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I. The main object of the present note is to see that a converse
of Lebesgue’s density theorem holds.

We shall consider, for brevity, sets of points in a Euclidean plane
Rs only. But the results which will be obtained can obviously be ex-
tended to spaces R of any number of dimensions.

The Lebesgue outer measure of a set E in R will be denoted by
EI. Let z be a point of R and Q an arbitrary closed square contain-
ing z with sides parallel to the coordinate-axes.

We shall denote by ](z, E) and D(z, E) the superior and the in-

ferior limit respectively of the ratio QEI/I Q] as the diameter of Q
tends to 0 or ]Qi-0, and shall call them the upper and the lower
density of E at z respectively. If they are equal to each other at
then the common value will be called the density of E at z. The
points at which the density of E are equal to 0 are termed points of
dispersion for E.

It is well known by Lebesgue’s density theorem that, f set of
points are measurable, almost every point of its complementary set is
a poin of dispersion for he given set.D

II. We shall prove the following theorem which evidently contains
a converse of the above proposition.

Theorem 1. Let E be a point-set whose lower density is 0 at
almos every point of the complementary se of E. Then the se E is
mrable.

Proof. We can obviously assume, without loss of generality, that
the set E is bounded. Let G be a bounded open set containing E
and a given positive number. From the assumption of the present
theorem, there exists, for almost every point of H-G-E, a sequence
of squares {Q()} such that

(1) E" Q,,,(x) <y. , x e Q,(x), Q(x)]-0 (n-- o) and Q,(x) < G.

Denoting by the family of all the squares which belong to any
one of such sequences, we find that covers the set H almost every-
where in the sense of Vitali. According to the covering theorem of
Vitali) we can extract from a finite or enumerable sequence
of squares no two of which have common points, such that

1) For example, S. Saks. Thorie de l’ivtgrale (1933), p. 55.
2) Saks. Loc. cit. 33-35.
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,Q being measurable, we find, from the relation above

(2)

On the other hand, as G-,Q. E(G-,Q.) E-,Q., we have

and since E-, Q. EI E,Q. on account of the measurability
and the boundedness of ,Q., we obtain

From the first inequality of (1) and the relation above, it follows that

(3)

By (3) and (2), we have

In the above inequality, making tend to 0, we obtain

and so we have

(4)

since G] <:IE[ + [HI is obvious, by which we ascertain the measura-
bility of E, for, let y be an arbitrarily given positive number and G
an open set such that

(5) }G]<]EI + y and GE,

and we will find, from (4) and (5),

In our theorem, we assume only _D(z, E)=0 and do not assume

D(z,E)=O. But ss the result of our theorem, E is found to be
measurable and accordingly, on account of the theorem of Lebesgue
on density, the latter relation holds almost everywhere outside of E.

As the corollary of Theorem I, we obtain the following-
Theorem 2. Le E be a se$ of points. Suppose $ha$ $hre exists a

measurable set A containing E and satisfying the condition tha. a
almost every poin$ of A-E the lower density of E is O.

Then E is mearable.
Proof. Let A and E be complementary sets of A and E re-

spectively.

Then E=A+(A-E)

A being measurable, from Lebesgue’s density theorem, we have
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D(Z, A)=0 at almost every point z of A, from which we find that,
since A E, D(z, E)=0 holds also at almost every point of z of A.

On the other hand, by the assumption of the present theorem
D(z, E)=0 holds at almost every point z of A-E. Hence the set E
satisfies the assumption of Theorem 1, and this completes the proof.

III. Let f(z) be a finite function defined on a measurable set A.
Given an arbitrary property (P) of a point z, let us denote, as usual,
by E[(P)J the set of all the points z of A that have this property.

Suppose that, for each >0, we have, at almost every point 9 of A,

(6) D_(y, E[f(x)-f(y) ]) =0.
It is easy to see that this condition defines a wider class of functions
than that of upper semi-continuous functions.

We shall show that f(x) is measurable.
For this purpose, let us consider the set of E[][x) k] where k

is an arbitrary constant. If y e A-Elf(x) kJ, then f(y) k or,

putting k-fly) e, e> 0.
By the obvious relation

Elf(x) k] Elf(x) f(y)-{-] Elf(x) f(y) e]

and (6), it follows that

_D(y, E[f(x,) k]) -O
holds at almost every point y of A--Elf(x) k].

This shows, in virtue of Theorem 2, the measurability of E[f(x) k]
and accordingly of fix).

Conversely, if a finite function f(x) is measurable on a measurable
set A, then by Denjoy’s theorem,D we know that fix)is approximately
continuous at almost every point of A, which means that at almost
every point y of A, there exists a measurable subset of A whose density
at y is 1 and by the points x of which the condition limf(x,)=f(y) is

fulfilled.
Then, it is quite easy to see that (6) is fulfilled by fix) at almost

every point y of A. Thus we have proved the following"
Theorem 3. It is necessary and suffwient for a finite function f()

defined on a meazurable set A to be measurable is that, for each 0,
f(x) fulfils the condition (6) at almost every point y of A.

Recently, I.J. Good has proved a theorem) according to which"
if f(x) is a finite measurable function defined on a linear set A, then
at almost every point y of A,

1) Saks. Loc. cit. p. 232. There the density is considered in the strong sense
which needs no change in our proof.

2) I.J. Good. The approximate local monotony of measurable functions, Proc. of
the Cambridge Philosophical Soc., Vol. 36 (1940), 9-13, see esp. p. 10, section 5.
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(7) D_ (y, Elf(x) >f(y)]) 0.

While Good restricted himself to the case that A is a linear set, his
result is a little more precise than that given above.

By the method already used, we shall show that a converse of his
theorem holds even if the set A is not linear.

Theorem 4. If a finite function fix) defined on a measurable set
A satisfi (7) at almost every point y of A, then fix) is measurable.

Proof. As in the proof of Theorem 3, we consider the set
Elf(x)> k], where k is an arbitrary constant. Let y be any point of

A-Eli(x) > k], then f(y)< k and accordingly Elf(x) > k] E[f(x)>
](y)].

Hence we have _D(y, E[f(x) k]) D_(y, E[f(x)>.f(y)), in which

the left hand side is non negative while the right hand side is 0 at
almost every point y of A. Therefore we obtain

for almost every point y of A-E[.f(x) k], which completes the proof

on account of Theorem 2.


