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23. Notes on Differentiation.

By Shin-ichi Izum1i and Gen-ichir6 SUNOUCHIL
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.IA,, March 12, 1943.)

Important theorems concerning differentiation are devided into two
classes. The first class consists of theorems of differentiability of
indefinite integrals and related theorems. The second is the class of
Denjoy’s theorem and its analogue. We will give a universal method
to prove theorems of the first class, and prove a convergence theorem
which contains theorems of the second class. Our method is to
use maximal theorem due to Hardy and Littlewood and convergence
theorem due to Kantorovitch. This idea is due to K. Yoshida® and
Kantorovitch?.

1. Theorems of Kantorovitch and Hardy-Littlewood.

Kantorovitch’s theorem reads as follows®.

(K) Let X and Y be regular wvector lattices and (U,) be a sequence
of operations from X to Y such that U,e H: (n=1,2,3,...) (by the
Kantorovitch’s notation). If

1°. U,(x) converges in a dense set D in X,

2°. for any x in X lim sup U,(®) and lim inf U,.(x) exists, then
U, (x) (0)-converges for all z in X.

lim sup and lim inf denote those concerning order topology. If
Y=S, then the order limit becomes almost everywhere convergence.

On the other hand maximal theorem reads as follows®.

(HL) We put y(s)=sup (ﬁ-‘ x(t)dt; sel ) Sor integrable func-

I
tion z(t). Then

1° Ifzel? (p>1), then ye L” and Slly(t) lvdt_gAflm(t) I» dt.
0 0

2. If weLy then yeL and [ [y dt<A[ |o0)|log’ |att)|

0 0

dt+B,
1

. If zeL, then yeL* (0<a<1) and (f|y(t)|ﬂ T @<

0

1
Al 12t at
]

where A and B are independent of function x(t), and L, denotes the
Zygmund, class.

The last is due to Privaloff, which is generalized as follows.

3°, If xeL, then yeLg, that s, there exists the integral

1) Yosida’s result was not yet published.

2) Kantorovitch, Comptes Rendus Acad. Sci. URSS., 14 (1937), 225 and 14 (1937),
244,

8) Hardy-Littlewood, Acta Math., 54 (1930), 81. See Zygmund, T'rigonometrical
Series, (1935), 150.
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j K(y(t))dt where K(u)=u/(1+logiu)* (e>0).
I

The class Lx was introduced by Kawata (Takahashi)®.
2. Functions of a real variable.
@2.1) If z=(t) e L, then the limit

.1
im — t)dt 1
1) atoa G}
exists and is equal to x(s) almost everywhere, where the limit is taken
such as sel and I—s.

This is the fundamental theorem of the Lebesgue integral. If we
know the existence of (1), then the remaining is easy. Now existence
of (1) follows from (K) and (HL), 38°. For, If we put

— T |
Ulx) = U; (x;9) ¥H Lx(t)dt,

where I=(s—h,s+k), h and k being constant, then U; is (¢, t)-con-
tinuous operation from L on S. By (HL), 8° sup Ui(x) << o almost
everywhere. Since class of all continuous functions are dense in S, we
get the theorem by (KX).

If we use (HL), 3 instead of (HL), 3°, then we get the theorem
due to Kantorovitch.

2.2) If x(t)e L, then the limit (1) exists majorated by function
n LK.

3. Functions of many variables.

(2.1) is not true for functions of many variables in general. But
we have

(8.1) If x(s,t) € Ly, that is x(s, t) is measurable and. the integral

111
[, 1a6. ) 0g* | (s, 0| st
oJo

exists, then the integral HIm(s, t)dsdt is strongly differentiable.

This was proved by Jessen, Marcinkiewicz and Zygmund®, Their
proof is very difficult, but we can give a simple proof by the method
of $2. We will put, as in §2,

1
Ulx;s, t) = — , 1 .
(x:s, 1) 7] Hlx(s )dsdt
By (L) it is sufficient to prove

lim sup Uf(x;s,t) << almost everywhere

as I—s.

We can suppose that «(¢) = 0 almost everywhere. By the Fubini’s
theorem there is a set E; with measure 1 such that for any fixed ¢ in
E, x(s, t) € L concerning s. For teE, we put

1) Takahashi, Sci. Rep. Tohoku Univ., 25 (1936), 56.
2) Jessen, Marcinkiewicz and Zygmund, Fund. Math,, 25 (1935), 217. See Saks,
Theory of the Integral, (1937), 147.
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Y(s t) = sup Tt S:_h .x(u’ tdu .

As may easily be seen (s, t) is measurable. If we apply (HL), 2° to
y(s, t) as function of s, then

S: y(s, t)ds < A s: (s, t) log* x(s, t)ds+B.
Integrating by ¢t we get
1 1 1 (1
j j uls, tydsdt < A S j (s, t) log* x(s, t)dsdt+ B . @)
0Jo 0Jo
If we put I=(s—hy, s+hy; t—k;, t+k;), then

k1+k2s,:,{ h,ih,zj _,,f”(s+% t"‘”)du}dv

ol
< s, t+v)dv almost everywhere.
ki+-k, -k;y(

Ulx;s, t)=

Thus we have
lim sup Up(x;s, t) < y(s,t) almost everywhere.

