2. On the Axioms of the Theory of Lattice.

By Masatada Kobayasi.
Mathematical Seminary, Hokkaido Imperial University, Sapporo.
(Comm. by T. Takagi, m.I.A.; Jan. 12, 1943.)

1. System Σ.

Suppose that there is a set S of elements, between each two of which two dualistic operations \cup and \cap are so defined that their results are unique and belong to S. If the two operations satisfy the following postulates:

then the set S is called a lattice for the operations \cup and \frown^{11}.
G. Köthe and H. Hermes showed that if L 4 is satisfied then L1 does so (Enzyklopädie Bd. I-1 Heft 5, 13 (1939), and they took L 2L 4 as the axioms for the lattice.

Now, we replace the Absorptive law L 4 by a weaker postulate, viz. ${ }^{2}$,

L 4* (a) if $y \cup x=x$ then $y \cap x=y$,
(b) if $y \cap x=x$ then $y \cup x=y$;
and this, together with L1 (a), L 2, L3 will be taken as postulates for a "System Σ " ${ }^{3}$.

We shall demonstrate the independency of postulates of Σ. Before doing so, we enumerate some relations between these postulates.
(I) L 1 (a) and L 4 (a) imply L 1 (b). In fact, by L 1 (a),

1) Cf. Ore, On the Foundation of Abstract algebra 1, Ann. Math., 36, 409 (1935), Philip M. Whitmann, Free lattices, Ann. Math., 42, 325 (1941), and G. Birkhoff, Lattice theory, Ammer. Math. Soc. Coll. Pub. XXV (1940), etc.
2) In the case when L 2 holds, we may use instead of L4* (a) any one of the following three postulates: (1) if $x \cup y=x$ then $y \frown x=y$, (2) if $y \cap x=x$ then $x \frown y$ $=y$, (3) if $x \cup y=x$ then $x \frown y=y$, and also instead of L4 (b) any one of the three postulates: (1) if $x \frown y=x$ then $y \cup x=y$, (2) if $y \frown x=x$ then $x \cup y=y$, (3) if $x \frown y$ $=x$ then $x \cup y=y$.
3) In this "System Σ ", we may use the postulate $L_{1} 1$ (b), instead of $L 1$ (a). Cf. (1).
'Then by Footnote 2) there are 32 equivalent systems of postulates for a lattice.
$x \cup x=x$, thus by L 4^{*} (a) $x \cap x=x$. Similarly, L 1 (b) and L 4^{*} (b), imply L 1 (a). Hence, when $\mathrm{L} 4^{*}$ hold L 1 (a) equivalent with L 1 (b) ${ }^{1)}$
(II) L 1 (a), L 2 (a), L 3 (a), and L 4^{*} (a) imply L 4 (b), and L 1 (b), L 2 (b), L 3 (b), and L 4^{*} (b) imply L 4 (a). In fact, by L 3 (a) $x \cup(x \cup y)=(x \cup y) \cup y$, thus by L 1 (a) $x \cup(x \cup y)=x \cup y$, hence by L 4 (a) $x \cap(x \cup y)=x$.
(III) The two following classes of postulates are identical:
(i) the class of L1 (a), L 2, L 3, and L 4^{*};
(ii) the class of L 2, L 3, L 4.
2. Independency of postulates of the System Σ.

Example 1. Let S be a set of zero and positive integers. Let

$$
x \cup y=\left\{\begin{array}{cl}
x+y, & \text { if } x \neq 1 \quad \text { and } y \neq 1, \\
1, & \text { if } x=1 \quad \text { or } y=1,
\end{array}\right.
$$

and let $x \cap y=x y$.
Then postulates L 2 (a), L2 (b), and L 3 (b) are obviously satisfied while L 1 (a) is not. In this system,

$$
x \cup(y \cup z)=\left\{\begin{array}{cl}
x+y+z, & \text { if } x \neq 1, y \neq 1, \\
1, & \text { and } z \neq 1 \\
\text { if } x=1, y=1, & \text { or } z=1,
\end{array}\right.
$$

and

$$
(x \cup y) \cup z=\left\{\begin{array}{cll}
x+y+z, & \text { if } x \neq 1, & y \neq 1,
\end{array} \text { and } z \neq 1 .\right.
$$

Hence L 3 (a) is satisfied. Again, $y \cup x=x$, if and only if $x=1$ or $y=0$, while $y \cap 1=y$, and $0 \cap x=0$. And $y \cap x=x$, if and only if $y=1$ or $x=0$, while $1 \cup x=1$, and $y \cup 0=y$. Hence $\mathrm{L} 4^{*}(\mathrm{a})$ and $\mathrm{L} 4^{*}$ (b) are satisfied.

Example 2. Let S be the set of the three elements and a, b, and c, and let $x \cup y$ and $x \cap y$ be defined as in the following tables:

$x \cup y$
x
x

$x \cap y$
x
y

Then postulates L1 (a) and L2 (a) are plainly satisfied while L 2 (b) does not hold. In this system, $y \cup x=x$, if and only if
(i) $x=a$ and $y=a$,
(ii) $x=a$ and $y=b$,
(iii) $x=a$ and $y=c$,
(iv) $x=b$ and $y=b$,
or (v) $x=c$ and $y=c$.

