PAPERS COMMUNICATED

45. On the Behaviour of a Meromorphic Function in the Neighbourhood of a Closed Set of Capacity Zero.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., May 12, 1942.)

1. Nevanlinna's fundamental theorems.

Let E be a bounded closed set of capacity 0 on the z-plane, which is contained in a bounded domain D and w=w(z)=f(z) be meromorphic in D-E and have every point of E as an essential singularity. Since E is of capacity 0, by Evans' theorem¹, we can distribute a positive mass $d\mu(a)$ on E, such that

$$u(z) = \int_{E} \log \frac{1}{|z-a|} d\mu(a) , \qquad \int_{E} d\mu(a) = 1 , \qquad (1)$$

is harmonic in D-E and $u(z) = \infty$ at every point of E. Let $\theta(z)$ be the conjugate harmonic function of u(z) and put

$$t = e^{u(z) + i\theta(z)} = r(z)e^{i\theta(z)}.$$
(2)

This r(z) plays the similar rôle as |z| in the theory of meromorphic functions for $|z| < \infty$. Let C_r be the niveau curve: r(z) = const. = r, then C_r consists of finite number of closed curves surrounding E. We remark that $\int_{C_r} d\theta(z) = \int_{C_r} \frac{\partial u}{\partial n} ds = 2\pi \int_E d\mu = 2\pi$, where n is the inner normal of C_r . We assume that D is bounded by an analytic Jordan curve C and the domain bounded by C and C_r be denoted by Δ_r . Let K be the Riemann sphere of diameter 1, which touches the w-plane at w=0 and put $[a,b] = \frac{|a-b|}{\sqrt{(1+|a|^2)(1+|b|^2)}}$, n(r,a) = the number of zero points of f(x)-a in Δ_r ,

$$N(r, a) = \int_{r_0}^{r} \frac{n(r, a)}{r} dr ,$$

$$m(r, a) = \frac{1}{2\pi} \int_{C_r} \log \frac{1}{[w(z), a]} d\theta(z) ,$$

$$T(r, a) = m(r, a) + N(r, a) ,$$

A(r) = the area on K, which is covered by w=f(z), when z varies in Δ_r and $S(r) = \frac{A(r)}{r}$.

¹⁾ Evans: Potentials and positively infinite singularities of harmonic functions. Monathefte f. Math. u. Phys. **43** (1936).

Then the following theorem corresponds to Nevanlinna's first fundamental theorem.

Theorem I. $T(r, a) = T(r) + O(\log r)$,

where
$$T(r) = \int_{r_0}^r \frac{S(r)}{r} dr$$
.

Proof. Considering f(z) as an analytic function of t,

$$\begin{aligned} \frac{\partial m(r,a)}{\partial r} &- \frac{\partial m(r,b)}{\partial r} = \frac{1}{2\pi} \int_{C_r} \frac{\partial}{\partial r} \log \left| \frac{w-b}{w-a} \right| d\theta \\ &= \frac{1}{2\pi r} \int_{C_r} d \arg \frac{w-b}{w-a} = \frac{1}{2\pi r} \int_{C_r+c} d \arg \frac{w-b}{w-a} - \frac{1}{2\pi r} \int_{C} d \arg \frac{w-b}{w-a} \\ &= \frac{n(r,b) - n(r,a)}{r} + O\left(\frac{1}{r}\right), \quad \text{or} \quad T(r,a) = T(r,b) + O(\log r) \,. \end{aligned}$$

Let $d\omega(b)$ be the surface element on K, then $T(r,a) = \frac{1}{\pi} \int_{K} T(r,b) d\omega(b)$ + $O(\log r) = \int_{r_0}^{r} \frac{S(r)}{r} dr + O(\log r)$, q. e. d.

We will call T(r) the characteristic function and $\lim_{r\to\infty} \frac{\log T(r)}{\log r} = \rho$ the order of f(z) about E.