Since y(s, t) ¢ L by (2), we get the required result.
We can prove similarly
(8.2) If (s, t) is measurable and the integral

[ 1066, 01 (108* ats, &) )t

exists, then ” x(s, tydsdt is strongly differentiable magjorated by inte-
I

grable function.
3.3) If x(ty, &, .-, L) is measurable and the integral

[ [o 1t e, 0 108 1ttt e 60| ..

exisls, then the indefinite integral of x(ty, b, -, tm) is strongly differen-
tiable.

4. Extension of (HL) for functions of many variables.

Let x(s,t) be a function in L and put

y(s, t) = sup ( ¥ SS! x(u, v)dudv; (s, t) e I)

then y(s, t) does not belong to any L0 <<a<<1). For, if not so, we
can prove by the method in §2 that the indefinite integral of functions
in L is strongly differentiable. But this is not ture in general®. There-
fore (HL), 3 does not ture for functions of two variables in general.

If we restrict to regular intervals, then (HL), 3° holds. More
generally we can prove

1) Saks, Fund. Math., 25 (1935), 235.
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(4.1) Let a(s,t) e L and put
y(s, t) =sup —— ¥ H x(u, v)dudv ,

where (s,t) eI and I varies on regular intervals. Then y(s,t) e Lg.
For, if we put E,= ((s, t);lyls, 8| >a), then by the Vitali’s
covering theorem

1 |E |<- jj | (s, t) | dsdt .
Now we have

L e osas g ], K, o)

Eop—1~Fy,

< 2F
<1 | E
= +k2_2 (L+log 2917 | Ege |

L 1
<1+(F-5 S j |ats, )| dsdt < <o .
Two variables analogy of (HL), 2° is not true in general. But
we have
(4.2) If x(s,t)e Lz, then
Nl gsat<A( [ log* dsdi+B
L)Lly(s.t)l = Ljolx(s,t)l og* | (s, t) | dsdt+B.

This is due to Wiener”. If we drop the regularity of I,.then
(4.3) If z(s,t)e Lz and we put

2(s, t) —lhk'f_‘)o kl-ll-kzs.j:i{i he h;+haL-rn

| a(u, v) | du}d'v ,
then we have
f j‘z(s f)dsdt < A j‘ j‘ | (s, ©) | log* | 2(s, £) | dsdt+B
0Jo ™" =""JoJo ? ’ )

5. Regular differentiability of indefinite integral.

By (4.1) we can prove that

(5.1) Indefinite integral of integrable functions of many variables
18 reqularly differentiable almost everywhere.

6. A convergence theorem.

(6.1) Let Un(x) be a sequence of linear transformations in H:
which transforms a regular vector lattice X onto another Y. If the
conditions :

i) Ux@) (0)-converges in a dense set D in X,

2°. if Un(®) is (0)-bounded, then there are (x,) in D and (i)
such that k> 2.7 o, D) | 2e—2k11]| (0)-converges and

1) Wiener, Duke Math. Journ., 5 (1939), 1.
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{ Un (’:2_11 Ak(x”k - x"k—-l) }

13 (0)-bounded for any (ny), are satisfied, then {U,(x)} is not (o) bounded
or (o0)-converges.

Proof. If the theorem is not true, then there is an % in X such
that {U,(x)} is (0)-bounded but does not (0)-converges. Then there is
a positive element 7 in Y defined by

y=1lim sup U,(%)—lim inf U,(%) .

On the other hand there is a sequence (x,) in D satisfying con-
ditions in 2°. If we put

S, m(®@) = 5up(Un(a), -+, Un(®@)) —inf(Un(a), ---, Un(®))
then
lim Sn, m(a_;) =y, lim Sn, m(wp) =0, lim 8, m(xv —xa) =0.

Let us take a sequence () of positive number such that g‘ike,s

K<< . There is a ¥ such that above limits exist uniformly relative
to y. Now there are m; and m; such that |8, m(%)—y | <ew, and then
there is a p, such that

| Sy, my () — Smomi(®) | < ey for p,q =11,
| Say (@) — 7 | <21y .

When (n;, m;, p;)) (i=1,2, ...,k—1) are determined, we can find =, m:
and p; such that p. > pe-1,

l snk. mk(zﬁk) '—g ! < 2eky ’
l sak.mk(xpi) I < &Y (i= 1’ 2’ coey k— 1) ’
‘ sui.mi(xpk) —Sni. ”i(x”k—l) l < Y (’f:"—" 1, 2, seey k— 1) .
By the condition 2°, there is an £=3] A4(a,, —%,_,) such that 37 2¢ | %, —
%a,_,| (0)-converges and U,(@) is (0)-bounded. Now
I snk. mk(x) —snk.mk(lloxpk) I
k-1 oo
< 121 (2:—2:) | Sny, "‘k(x”i) l“|:§+ l)i | Sny, mk(xp.-_xp';_l) |
k-1 0
S e+ taly < Ky.
=1 i=k+1
Thus we have
‘ Snk.mk(x)'—)-‘.'!—/ I é Ky+21k5k7 ’

which implies s, (%) is not (0)-bounded. This is a contradiction.
Thus we get the theorem.