1) (I) asserts that $L 1$ (b) as postulate is superfluous for the "system Σ ".

Therefore (i) $a \cap a=a$, (ii) $b \cap a=b$, (iii) $c \cap a=c$, (iv) $b \cap b=b$, and (v) $c \cap c=c, L 4^{*}(a)$ is satisfied.

Also, $y \cap x=x$, if and only if (i) $x=a$ and $y=a$, (ii) $x=b$ and $y=b$, or (iii) $x=c$ and $y=c$, then by L 1 (b) which obtains by (1), L 4 (b) hold. Since

$$
x \cup(y \cup z)=\left\{\begin{array}{lll}
a & \text { if } x=a, \quad y=a, \quad \text { or } z=a, \\
a & \text { if } x \neq a, \quad y \neq a, \text { and } z \neq a, \text { and } x \neq y, \\
& y \neq z, \text { or } x \neq z, \\
x & \text { if } x \neq a, y \neq a, \text { and } z \neq a, \text { and } \\
& x=y=z,
\end{array}\right.
$$

and

$$
(x \cup y) \cup z=\left\{\begin{array}{lll}
a & \text { if } x=a, \quad y=a, \quad \text { or } z=a, \\
a & \text { if } x \neq a, \quad y \neq a, \text { and } z \neq a, \quad \text { and } x \neq y \\
& y \neq z, \quad \text { or } x \neq z \\
x & \text { if } x \neq a, y \neq a, \text { and } z \neq a, \text { and } \\
& x=y=z,
\end{array}\right.
$$

L3 (a) is satisfied, and since

$$
x \cap(y \cap z)=x \quad \text { and } \quad(x \cap y) \cap z=x, \quad \mathrm{~L} 3 \text { (b) hold. }
$$

By the obvious duality between \cup and \cap can construct a model which satisfies L1 (a), L 2 (b), L 3 (a), L 8 (b), L 4 (a), L 4 (b), but not L 2 (a).

Example 3. Let S be the set of the rational numbers $x \geqq 1$, in which we define the operations \cup and \cap as follows:
and

$$
x \cap y= \begin{cases}x, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

$$
x \cap y=\left\{\begin{array}{cc}
x & \text { if } \\
y=1 \\
\frac{\text { if }}{} \quad x=1 & \text { and } y \neq 1 \\
\frac{x+y}{2} & \text { if } \\
x \neq 1 & \text { and } y \neq 1
\end{array}\right.
$$

Then L1 (a), L2 (b), and L2 (a) are plainly satisfied, and so are L 3 (a), L 4^{*} (a), and L 4^{*} (b) are satisfied, as

$$
\begin{aligned}
& x \cup(y \cup z)= \begin{cases}x, & \text { if } x=y=z, \\
1, & \text { otherwise } ;\end{cases} \\
& (x \cup y) \cup z= \begin{cases}x, & \text { if } x=y=z, \\
1, & \text { otherwise },\end{cases}
\end{aligned}
$$

so that $x \cup(y \cup z)=(x \cup y) \cup z$.
In this model, $y \cup x=x$, if and only if (i) $x=y$, or (ii) $x=1$, and $y \neq 1$, and then (i) $x \cap x=x$ and (ii) $y \cap 1=y$. Also $y \cap x=x$, if and only if (i) $y=1$ and $x=1$, (ii) $y=1$ and $x \neq 1$ or (iii) $x \neq 1, y \neq 1$
and $x=y$, and then (i) $1 \cup 1=1$, (ii) $1 \cup x=1$, and (iii) $x \cup x=x=y$. Hence L 3 (a), L 4* (a), and L 4* (b) hold. But L 3 (b) is not satisfied, since if $x=2, y=4$, and $z=4$, we have $(x \cap y) \cap z=\frac{7}{2}$ and $x \cap(y \cap z)=3$.

Similarly, by duality we obtain a set, which satisfies L1 (a), L 2 (a), L 2 (b), L 3 (b), L 4^{*} (a), and L 4^{*} (b), but not L 3 (a).

Example 4. Let S be a set ef positive integers, and let

$$
\begin{aligned}
& x \cup y=\max (x, y) \\
& x \cap y=\text { g. c. d. }(x, y)
\end{aligned}
$$

Then, $y \cap x=x$, if and only if $y=n x$, where n is a positive integer, and since $y \cup x=\max (n x, x)=n x=y$, we get by putting $y=6$ and $x=10, y \cup x=x=10$, while $y \cap x=$ g.c.d. $(6,10)=2 \neq y$. Hence $14^{*}(b)$ is satisfied and L 4* (a) in not. This system obviously satisfies L 1 (a), L 2 (a), L 2 (b), L 3 (a), and L 3 (b).

By duality, we can construct a model, which satisfies the postulates of the system \sum, except $L 4^{*}(b)$, which is not satisfied.

These examples show that the postulates of \sum are independent.