Theorem II.
$$\lim_{r \to \infty} \frac{T(r)}{\log r} = \infty$$

Proof. If $|f(z)-a| \ge \rho > 0$ in D-E, then $\frac{1}{f(z)-a}$ is bounded in D-E, so that $\frac{1}{f(z)-a}$ is regular²⁾ and hence f(z) is meromorphic on E, contradictory to the hypothesis. Hence in D-E, f(z) takes the values which are dense on K. Let z_0 be a point on E and $D_1 > D_2 > \cdots > D_n \rightarrow z_0$ be a sequence of domains tending to z_0 and e_n be the values omitted by f(z) in D_n , then e_n is non-dense, so that $e = \sum_{n=1}^{\infty} e_n$ is of first category. Hence there exists a point a which does not belong to e. This a is taken by f(z) infinitely many times about z_0 , so that $\lim_{r \rightarrow \infty} \frac{T(r, a)}{\log r} = \infty$ and by Theorem I, $\lim_{r \rightarrow \infty} \frac{T(r)}{\log r} = \infty$, q. e. d. Let $\Lambda(r)$ be the number of closed boundary curves of A_r , then³⁾ $(q-2)S(r) \leq \sum_{k=1}^{q} n(r, a_k) + \Lambda(r) + O(L(r))$, where L(r) is the length of the curve on K, which corresponds to C_r and $\lim_{r \rightarrow \infty} \frac{L(r)}{S(r)} = 0$. Similarly as for a meromorphic function for $|z| < \infty$, we can prove³⁾

Theorem III. If $\overline{\lim_{r \to \infty} \frac{\Lambda(r)}{S(r)}} = p < \infty$, then f(z) takes every value,

²⁾ R. Nevanlinna: Eindeutige analytische Funktionen. p. 132. Satz 2.

³⁾ M. Tsuji: On the behaviour of an inverse function of a meromorphic function at its transcendental singular point. Proc. 17 (1941), 414.

except at most p+2 values, infinitely many times in D-E and one of q>2p+4 disjoint simply connected domains on K is covered schlicht by the Riemann surface of the inverse function of f(z).

Remark I. If f(z) is regular in D-E and $M(r) = \underset{C_r}{\operatorname{Max.}} |f(z)|$, then M(r) is an increasing function of r and $\log M(r)$ is a convex function of $\log r$.

II. Let *e* be a closed set of positive capacity, then we can distribute a positive mass $d\nu(a)$ on *e*, such that $\int_e \log \frac{1}{[w,a]} d\nu(a)$, $\int_e d\nu(a) = 1$, is bounded on K. Hence by Theorem I,

$$T(r) = \int_{e} N(r, a) d\nu(a) + O(\log r) .$$
 (3)

This corresponds to Nevanlinna's second fundamental theorem.

III. Theorem IV (Noshiro)⁴⁾. Let f(z) be regular and bounded in a bounded domain D and on the boundary of D, $\overline{\lim} |f(z)| \leq 1$, except a closed set E of capacity 0, then $|f(z)| \leq 1$ in D.

Proof. Let u(z) be the same as in (1) and put $v(z) = \log |f(z)| - \varepsilon u(z)$ ($\varepsilon > 0$). Since $u(z) = \infty$ on E and f(z) is bounded, $\lim_{z \to 0} v(z) \leq 0$ on the boundary of D. Since v(z) is sub-harmonic, $v(z) \leq 0$ in D. Making $\varepsilon \to 0$, we have $|f(z)| \leq 1$ in D.

2. Applications.

Theorem V. Let D be a domain bounded by a Jordan curve C and E be a closed set of capacity 0 contained in D and f(z) be meromorphic in D-E and have every point of E as an essential singularity. Then (i) f(z) takes every value a, except a-values of capacity 0, infinitely many times in D-E. More precisely $\lim_{r \to \infty} \frac{N(r, a)}{T(r)} = 1$, except a-values of capacity 0. (ii) If further f(z) be of finite order ρ and $z_n = z_n(a)$ be the zero points of f(z)-a and $r_n(a) = r(z_n)$, then $\sum_{n=1}^{\infty} \frac{1}{[r_n(a)]^{\rho+\varepsilon}}$ ($\varepsilon > 0$) is convergent for all a, while $\sum_{n=1}^{\infty} \frac{1}{[r_n(a)]^{\rho-\varepsilon}}$ is divergent, except a-values of capacity 0.

The first part of (i) is due to Mr. S. Kametani⁵⁾.

Proof. (i) Let e be the set of values taken by f(z) finite times in D-E and suppose that e is of positive capacity and e_n be the subset of e, every value of which is taken by f(z) at most n-times, then $e = \sum_{n=1}^{\infty} e_n$. Hence one of e_n is of positive capacity, which as well known, contains a closed set of positive capacity. Hence we assume that e_n is a closed set of positive capacity. Then by (3), $T(r) = \int_{e_n} N(r, a) d\nu(a) + O(\log r) = O(\log r)$, which contradicts Theorem II. Hence e is of capacity

⁴⁾ K. Noshiro: On the theory of the cluster sets of analytic functions. Jour. Faculty Science. Hokkaido Imp. Univ. 6 (1937-38).

⁵⁾ S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities. Proc. 17 (1941), 429.

