104. A Note on Infinite Series.

By Shin-ichi Izumi and Gen-ichiro Sunouchi.

Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Nov. 12, 1942.)
Introduction. Theorem A. If the infinite series $\sum a_{n}$ converges and $a_{n} \downarrow 0$ (a_{n} tends to zero monotonously), then $n a_{n} \rightarrow 0$.

This is the classical theorem due to Olivier. This is generalized by Cesàro ${ }^{1)}$, de la Vallée Poussin ${ }^{2)}$, Rademacher ${ }^{3)}$, Ostrowski ${ }^{4}$, Knopp ${ }^{5}$, Izumi ${ }^{6)}$ and Meyer-König ${ }^{7}$. Ostrowski's theorem reads as follows.

Theorem B. If $a_{n} \downarrow 0$, then $\sum a_{n}$ converges when and only when $s_{n}-n a_{n}$ converges.

This theorem contains Olivier's theorem. On the other hand Cesàro proved that

Theorem C. Let p_{n} and q_{n} be the number of positive and negative terms in

$$
s_{n} \equiv a_{1}+a_{2}+\cdots+a_{n} .
$$

If $\sum a_{n}$ converges and $\left|a_{n}\right| \downarrow 0$, then $\left(p_{n}-q_{n}\right) a_{n} \rightarrow 0$.
These theorems suggest us the following theorem.
Theorem D. If $\left|a_{n}\right| \downarrow 0, \sum a_{n}$ converges when and only when $s_{n}-\left(p_{n}-q_{n}\right)\left|a_{n}\right|$ converges as $n \rightarrow \infty$.

But we can show that this is not true in general (§3). Therefore in order to get the theorem of this type, we need some additional conditions. We give two types of conditions. That is, the one is concerning the magnitude of a_{n} and the other is concerning the sign of a_{n}. This is given in Theorem 1 and 2. Conditions in the theorem are the best possible ones in a sense. Incidentally we give a new proof of all above theorems (§1). Finally we remark that our problem is transformed into that of function theory.
§ 1. Proof of Theorem C. The identity

$$
\begin{align*}
& \left(\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}\right) / \lambda_{n} \\
& \quad=s_{n}-\left(\left(\lambda_{2}-\lambda_{1}\right) s_{1}+\left(\lambda_{3}-\lambda_{2}\right) s_{2}+\cdots+\left(\lambda_{n}-\lambda_{n-1}\right) s_{n-1}\right) / \lambda_{n} \tag{1}
\end{align*}
$$

is well known and is easy to verify. Put $a_{\nu} \equiv\left|a_{\nu}\right| \cdot e_{\nu}, \lambda_{\nu}=1 /\left|a_{\nu}\right|$, then the left hand side of (1) becomes

$$
\begin{equation*}
\left(e_{1}+e_{2}+\cdots e_{n}\right)\left|a_{n}\right|=\left(p_{n}-q_{n}\right)\left|a_{n}\right| . \tag{2}
\end{equation*}
$$

Since $\lambda_{n} \uparrow \infty$, by the Toeplitz theorem

1) Cesàro, Rom. Acc. Lincei Rend., 4 (1888), p. 133.
2) de la Vallée-Poussin, Cours d'Analyse Infinitesimale, 1 (1914), p. 408.
3) Rademacher, Math. Zeitschr., 11 (1921), p. 276.
4) Ostrowski, Jahresb. der D.M.V., 34 (1926), p. 161.
5) Knopp, Jahresb. der D.M.V., 37 (1928), p. 325.
6) Izumi, Proc. of the Physico-Math. Soc., 16 (1934), p. 127.
7) Meyer-König, Math. Zeitschr., 45 (1939), p. 751.

$$
\left.\left(\lambda_{2}-\lambda_{1}\right) s_{1}+\left(\lambda_{3}-\lambda_{2}\right) s_{2}+\cdots+\left(\lambda_{n}-\lambda_{n-1}\right) s_{n-1}\right) / \lambda_{n} \rightarrow s
$$

if $s_{n} \rightarrow s$. Thus (1) gives the required result.
Proof of Theorem B. By (1) and (2) (when $a_{n}>0$)

$$
\begin{equation*}
s_{n}-n a_{n}=\left(\left(\lambda_{2}-\lambda_{1}\right) s_{1}+\left(\lambda_{3}-\lambda_{2}\right) s_{2}+\cdots+\left(\lambda_{n}-\lambda_{n-1}\right) s_{n-1}\right) / \lambda_{n} \tag{3}
\end{equation*}
$$

If $a_{n}>0$, then s_{n} converges or diverges to infinite. By the regularity of summation-method, we get the theorem.

