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6. Note on Banach Spaces (llI) : A Proof
of Tietze./latsumura’s Theorem.
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Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., June 12, 1942.)

A subset S of a linear metric space is called locally coez, if
and only if, for every p e S there exists a sphere K with center p such
that ScK is convex. In the case of the Euclidean -spaces H.
Tietze and S. Matsumura2 proved, that every closed, connected and
locally convex set is convex.

In the present note we extend this theorem into the following
form:

Theorem. If E is uniformly convex and S is compact, closed and
connected set, then the local convexity of S implies the convexity in the
large.

To prove the theorem we choose a finite covering by spheres (K}s)

such that S r K is convex; this is possible always, since the set S is
compact. If a set S r K r K- for i =k j is non-void, then we call it.
a shoal. It is evident that a shoal is compact and closed.

On the other hand, we define a bridge as a continuous image of
[0, 1] to S, which contains only a finite number of line-segments
called girders--, pass through a shoal once only and joint points of
girders called piles lie in shoals. For the sake of simplicity, we
assume a shoal contains only one pile and even if a girder pass through
a shoal, we join a pile on it.

Then obviously a bridge can be represented by an ordered set of
piles and end-points such that

I= (po, p, ..., p).
Next, we define the length of bridge by

Since, as remarked above, all shoals are compact, we can find a bridge
from a to b with minimal length. Hence to prove the theorem it is
sufficient to show the following

Lemma. Every bridge with minimal length between two points of
S is itself a line-segment.

1) H. Tietze, Math. Zeits., 28 (1928), 697-707.
2) S. Matsumura (Nakajima), TShoku M.J., 28 (1928), 266-268.
3) We assume here Ki’s sre closed spheres.
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To prove this, we use the induction over the numbers of piles of
minimal length’ bridge. Since n=l is trivial, we begin with n=2.
Suppose the contrary is hold and I--(a, p, b), then by the assumption
of local convexity, we have a sphere K with center p such that Kr S
is convex. We take on ap and bP two points c and d respectively
such that c p =k= d and c, d e K. Now we put J= (a, c, d, b), then
Jl.<:lII by the assumption of uniform convexity.

On the other hand, we can find a bridge J’ for any J such that
J’l lJI, we have Jl<Y. lJI. This is a contradiction.

The remainder of the proof is almost trivial. If the lemma
is proved for n, and I is a bridge of minimal length in the form
I=(P0, P, ..., P, P+), then I’= (Po, ..., P) and I’’= (p, ..., p+) are
bridge of minimal length between (P0, P) and (p, p+). Thus by the
assumption of induction I’ and I" are line-segments and have a non-
void subset I’ rI" in common, hence I=I’ I" is a line-segment.
This completes the proof.


