\delta s^{3}}+\frac{\delta u^{\lambda}}{\delta s} g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}}=0, \quad(\lambda, \mu, \nu, \ldots=1,2,3, \ldots, n), \tag{0.1}
\end{equation*}
$$

which may be regarded as a generalization of circles in ordinary euclidean space, and we have called them geodesic circles. If a conformal transformation

$$
\begin{equation*}
\overline{\boldsymbol{g}}_{\mu \nu}=\rho^{2} g_{\mu \nu} \tag{0.2}
\end{equation*}
$$

of the fundamental metric tensor $g_{\mu \nu}$ transforms any geodesic circle into a geodesic circle, then the functiou $\rho$ must satisfy the following partial differential equations

$$
\begin{equation*}
\rho_{\mu \nu} \equiv \rho_{\mu, \nu}-\rho_{\lambda}\left\{{ }_{\mu \nu}^{\lambda}\right\}-\rho_{\mu} \rho_{\nu}+\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta} g_{\mu \nu}=\phi g_{\mu \nu}, \quad\left(\rho_{\mu}=\frac{\partial \log \rho}{\partial u^{\mu}}\right) \tag{0.3}
\end{equation*}
$$

We have called such a conformal transformation a concircular transformation.

In the present Note, we shall consider the integrability conditions ${ }^{2}$ ) of the partial differential equations (0.3).
§1. The function $\rho$ satisfying the equations

$$
\begin{equation*}
\rho_{\mu ; \nu}-\rho_{\mu} \rho_{\nu}+\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta} g_{\mu \nu}=\phi g_{\mu \nu}, \tag{1.1}
\end{equation*}
$$

where the semi-colon denotes the covariant derivative, we have

$$
\begin{equation*}
\rho_{\mu ; \nu}-\rho_{\mu} \rho_{\nu}=\psi g_{\mu \nu}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\phi-\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta} . \tag{1.3}
\end{equation*}
$$

Consequently, putting

$$
\begin{equation*}
\rho^{\lambda}=g^{\lambda \mu} \rho_{\mu}, \tag{1.4}
\end{equation*}
$$

we obtain, from (1.2),

$$
\begin{equation*}
\rho^{\lambda}: \nu \rho^{\nu}=\rho^{\lambda}\left(\psi+\rho_{a} \rho^{a}\right) \tag{1.5}
\end{equation*}
$$

[^0]The equations (1.5) show that a curve $u^{\lambda}(t)$ whose tangential direction coincides with that of the vector $\rho^{2}$, is a geodesic. We shall call such a curve $\rho$-curve.

Thus we have the
Theorem I. If the conformal transformation (0.2) is a concircular one, the p-curves are geodesics.

Let us now consider a hypersurface defined by

$$
\begin{equation*}
\rho\left(u^{\lambda}\right)=\text { const. } \tag{1.6}
\end{equation*}
$$

This hypersurface is also represented by the equations of the forme

$$
\begin{equation*}
u^{\lambda}=u^{\lambda}\left(u^{i}\right) \quad(i, j, k, \ldots=\dot{1}, \dot{2}, \ldots, \dot{n}-\dot{\mathbf{1}}) \tag{1.7}
\end{equation*}
$$

the $u^{i}$ s being parameters on the hypersurface. If we substitute the $u^{\lambda}$ 's given by (1.7) into (1.6), (1.6) must be reduced to an identity.

Consequently, differentiating (1.6) logarithmically with respect to $u^{j}$, we have

$$
\begin{equation*}
\rho_{\mu} B_{j}^{\mu}=0, \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{\mu}=\frac{\partial \log \rho}{\partial u^{\mu}} \quad \text { and } \quad B_{j}^{\cdot \mu}=\frac{\partial u^{\mu}}{\partial u^{j}} .^{1)} \tag{1.9}
\end{equation*}
$$

Differentiating (1.8) once more covariantly, we obtain

$$
\begin{equation*}
\rho_{\mu ; \nu} B_{j}^{; \mu} B_{k}^{\nu}+\rho_{\mu} H_{j k_{k}}^{\mu}=0 \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{j \ddot{j}^{\mu}}^{\mu}=\frac{\partial^{2} u^{\mu}}{\partial u^{j} \partial u^{k}}+B_{j}^{\cdot a} B_{k}^{; \beta}\left\{{ }_{a \beta}^{\mu}\right\}-B_{i}^{\mu}\left\{{ }_{j \dot{j} k}^{i}\right\} . \tag{1.11}
\end{equation*}
$$