Similarly we can prove theorems due to de la Vallée Poussin, Rademacher, Knopp and Izumi.
§ 2. Theorem 1. If $\left|a_{n}\right| \downarrow 0$ and $1 /\left(\left|a_{n}\right|^{-1}-\left|a_{n-1}\right|^{-1}\right)=O$ (1), then $s_{n}-\left(p_{n}-q_{n}\right)\left|a_{n}\right| \rightarrow 0$ implies $s_{n} \rightarrow 0$.

Proof. By the Tauberian theorem, if $\lambda_{n} a_{n} /\left(\lambda_{n}-\lambda_{n-1}\right)=O$ (1) then the right hand side of (3) converges. Now

$$
\lambda_{n} a_{n} /\left(\lambda_{n}-\lambda_{n-1}\right)=e_{n} /\left(\lambda_{n}-\lambda_{n-1}\right)=1 /\left(\left|a_{n}\right|^{-1}-\left|a_{n-1}\right|^{-1}\right) .
$$

Thus we get the theorem.
Theorem 2. If $\sum\left(p_{n}-q_{n}\right)^{-2}$ converges and $\left(p_{n}-q_{n}\right) \sum_{m \rightarrow n}^{\infty}\left(p_{m}-q_{m}\right)^{-2}$ tends to zero, then $s_{n}-\left(p_{n}-q_{n}\right)\left|a_{n}\right| \rightarrow 0$ implies $s_{n} \rightarrow 0$.

Proof. If we put $s_{n} \equiv\left(p_{n}-q_{n}\right) t_{n}$, then

$$
\begin{aligned}
s_{n}- & \left(p_{n}-q_{n}\right)\left|a_{n}\right|=s_{n}-\left(p_{n}-q_{n}\right) e_{n} a_{n} \\
& =\left(p_{n}-q_{n}\right) t_{n}-e_{n}\left(p_{n}-q_{n}\right)\left(\left(p_{n}-q_{n}\right) t_{n}-\left(p_{n-1}-q_{n-1}\right) t_{n-1}\right) \\
& =e_{n}\left(p_{n}-q_{n}\right)\left(p_{n-1}-q_{n-1}\right)\left(t_{n-1}-t_{n}\right) .
\end{aligned}
$$

Thus we have

$$
t_{n-1}-t_{n}=o\left(\left(p_{n}-q_{n}\right)^{-1}\left(p_{n-1}-q_{n-1}\right)^{-1}\right)=o\left(\left(p_{n}-q_{n}\right)^{-2}\right) .
$$

By the convergence of $\sum\left(p_{n}-q_{n}\right)^{-2}, t_{n}$ tends to a constant A. And then $s_{n}=\left(p_{n}-q_{n}\right) A+o(1)$. That is $a_{n} \rightarrow A$, which gives $A=0$. Therefore $s_{n} \rightarrow 0$.
§3. We will now give an example that $\left|a_{n}\right| \downarrow 0, s_{n}-\left(p_{n}-q_{n}\right)$. $\left|a_{n}\right| \rightarrow 0$ do not imply $s_{n} \rightarrow 0$. Let $0<\alpha<1 / 2,\left[n_{p-1}^{a}\right] \equiv p$. Let $\left|a_{n}\right| \equiv 1 / p$ in $n_{p}^{\alpha} \leqq n \leqq n_{p}^{\alpha}+2 p-1$ and $1 / n^{\alpha}$ otherwise. Then $\left|a_{n}\right| \downarrow 0$. Let us define $p_{n}-q_{n}$ such that the curve of $p_{\nu}-q_{\nu}$ inscrives $(-1)^{p-1} \nu^{a}$ as closely as possible in $n_{p}^{a}+2 p-1<\nu<n_{p+1}^{a}$ and is linear otherwise. More precisely, let $e_{1} \equiv 1$. Further let $e_{2}=-1, e_{3}=+1, \epsilon_{4}=-1, \ldots$ alternatively till [n^{α}] becomes 2. If $\left[n_{1}^{a}\right]=2, e_{n_{1}-1}=+1$ then $e_{n_{1}}=e_{n_{1}+1}=e_{n_{1}+2}=-1$, and otherwise $e_{n_{1}+1}=e_{n_{1}+2}=e_{n_{1}+3}=-1$. For larger n, e_{n} is defined +1 or -1 , alternatively till $\left[n^{\alpha}\right]$ becomes 3 . If $\left[n_{2}^{\alpha}\right]=3, e_{n_{2}-1}=-1$, then $e_{n_{2}}=e_{n_{2}+1}+1=\cdots=e_{n_{2}+4}=+1$, and otherwise $e_{n_{2}+1}=e_{n_{2}+2}=\cdots=e_{n_{2}+5}=+1$. For larger n, e_{n} is defined +1 or -1 alternatively till [n^{α}] becomes 4. Thus proceeding we can define $\left(e_{n}\right)$ such that $p_{n}-q_{n}=O\left(n^{a}\right)$ and $p_{n}-q_{n}$ oscilates between n^{a} and $-n^{\prime \prime}$.