0. The second part can be proved similarly as Frostman⁶. (ii). Since the first part is evident, we will prove the second part. Suppose that $\sum_{n=1}^{\infty} \frac{1}{[r_n(a)]^{\rho'}} \quad (0 < \rho' < \rho) \text{ is convergent, so that } \int_{r_0}^{\infty} \frac{N(r,a)}{r^{\rho'+1}} dr < \infty \text{ for}$ *a*-values of positive capacity. Then as before there exists a closed set e_n of positive capacity, such that $\int_{r_0}^{\infty} \frac{N(r,a)}{r^{\rho'+1}} dr \leq n$ for $a \in e_n$. Then by (3), $\int_{r_0}^{\infty} \frac{T(r)}{r^{\rho'+1}} dr = \int_{e_n} d\nu(a) \int_{r_0}^{\infty} \frac{N(r,a)}{r^{\rho'+1}} dr + O(1) = O(1)$, or $T(r) = O(r^{\rho'})$, which contradicts the hypothesis. Hence *e* is of capacity 0.

3. An extension of Gross' theorem.

We will prove the following extension of Gross' theorem.

Theorem VI. Under the same condition as Theorem V, let w_0 be a regular point of the inverse function $\varphi(w)$ of f(z). Then we can continuate $\varphi(w)$ analytically along half-lines; $w - w_0 = \rho e^{i\phi}$, till we meet the image Γ of C or indefinitely, except ϕ -values of measure 0. If $\varphi(w)$ be regular on a segment; $w - w_0 = \rho$ ($0 \leq \rho_1 < \rho < \rho_0$), then starting from $w - w_0 = \rho$, we can continuate $\varphi(w)$ analytically along circles; $w - w_0 = \rho e^{i\phi}$ ($-\infty < \phi < \infty$) indefinitely, except ρ -values of measure 0.

Proof. For a given ψ , we continuate $\varphi(w)$ analytically along a half-line; $w - w_0 = \rho e^{i\psi}$, till we meet Γ or a transcendental singularity of $\varphi(w)$, thus we get the principal star region H, with w_0 as its center. The edges of H are transcendental singularities of $\varphi(w)$. Let the part of H, which is contained in $|w - w_0| \leq R$ be denoted by H_R , which corresponds to D_R on the z-plane. Let $t = e^{u+i\theta} = r(z)e^{i\theta(z)}$ be the same as in (2) and the part of the niveau curve C_r ; r(z) = r, which lies in D_R be denoted by $C_r(R)$, which corresponds to σ_r in H_R , whose sum of lengths be denoted by s(r), then putting f(z) = F(t), we have $(s(r))^2 = \left(\int_{C_r(R)} |F'(t)| r d\theta\right)^2 \leq 2\pi r \int_{C_r(R)} |F'(t)|^2 r d\theta = 2\pi r \frac{dA(r)}{dr}$, where

A(r) is the area of the part of H_R , which contains w_0 and is bounded $\int_{r}^{r} \frac{(s(r))^2}{r} dr \leq 0$ $A(r) \leq 0$ $2D^2$. Since r

by σ_r . Hence $\int_{r_0}^r \frac{(s(r))^2}{r} dr \leq 2\pi A(r) \leq 2\pi^2 R^2$. Since $r \to \infty$, we infer

that there exists a sequence $r_n \to \infty$, such that $s(r_n) \to 0$. Hence the set of the ψ -values which correspond to the edges of H_R is of measure 0. Taking $R_1 < R_2 < \to \infty$ for R, we see that the set of ψ -values which correspond to the edges of H is of measure 0. The second part can be proved similarly. q. e. d.

From Theorem VI, we see that every boundary point of the Riemann surface F of $\varphi(w)$ is an accessible point. Hence if $f(z) \neq a$ in D-E, then a is a boundary point of F, so that there exists a curve Γ on F ending at a, which corresponds to a curve L on the z-plane ending at a point of E. Hence we have

Theorem VII (Cartwright-Noshiro)⁷). Under the same condition as

⁶⁾ Frostman: Potentiel d'equilibre et capacité des ensembles. Lund 1935.

⁷⁾ Cartwright: On the asymptotic values of functions with a non-enumerable set of essential singularities. Jour. London Math. Soc. 11 (1936).

Noshiro, l.c. 4).

Theorem V, if $f(z) \neq a$ in D-E, then there exists a curve L in D-Eending at a point of E, such that $f(z) \rightarrow a$ along L.

4. Functions of class (U).

The functions of class (U) are functions which satisfy the conditions: (i) f(z) is regular and |f(z)| < 1 in |z| < 1. (ii) |f(z)| = 1almost everywhere on |z| = 1.