Substituting

$$
\rho_{\mu ; \nu}=\psi g_{\mu \nu}+\rho_{\mu} \rho_{\nu},
$$

into (1.10) and taking account of (1.8), we have

$$
\begin{equation*}
\psi g_{j k}+\rho_{\mu} H_{\ddot{j k}^{\mu}}=0 . \tag{1.12}
\end{equation*}
$$

Contracting $g^{j k}$, we have, from (1.12),

$$
\psi=\frac{-1}{n-1} \rho_{\mu} g^{a b} H_{\ddot{a} \cdot \mu}^{\mu},
$$

then (1.12) becomes

$$
\begin{equation*}
\rho_{\mu} M_{\ddot{j} \dot{k}}{ }^{\mu}=0, \tag{1.13}
\end{equation*}
$$

where

But we know, on the other hand, that the $M_{\ddot{j} \mu^{\mu}}$ are vectors normal to the hypersurface with respect to the index $\mu$, and $\rho_{\mu}$ is a vector also normal to the hypersurface, so that we conclude from (1.13) that

[^1]\[

$$
\begin{equation*}
M_{\dot{j} k}^{\mu}=0 \tag{1.15}
\end{equation*}
$$

\]

$\rho_{\mu}$ not being identically zero. Thus we have the
Theorem II. If the conformal transformation (0.2) is a concircular one, the hypersurfaces $\rho=$ const. are totally umbilical.

We shall call these hyperfaces $\rho$-hypersurfaces.
We shall now differentiate

$$
\begin{equation*}
\rho^{\lambda} ; \mu=\psi \delta_{\mu}^{\lambda}+\rho^{\lambda} \rho_{\mu} \tag{1.16}
\end{equation*}
$$

covariantly, then we obtain

$$
\rho^{\lambda} ; \mu ; \nu=\psi ; \nu \delta_{\mu}^{\lambda}+\rho_{; \nu}^{\lambda} \rho_{\mu}+\rho^{\lambda} \rho_{\mu ; \nu} .
$$

Substituting (1.2) and (1.16) in the above equations, we find

$$
\rho^{\lambda} ; \mu ; \nu=\psi ; \nu \delta_{\mu}^{\lambda}+\left(\psi \delta_{\nu}^{\lambda}+\rho^{\lambda} \rho_{\nu}\right) \rho_{\mu}+\rho^{\lambda}\left(\psi g_{\mu \nu}+\rho_{\mu} \rho_{\nu}\right) .
$$

Commutating $\mu$ and $\nu$ and subtracting, we obtain

$$
\begin{equation*}
\rho^{a} R_{a \mu \nu}^{\lambda}=\delta_{\mu}^{\lambda} \psi_{; \nu}-\delta_{\nu}^{\lambda} \psi_{; \mu}+\psi \rho_{\mu} \delta_{\nu}^{\lambda}-\psi \rho_{\nu} \delta_{\mu}^{\lambda} . \tag{1.17}
\end{equation*}
$$

Multiplying (1.17) by $\rho_{\lambda}$ and summing up for the index $\lambda$, we have

$$
\rho_{\mu} \psi ; \nu-\rho_{\nu} \psi_{; \mu}=0,
$$

because of the identity

$$
\rho_{\lambda} \rho^{a} R_{a \mu \nu}^{\lambda}=\rho^{\lambda} \rho^{a} R_{\lambda a \mu \nu}=0 .
$$

Multiplying these equations by $\rho^{\mu}$ and summing up for $\mu$, we obtain

$$
\begin{equation*}
\psi_{; \nu}=\frac{\psi_{; \lambda} \rho^{\lambda}}{\rho_{a} \rho^{a}} \rho_{\nu} . \tag{1.18}
\end{equation*}
$$

We put next $\lambda=\nu$ in (1.17) and sum up, then we find

$$
\rho^{\alpha} R_{a \mu}=(n-1)\left(\psi \cdot \rho_{\mu}-\psi ; \mu\right) .
$$

Substituting (1.18) in these equations, we obtain finally

$$
\begin{equation*}
R_{\cdot a}^{\lambda} \rho^{a}=(n-1)\left(\psi-\frac{\psi: \mu \rho^{\mu}}{\rho_{a} \rho^{a}}\right) \rho^{\lambda}, \tag{1.19}
\end{equation*}
$$

which shows that the vector $\rho^{\lambda}$ is in a Ricci-direction, thus we have the
Theorem III. If the conformal transformation (0.2) is a concircular one, the $\rho$-curves are Ricci-curves.
§2. In the preceding paragraph, we have seen that there exists, in our Riemannian space, a family of $\infty^{1}$ totally umbilical hypersurfaces the orthogonal trajectories of which are geodesic Ricci-curves. In the present paragraph, we shall show that if these geometrical conditions are satisfied, our Riemannian space admits at least a solution of the partial differential equations (1.2).