If we put $a_{n} \equiv e_{n}\left|a_{n}\right|$, then $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ oscilates boundedly. For [n^{α}] terms are of the same sign in the neighbourhood of n such that n^{α} becomes integer and their sign is $(-1)^{\left[n^{a}\right]-1}$ and otherwise
alternative. Thus $s_{n}-\sum_{\nu^{1 / a} \leq n}(-1)^{\nu-1}(2 \nu-1) a_{\nu}$ is alternative series. Now $(2 \nu-1) \alpha_{\nu a}=(2 \nu-1) / \nu=2-1 / \nu$. Hence s_{n} oscillates boundedly.

On the other hand

$$
\lambda_{n}=\lambda_{n-1}=1 /\left|a_{n}\right|-1 /\left|a_{n-1}\right|=n^{\alpha}-(n-1)^{\alpha}=\alpha n^{\alpha-1}+o(1) .
$$

If we replace s_{n} by $s_{n}^{\prime} \equiv s_{n}-\sum_{\nu^{1 / a} \leq n}(-1)^{v-1}(2 \nu-1) a_{\nu a}$ in

$$
s_{n}-\left(p_{n}-q_{n}\right)\left|a_{n}\right|=\left(\left(\lambda_{2}-\lambda_{2}\right) s_{1}+\left(\lambda_{3}-\lambda_{2}\right) s_{2} \cdots+\left(\lambda_{n}-\lambda_{n-1}\right) s_{n-1}\right) / \lambda_{n},
$$

then the resulting sequence converges. If s_{n} by $s_{n}^{\prime \prime} \equiv \sum_{\nu^{1 / a} \leq n}(-1)^{\nu-1}(2 \nu-1) a_{\nu}$, then the resulting sequence also converges. Thus $s_{n}-\left(p_{n}-q_{n}\right)\left|a_{n}\right|$ converges.

If $1>\alpha \geqq \frac{1}{2}$ it is enough to take a subsequence of $\left(n_{p}\right)$ with sufficiently large gap and follow above method concerning such subsequence.

This example shows that Theorem 1 and 2 are best possible in a sense. For, if sign of a_{n} are given arbitrarily, then the magnitude of a_{n} can not be of order $\leqq 1 / n^{a}(\alpha<1)$. Condition of Theorem 1 becomes $\left|a_{n}\right|=1 / n$ if $\left|a_{n}\right|=1 / n^{\beta}$. On the other hand if the magnitudes of a_{n} are given arbitrarily then $p_{n}-q_{n}$ cannot be of order $\leqq n^{a}(\alpha<1)$.
§4. Let $f(z)$ be an analytic function defined in the unite circle, $r_{1}, r_{2}, \ldots, r_{n}$ and $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ be the absolute value of zeros and poles of $f(z)$ in $|z|<R(R<1)$. By the Jensen's formula

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \varphi}\right)\right| d \varphi=\log \left|\frac{\rho_{1} \cdot \rho_{2} \cdots \rho_{m}}{r_{1} \cdot r_{2} \cdots r_{n}}\right| f(0) R^{n-m}
$$

Without loss of generality we can suppose that $f(0)=1$. If we arrange r_{i} and ρ_{j} in the increasing order of magnitude and put $\log \left(1 / r_{i}\right) \equiv a_{k}$, $\log \rho_{j} \equiv-a_{j}$, then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \varphi}\right)\right| d \varphi & =s_{m+n}-(n-m)\left|a_{n+m}\right| \\
& =s_{m+n}-\left(p_{m+n}-q_{m+n}\right)\left|a_{m+n}\right|
\end{aligned}
$$

by the notation used above. Thus the relation of

$$
\lim _{n \rightarrow \infty} s_{n} \text { and } \lim _{R \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \varphi}\right)\right| d \varphi
$$

is given by our theorem.