Theorem VIII. Let w=f(z) belong to class (U) and $\varphi(w)$ be its inverse function defined in |w| < 1 and w_0 be a regular point of $\varphi(w)$. Then we can continuate $\varphi(w)$ analytically along half-lines; $w-w_0 = \rho e^{i\phi}$, till we meet |w|=1, except ψ -values of measure 0. Let $\varphi(w)$ be regular on a segment; $w-w_0 = \rho$ ($0 \leq \rho_1 < \rho < \rho_0$) and $|w-w_0| < \rho_0$ be contained in |w| < 1. Then we can continuate $\varphi(w)$ analytically along circles; $w-w_0 = \rho e^{i\phi}$ ($-\infty < \psi < \infty$) indefinitely, except ρ -values of measure 0.

Proof. As in the proof of Theorem VI, let H_R be the part of the principal star region H with center at w_0 , which is contained in a circle; $\left|\frac{w-w_0}{1-\bar{w}_0w}\right| \leq R < 1$. Let H_R correspond to D_R in |z|<1. Then the set of transcendental singularities of $\varphi(w)$ which lie on the boundary of H_R corresponds to a closed set E of measure 0 on |z|=1. Let the set of open arcs $\{s_n\}$ be the complementary set of E on |z|=1. Then there exists⁸⁾ a positive function $F(\theta)$ on |z|=1, such that $F(\theta)$ is continuous on s_n and $F(\theta) = \infty$ on E and $\int_0^{2\pi} F(\theta) d\theta < \infty$. Let u(z) be the Poisson integral with the boundary function $F(\theta)$, then u(z) tends to infinity, when z tends to any point of E. Let $\theta(z)$ be the conjugate harmonic function of u(z) and put $t=e^{u+i\theta}=r(z)e^{i\theta(z)}$. By means of this t, we can prove similarly as Theorem VI.

Similarly as Theorem VII, we have

Theorem IX (Seidel)⁹⁾. Let f(z) belong to class (U) and $f(z) \neq a$ (|a| < 1) in |z| < 1, then there exists a curve L ending on |z|=1, such that $f(z) \rightarrow a$ along L.

5. Inverse function of f(z) in §1.

Let w=w(z)=f(z) satisfy the conditions in §1 and $z=\varphi(w)$ be its inverse function. A δ -neighbourhood U of w_0 on the Riemann surface F of $\varphi(w)$ is the connected part of F, which lies in $[w, w_0] < \delta$ and has w_0 as an inner point or a boundary point. Let U correspond to Δ on the z-plane, then $[f(z), w_0] < \delta$ in Δ and $[f(z), w_0] = \delta$ on the boundary of Δ , except the points on E. We assume that w_0 is an accessible boundary point of F, such that there exists a curve Γ on Fending at w_0 , which corresponds to a curve L in Δ ending at z_0 on E. Let $t=e^{u+i\theta}=r(z)e^{i\theta(z)}$ be the same as in (2) and the part of Δ , such that $r(z) \leq r$, r(z)=r be noted by Δ_r , θ_r respectively. We put $A(r; \Delta)=$ the area on K, which is covered by w=f(z), when z varies in Δ_r , $S(r; \Delta) = \frac{A(r; \Delta)}{\pi \delta^2}$, where $\pi \delta^2$ is the area of $[w, w_0] \leq \delta$ on K, $n(r, a; \Delta) =$

⁸⁾ Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906).

⁹⁾ Seidel: On the distribution of values of bounded analytic functions. Trans. Amer. Soc. **36** (1934).

the number of zero points of f(z) - a in Δ_r , where $[a, w_0] < \delta$,

$$N(r, a; \Delta) = \int_{r_0}^r \frac{n(r, a; \Delta)}{r} dr ,$$

$$m(r, a; \Delta) = \frac{1}{2\pi} \int_{\theta_r} \log \frac{1}{[w(z), a]} d\theta(z) ,$$

$$T(r, a; \Delta) = m(r, a; \Delta) + N(r, a; \Delta) ,$$

L(r) = the length of the curve on K, which corresponds to θ_r .

Then exactly as I have proved¹⁰⁾ for a meromorphic function for $|z| < \infty$, we have

Theorem X.
$$T(r, a; \Delta) = T(r; \Delta) + O\left(\int_{r_0}^r \frac{L(r)}{r} dr\right) + O(\log r),$$

where

$$T(r; \Delta) = \int_{r_0}^{r} \frac{S(r; \Delta)}{r} dr .$$

$$L(r) = O\left(\sqrt{T(2r; \Delta) \log r}\right) \quad for \ all \ r, \tag{4}$$

$$L(r) = O\left(\sqrt{T(r; \Delta)} \log T(r; \Delta)\right), \tag{5}$$

except certain intervals I_n , such that $\sum_n \int_{I_n} d \log r < \infty$.