Let us choose a coordinate system in which $u^{n}=$ const. defines the family of totally umbilical hypersurfaces and $u^{i}=$ const. ( $i, j, k, \ldots=$ $1,2,3, \ldots, n-1$ ) define the orthogonal trajectories of the totally umbilical hypersurfaces.

## Then we have at first

$$
\begin{equation*}
g_{n i}=g_{i n}=0 . \tag{2.1}
\end{equation*}
$$

The curves defined by

$$
u^{1}=\text { const. } \quad u^{2}=\text { const. } \ldots \quad u^{n-1}=\text { const. } \quad u^{n}=u^{n},
$$

being geodesics, we have

$$
\begin{gathered}
\frac{d u^{\lambda}}{d u^{n}}=\delta_{n}^{\lambda} \\
\frac{d}{d u^{n}} \frac{d u^{\lambda}}{d u^{n}}+\left\{{ }_{\mu \nu}^{\lambda}\right\} \frac{d u^{\mu}}{d u^{n}} \frac{d u^{\nu}}{d u^{n}}=a \cdot \frac{d u^{\lambda}}{d u^{n}}
\end{gathered}
$$

hence
from which we obtain

$$
\left\{\begin{array}{c}
\lambda \\
n_{n}
\end{array}\right\}=a \cdot \delta_{n}^{\lambda}
$$

$$
\begin{equation*}
\left\{\left\{_{n n}^{i}\right\}=0 \quad \text { or } \quad \frac{1}{2} g^{i a}\left(\frac{\partial g_{a n}}{\partial u^{n}}+\frac{\partial g_{a n}}{\partial u^{n}}-\frac{\partial g_{n n}}{\partial u^{a}}\right)=0\right. \tag{2.2}
\end{equation*}
$$

On account of the equations $g^{i n}=0$ and $g_{j n}=0$, we have, from (2.2),

$$
\frac{\partial g_{n n}}{\partial u^{j}}=0
$$

These equations show that the function $g_{n n}$ must be of the form

$$
\begin{equation*}
g_{n n}=g_{n n}\left(u^{n}\right) \tag{2.3}
\end{equation*}
$$

The hypersurfaces defined by $u^{1}=u^{1}, u^{2}=u^{2}, \ldots, u^{n-1}=u^{n-1}, u^{n}=$ const. being totally umbilical, we have

$$
\begin{gather*}
B_{i}^{\lambda}=\frac{\partial u^{\lambda}}{\partial u^{i}}=\delta_{i}^{\lambda}  \tag{2.4}\\
H_{j \ddot{j}_{k}^{\lambda}}=\frac{\partial^{2} u^{\lambda}}{\partial u^{j} \partial u^{k}}+\frac{\partial u^{\mu}}{\partial u^{j}} \frac{\partial u^{\nu}}{\partial u^{k}}\left\{{ }_{\mu \nu}^{\lambda}\right\}-\frac{\partial u^{\lambda}}{\partial u^{i}}\left\{\left\{_{j k}^{i}\right\}=g_{j k} H^{\lambda} .\right. \tag{2.5}
\end{gather*}
$$

From (2.4) and (2.5), we find

$$
\begin{equation*}
\left\{{ }_{i k k}^{\lambda}\right\}-\delta_{i}^{\lambda}\left\{{ }_{j k i}^{i}\right\}=g_{j k} H^{\lambda} . \tag{2.6}
\end{equation*}
$$

Putting $\lambda=n$ in this equation, we find

$$
\left\{\begin{array}{l}
n k \tag{2.7}
\end{array}\right\}=g_{j k} H^{n} \quad \text { or } \quad \frac{1}{2} g^{n a}\left(\frac{\partial g_{\alpha j}}{\partial u^{k}}+\frac{\partial g_{\alpha k}}{\partial u^{j}}-\frac{\partial g_{j k}}{\partial u^{a}}\right)=g_{j k} H^{n} .
$$

On account of the relations $g^{n i}=0$ and $g_{n j}=0$, we have, from (2.7),

$$
\begin{equation*}
-\frac{1}{2} g^{n n} \frac{\partial g_{j k}}{\partial u^{n}}=g_{j k} H^{n} \tag{2.8}
\end{equation*}
$$

The equations (2.8) show that the functions $g_{j k}$ have the form ${ }^{1)}$

$$
\begin{equation*}
g_{j k}=\sigma\left(u^{\lambda}\right) f_{j k}\left(u^{i}\right) \tag{2.9}
\end{equation*}
$$

1) Cf. K. Yano: Conformally separable quadratic differential forms. Proc. 16 (1940), 83-86.

