PAPERS COMMUNICATED

56. Note on Banach Spaces (III): A Proof of Tietze-Matsumura's Theorem.

By Masahiro Nakamura.
Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. Fujiwara, mi.iA., June 12, 1942.)

A subset S of a linear metric space E is called locally convex, if and only if, for every $p \in S$ there exists a sphere K with center p such that $S \cap K$ is convex. In the case of the Euclidean n-spaces H. Tietze ${ }^{1{ }^{1}}$ and S. Matsumura ${ }^{2)}$ proved, that every closed, connected and locally convex set is convex.

In the present note we extend this theorem into the following form :

Theorem. If E is uniformly convex and S is compact, closed and connected set, then the local convexity of S implies the convexity in the large.

To prove the theorem we choose a finite covering by spheres $\left\{K_{i}\right\}^{33}$ such that $S \cap K_{i}$ is convex; this is possible always, since the set S is compact. If a set $S \cap K_{i} \cap K_{j}$ for $i \neq j$ is non-void, then we call it a shoal. It is evident that a shoal is compact and closed.

On the other hand, we define a bridge as a continuous image of $[0,1]$ to S, which contains only a finite number of line-segments called girders -, pass through a shoal once only and joint points of girders - called piles - lie in shoals. For the sake of simplicity, we assume a shoal contains only one pile and even if a girder pass through a shoal, we join a pile on it.

Then obviously a bridge can be represented by an ordered set of piles and end-points such that

$$
I=\left(p_{0}, p_{1}, \ldots, p_{n}\right) .
$$

Next, we define the length of bridge by

$$
|I|=\sum_{i=1}^{n}\left|p_{i}-p_{i-1}\right| .
$$

Since, as remarked above, all shoals are compact, we can find a bridge from a to b with minimal length. Hence to prove the theorem it is sufficient to show the following

Lemma. Every bridge with minimal length between two points of S is itself a line-segment.

[^0]To prove this, we use the induction over the numbers of piles of minimal length' bridge. Since $n=1$ is trivial, we begin with $n=2$. Suppose the contrary is hold and $I=(a, p, b)$, then by the assumption of local convexity, we have a sphere K with center p such that $K \cap S$ is convex. We take on $\overline{a p}$ and $\overline{b p}$ two points c and d respectively such that $c \neq p \neq d$ and $c, d \in K$. Now we put $J=(a, c, d, b)$, then $|J|<|I|$ by the assumption of uniform convexity.

On the other hand, we can find a bridge J^{\prime} for any J such that $\left|J^{\prime}\right| \leqq|J|$, we have $\left|J^{\prime}\right|<|J|$. This is a contradiction.

The remainder of the proof is almost trivial. If the lemma is proved for n, and I is a bridge of minimal length in the form $I=\left(p_{0}, p_{1}, \ldots, p_{n}, p_{n+1}\right)$, then $I^{\prime}=\left(p_{0}, \ldots, p_{n}\right)$ and $I^{\prime \prime}=\left(p_{1}, \ldots, p_{n+1}\right)$ are bridge of minimal length between (p_{0}, p_{n}) and (p_{1}, p_{n+1}). Thus by the assumption of induction I^{\prime} and $I^{\prime \prime}$ are line-segments and have a nonvoid subset $I^{\prime} \cap I^{\prime \prime}$ in common, hence $I=I^{\prime} \cup I^{\prime \prime}$ is a line-segment. This completes the proof.

[^0]: 1) H. Tietze, Math. Zeits., 28 (1928), 697-707.
 2) S. Matsumura (Nakajima), Tôhoku M. J., 28 (1928), 266-268.
 3) We assume here K_{i} 's sre closed spheres.