We will call $T(r; \Delta)$ the characteristic function and $\overline{\lim_{r \to \infty} \frac{\log T(r; \Delta)}{\log r}} = \rho$ the order of f(z) in Δ .

Theorem XI. $\lim_{r \to \infty} \frac{T(r; \varDelta)}{\log r} = \infty.$

Proof. We have two cases. (i) The branch of θ_r which meets L, always meets the boundary Λ of Λ . Let θ_r meets L at z' and Λ at z''. Since $u(z) = \infty$ on E, z'' is not a point of E, so that f(z'') lies on $[w, w_0] = \delta$ and since f(z') tends to w_0 , we have $L(r) \ge d > 0$ for $r \ge r_1$. Since $\int_{r_0}^r \frac{[L(r)]^2}{r} dr \le 2\pi A(r; \Lambda)^{(1)}$, we have $\lim_{r \to \infty} A(r; \Lambda) = \infty$. (ii) There exists a sequence of points $z_n \to z_0$ on L, such that the branch of θ_r , which meets L at z_n does not meet Λ , so that infinitely many disjoint boundary elements of Λ cluster at z_0 . Hence the Riemann surface Fof $\varphi(w)$ contains infinitely many sheets, F_1, F_2, \ldots . By Theorem VI, the set e_n of the boundary points of F_n is non-dense, so that $e = \sum_{n=1}^{\infty} e_n$ is of first category, hence there exists a point a in $[w, w_0] < \delta$, which does not belong to e. This a is a regular point of $\varphi(w)$ on each F_n . Consider the principal star region H_n on F_n , with center at a. F can be considered as obtained by connecting H_n along the boundaries of H_n . By Theorem VI, the measure of H_n is $\pi\delta^2$. Since there are infinitely many sheets, $\lim_{r \to \infty} A(r; \Lambda) = \infty$. From (i), (ii), we have

¹⁰⁾ M. Tsuji: On the behaviour of an inverse function of a meromorphic function at its transcendental singular point, III. Proc. **18** (1942), 132.

¹¹⁾ M. Tsuji. l. c. 10).

No. 5.] On the Behaviour of a Meromorphic Function in the Neighbourhood. 219

 $\lim_{r\to\infty}\frac{T(r;\varDelta)}{\log r}=\infty.$

Theorem XII. Under the same condition as Theorem V, let w_0 be an accessible transcendental singularity of the inverse function $\varphi(w)$ of f(z) and a δ -neighbourhood U of w_0 correspond to Δ on the z-plane. Then (i) f(z) takes every value a in $[w, w_0] < \delta$ infinitely many times in Δ , except a-values of capacity 0. (ii) If further f(z) be of finite order ρ in Δ , then $\sum_{n=1}^{\infty} \frac{1}{[r_n(a)]^{\rho+\epsilon}}$ ($\epsilon > 0$) is convergent for all a in $[w, w_0] < \delta$, while $\sum_{n=1}^{\infty} \frac{1}{[r_n(a)]^{\rho-\epsilon}}$ is divergent, except a-values of capacity 0, where

 $r_n(a) = r(z_n)$, z_n being the zero points of in Δ .

Proof. Suppose that f(z) takes in \varDelta finite times *a*-values which belong to a set *e* of positive capacity. Then as before f(z) takes at most *n*-times *a*-values which belong to a closed set e_n of positive capacity. Then by Theorem X, (3) and (5), we have $T(r; \varDelta) = \int_{e_n} N(r, a; \varDelta) d\nu(a) + O\left(\int_{r_0}^r \frac{L(r)}{r} dr\right) + O(\log r) = O\left(\sqrt{T(r; \varDelta)} \log T(r; \varDelta)\right) + O(\log r)$, outside I_n , which contradicts Theorem XI. (ii) can be proved similarly as Theorem V by means of (4).

Theorem XIII. Under the same condition as Theorem XII, if f(z)-a, where $[a, w_0] < \delta$, has only finite number of zero points in Δ , then there exists a curve Λ ending at a point of E, such that $f(z) \rightarrow a$ along Λ .

Proof. Since, by Theorem XII, the Riemann surface F of the inverse function $\varphi(w)$ of f(z) contains infinitely many sheets, a is a boundary point of F, which by Theorem VI, is an accessible boundary point of F. Hence there exists a curve on F ending at a, which corresponds to Λ on the z-plane ending at a point of E, along which f(z) tends to a.