The equations (2.1), (2.3) and (2.9) show that the fundamental quadratic differential form $d s^{2}=g_{\mu \nu} d u^{\mu} d u^{\nu}$ must be written as

$$
\begin{equation*}
d s^{2}=\sigma\left(u^{\lambda}\right) f_{j k}\left(u^{i}\right) d u^{j} d u^{k}+g_{n n}\left(u^{n}\right) d u^{n} d u^{n} . \tag{2.10}
\end{equation*}
$$

We know moreover that the curves defined by ${ }^{\wedge} u^{1}=$ const.,.. , $u^{n-1}=$ const. $u^{n}=u^{n}$ are Ricci-curves. We have then the equations of the form

$$
R_{\mu, \mu}^{\lambda} \frac{d u^{\mu}}{d u^{n}}=\alpha \cdot \frac{d u^{\lambda}}{d u^{n}}
$$

from which we find

$$
R_{\cdot n}^{i}=g^{i \lambda} R_{\lambda n}=0
$$

or

$$
\begin{equation*}
R_{i n}=0 \tag{2.11}
\end{equation*}
$$

To calculate the components $R_{i n}$ of the Ricci-tensor, we shall, taking account of (2.10), write down the values of the Christoffel symbols as follows :
where

$$
f^{i a} f_{a j}=\delta_{j}^{i} \quad \text { and } \quad g^{n n}=\frac{1}{g_{n n}}
$$

We have then

$$
\begin{aligned}
R_{i n}=R_{\cdot i n \lambda}^{\lambda} & =R_{\cdot i n j}^{j}=\frac{\partial\left\{\begin{array}{l}
j \\
i n
\end{array}\right\}}{\partial u^{j}}-\frac{\partial\left\{\begin{array}{l}
j \\
i j
\end{array}\right\}}{\partial u^{n}}+\left\{\begin{array}{l}
\lambda \\
i n
\end{array}\right\}\left\{\begin{array}{l}
i j \\
i_{i}
\end{array}\right\}-\left\{\begin{array}{l}
\lambda \\
i j
\end{array}\right\}\left\{\begin{array}{l}
i \\
i_{n}
\end{array}\right\} \\
& =\frac{1}{2} \frac{\partial^{2} \log \sigma}{\partial u^{i} \partial u^{n}}-\frac{n-1}{2} \frac{\partial^{2} \log \sigma}{\partial u^{n} \partial u^{i}}+\frac{1}{2} \frac{\partial \log \sigma}{\partial u^{n}}\left\{\begin{array}{l}
i, j \\
i j
\end{array}\right\}-\frac{1}{2} \frac{\partial \log \sigma}{\partial u^{n}}\left\{\frac{i}{i j}\right\} \\
& =\frac{2-n}{2} \frac{\partial^{2} \log \sigma}{\partial u^{i} \partial u^{n}} .
\end{aligned}
$$

The above equations and (2.11) show that

$$
\begin{equation*}
\sigma\left(u^{\lambda}\right)=g\left(u^{i}\right) h\left(u^{n}\right), \tag{2.13}
\end{equation*}
$$

then the fundamental form must be of the form

$$
\begin{equation*}
d s^{2}=\sigma\left(u^{n}\right) f_{j k}\left(u^{i}\right) d u^{j} d u^{k}+g_{n n}\left(u^{n}\right) d u^{n} d u^{n} .^{1)} \tag{2.14}
\end{equation*}
$$

The fundamental form being reduced to the form (2.14), we shall

1) A. Fialkow : Conformal geodesics, loc. cit. p. 471.
now consider a function $\rho\left(u^{n}\right)$ defined by

$$
\begin{equation*}
\log \rho=-\log \int \sqrt{\sigma\left(u^{n}\right) g_{n n}\left(u^{n}\right)} d u^{n},^{1)} \tag{2.15}
\end{equation*}
$$

