4. A Remark on Kawakami's Extension of Löwner's Lemma.

By Shunji KAMETANI and Tadasi UGAHERI. Taga Koto Kogyo Gakko, Ibaragi. (Comm. by S. KAKEYA, M.I.A., Jan. 12, 1942.)

I. Recently M. Y. Kawakami, using Brelot's "hypofonction"¹⁾, has proved the following theorem, which is an extension of Löwner's Lemma²⁾.

Theorem of Kawakami. A domain D with boundary C in the unit circle |w| < 1 in the w-plane is represented on the unit circle |z| < 1 in the z-plane by a simple function z = F(w) such that F(0) = 0. If a closed set E' on C on |w| = 1 is represented on a closed set E on |z| = 1, then we have

measure of $E \leq$ measure of E'.

And the equality holds only when D coincides with the unit circle |w| < 1, if E' is of positive measure.

In this short note, we shall prove the first half of the above results under remarkably general conditions.

II. Let f(z) be a regular, bounded function |f(z)| < 1 defined for |z| < 1. Let E be any set measurable or not on |z| = 1 such that for almost every point $e^{i\theta}$ of E, $\lim_{r \to 1-0} f(re^{i\theta}) = f(e^{i\theta})$ exists and satisfies the condition $|f(e^{i\theta})| = 1$. Then we shall denote by E' the set of such boundary values $f(e^{i\theta})$. We shall further denote by m^*E , m_*E and mE the outer measure, the inner measure and the measure of E respectively, measured by the arc-length along the unit circle.

Now the theorem we are to prove is as follows:

Theorem. If w=f(z) is an analytic function such that |f(z)| < 1for |z| < 1 and f(0)=0, then we have

$$m_*E \leq m^*E'$$
.

Proof. Given an arbitrary positive number ϵ , we can choose an enumerable sequence of open arcs on the boundary |w|=1, such that the sum O of the sets of the sequence contains the set E' and

$$mO < m^*E' + \varepsilon.$$

Let \underline{E} be the measurable subset of E such that $m\underline{E} = m_*E^{3}$. We shall denote by $C(\varphi)$ and $C'(\varphi)$ the characteristic functions, defined for $z = e^{i\varphi}$,

¹⁾ M. Brelot, Familles de Perron et Problème de Dirichlet. Acta Litt. ac. sc. un. Hungariae, (1939), 133-153.

²⁾ Y. Kawakami, On an extension of Löwner's lemma. Japan. Jour. of Math. Vol. 17, (1941), 569-572.

³⁾ C. Carathéodory, Vorlesungen über reelle Funktionen, Zweite Auflage, (1927), p. 261, Theorem 3.

No. 1.] A Remark on Kawakami's Extension of Löwner's Lemma.

 $0 \leq \varphi \leq 2\pi$ and $w = e^{i\phi}$, $0 \leq \psi \leq 2\pi$, of the sets <u>E</u> and O respectively. Now consider the following Poisson's expressions

(2)
$$u(z) = u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(\varphi - \theta)} \cdot C(\varphi) d\varphi ,$$

(3)
$$U(w) = U(Re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-R^2}{1+R^2-2R\,\cos\,(\psi-\theta)} \cdot C'(\psi)\,d\psi\,,$$

of which both are harmonic and whose values are ≤ 1 and ≥ 0 .

Denoting U(f(z)) - u(z) by V(z), which is harmonic and bounded for |z| < 1, from the well known theorem of Fatou¹⁾, V(z) is expressed by the following Poisson's formula,

$$V(z) = V(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(\varphi - \theta)} V(\varphi) d\varphi,$$

where $V(\varphi) = \lim_{r \to 1} V(re^{i\varphi})$ for almost all φ .

By the continuity of $C'(\phi)$ at the point $e^{i\phi}$ of the open set O, U(w) is also continuous at that point up to the boundary, so that we have, from (3) for almost all points $e^{i\phi}$ of the set E,

(4)
$$\lim_{r \to 1} U(f(re^{i\varphi})) = \lim_{w \to e^{i\psi}} U(w) = C'(\psi) = 1,$$

where $\lim_{r \to 1} f(re^{i\phi}) = e^{i\phi}$, and on the other hand, from (2)

(5)
$$\lim_{r \to 1} u(re^{i\varphi}) = C(\varphi) = 1.$$

Similarly, for almost all points of the complementary set of E, we have

(6)
$$\lim_{r \to 1} U(f(re^{i\varphi})) \ge 0, \qquad \lim_{r \to 1} u(re^{i\varphi}) = C(\varphi) = 0.$$

From (4), (5) and (6), we have $V(\varphi) \ge 0$ for almost all $\varphi 0 \le \varphi \le 2\pi$, and consequently $V(re^{i\varphi}) \ge 0$ for r < 1, which shows

$$U(f(re^{iarphi})) \geq u(re^{iarphi})$$
 .

Putting r=0 in the relation above, it follows immediately that

$$mO \ge m E$$
 ,

since U(0) and u(0) are the mean values of the boundary values of U(w) and u(z) respectively.

It follows, from (1),

$$m^*E'+arepsilon \geqq m_*E$$
 .

Hence, ϵ being arbitrary, we have

$$m^*E' \ge m_*E$$
 .

Q. E. D.

¹⁾ P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. **30**, (1906), 335-400.