then we have

$$
\begin{gathered}
\rho_{\mu}=-\frac{\sqrt{\sigma g_{n n}}}{\int \sqrt{\sigma g_{n n}} d u^{n}} \delta_{\mu}^{n}, \\
\rho_{\mu ; \nu}=\frac{\sigma g_{n n}}{\left(\int \sqrt{\sigma g_{n n}} d u^{n}\right)^{2}} \delta_{\mu}^{n} \delta_{\nu}^{n}-\frac{\frac{d \sigma}{d u^{n}} g_{n n}+\sigma \frac{d g_{n n}}{d u^{n}}}{2 \sqrt{\sigma g_{n n}} \int \sqrt{\sigma g_{n n}} d u^{n}} \delta_{\mu \nu}^{n} \delta_{\nu}^{n}+\frac{\sqrt{\sigma g_{n n}}}{\int \sqrt{\sigma g_{n n}} d u^{n}} \delta_{\lambda}^{n}\left\{{ }_{\mu \nu}^{\lambda}\right\}, \\
\rho_{\mu ; \nu}-\rho_{\mu} \rho_{\nu}=-\frac{\sqrt{\sigma g_{n n}}}{\int \sqrt{\sigma g_{n n}} d u^{n}}\left[\left(\frac{1}{2} \frac{d \log \sigma}{d u^{n}}+\frac{1}{2} \frac{d \log g_{n n}}{d u^{n}}\right) \delta_{\mu}^{n} \delta_{\nu}^{n}-\left\{\begin{array}{c}
n \\
\mu \nu
\end{array}\right\}\right] .
\end{gathered}
$$

Putting $\mu=j, \nu=k ; \mu=j, \nu=n ; \mu=n, \nu=n$ respectively and taking account of (2.12), we have

$$
\begin{aligned}
\rho_{j ; k}-\rho_{j} \rho_{k} & =-\frac{\sqrt{\sigma g_{n n}}}{2 \int \sqrt{\sigma g_{n n}} d u^{n}} g^{n n} \frac{d \log \sigma}{d u^{n}} g_{j k}, \\
\rho_{j ; n}-\rho_{j} \rho_{n} & =0, \\
\rho_{n ; n}-\rho_{n} \rho_{n} & =-\frac{\sqrt{\sigma g_{n n}}}{\int \sqrt{\sigma g_{n n}} d u^{n}}\left[\frac{1}{2} \frac{d \log \sigma}{d u^{n}}+\frac{1}{2} \frac{d \log g_{n n}}{d u^{n}}-\frac{1}{2} g^{n n} \frac{d g_{n n}}{d u^{n}}\right] \\
& =-\frac{\sqrt{\sigma g_{n n}}}{2 \int \sqrt{\sigma g_{n n}} d u^{n}} g^{n n} \frac{d \log \sigma}{d u^{n}} g_{n n} .
\end{aligned}
$$

These equations show that

$$
\rho_{\mu: \nu}-\rho_{\mu} \rho_{\nu}=-\frac{\sqrt{\sigma g_{n n}}}{2 \int \sqrt{\sigma g_{n n}} d u^{n}} g^{n n} \frac{d \log \sigma}{d u^{n}} g_{\mu \nu}
$$

Thus we have proved that the function defined by (2.15) is a solution of the partial differential equations (1.2). Thus we have the

Theorem IV. A necessary and sufficient condition that a Riemannian space admit a solution of the partial differential equations (1.2) is that the Riemannian space contain a family of totally umbilical hypersurfaces whose orthogonal trajectories are geodesic Ricci-curves.

Remark. The differential equations of a generalized circle defined by the present author ${ }^{2}$ are given by

1) This function was suggested to the author by Prof. A. Kawaguchi.
2) K. Yano, Sur les circonférences généralisées dans les espaces à connexion conforme, Proc. 14 (1938), 329-332.

$$
\frac{\delta^{3} u^{\lambda}}{\delta s^{3}}+\frac{\delta u^{\lambda}}{\delta s} g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}}+\frac{1}{n-2} \frac{\delta u^{\lambda}}{\delta s} R_{\mu \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\nu}}{\delta s}-\frac{1}{n-2} R_{\nu}^{\lambda} \frac{\delta u^{\nu}}{\delta s}=0 .
$$

These equations show that if a curve belongs to any two of the following classes of curves, it belongs also to the third:
(I) geodesic circles (II) Ricci-curves (III) generalized circles.

The $\rho$-curves belong to the first and the second class, then they belong also to the third, that is to say, the $\rho$-curves may be regarded as generalized circles.


[^0]:    1) K. Yano, Concircular geometry I. Concircular transformations. Proc. 16 (1940), 195-200.
    2) This problem was also stadied by A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.
[^1]:    1) For the notations, see K. Yano, Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann, Proc. 15 (1939), 247-252 and Sur les équations de Codazzi dans la géométrie conforme des espaces de Riemann, Proc. 15 (1939), 340-344.
