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Mathematical Institute, Oka Imperial University.

(Comrr by T. TK, .L., April 12, 1943.)

1. Let ((.r, , m)lr /,} be a family of measure spaces satis-
fying mr(gr)=l for each re/". In the first paper) we have shown
that there exists an independent infinite product measure space
(IJ*,D*, m*)=P(R)r(gr, r, nr) of these measure spaces. We have
proved the existence of the measure m*(B*) on the Borel field
without assuming any topology on the spaces r and without using
any notion of topology in the proof. In the present paper, however,
we shall discuss the case when each space y2r, and hence the infinite
product space .0", is a compact Hausdorff space. These assumptions
on the spaces . will make it possible to discuss the properties of the
independent product measure space in more detail. We shall see that
there usually exist two infinite independent product measure spaces
(*, *, m*) and (*0 **, m**) defined on the same product space
of which the latter is an extension of the former and which usually
do not coincide. We shall discuss the conditions under which the com-
pletions of these measure spaces coincide, and the results thus obtained
will find some applications to the theory of Haar measures on non-
separable locally compact topological groups. It is also to be noted
that the idea of defining the measure for every open, and hence for
every Borel, subset of the product space 9" has important consequences
in the theory of continuous stochastic processes and of Brownian
motions. We shall, however, not enter into these problems in this note,
and the discussions of details of the applications are left to another
occasion.

2. We begin with preliminary remarks. Let be a compact
Hausdorff space, and let Dz be the Borel field of subsets B of 9 which
is generated by the family z of all open subsets 0 of . A subset
B of which belongs to is called a Bord subset of . A countably

additive measure re(B) defined on (satisfying m(.) o) is regular
if there exists for any B eD and for any 0 an O e such that
B 0 and re(O) <: m(B)+.

Let us further denote by C(2) the Banach space of all bounded real-
valued continuous functions x(w) defined on 2 with
as its norm. C(2) is at the same time a real normed ring with respect
to the ordinary operation of product, and may also be considered as a
Banaeh lattice if we put

(1) z:>y if and only if z()y() for all we

In fact, C(2) is a so-called (M)-space with respect to this partial

1) S. Kakutani, Notes on Infinite Product Measure Spaces, I, Proc. 19 (1943), 148.



No. 4.] Notes on Infinite Product Measure Spaces, II. 185

ordering. Finally, a bounded linear functional f(z) defined on C(.O) is
positive if

(2) f(:r) 0 whenever ; 0.

Theorem 1. Let .O be a compact Hausdorff space. Then, for any
countably additive measure re(B) dened on the Bord field vith
m(.o)=l, the Radon-Stidtes integral

defines a positive boumted linear functional f() on the Banach lattice
C(.O), satisfying Ilfll=m(.o). Converdy, for any positive bounded linear
functional f() defined on C(.O}, there ezists a ountly additive measure
re(B) defined an the Borel field such that the relation (3) s tue
for any (o)eC(.o). Such a measure re(B) is uniquely determined if
,e require that re(B) is regular.

The proof of this theorem is omitted2.
3. Let now {(.Or, r, mr) It e F} be a family of measure spaces

in which each .or is a compact Hausdorff space, Dr is the Borel field
#T of all Borel subsets B of .or, and mr(Br) is a regular countably
additive measure defined on r satisfying mr(T)----1 for each re/.
The family D#r of all open subsets Or o .o is denoted by Dr. The
product space .o*---PrepS,r is then a compact Hausdorff space with
respect to the ordinary weak topology of the Cartesian product. A
defining neighborhood system of .O* is given by the family * of all
open subsets V* of 9" of the form"

(4) V*=O x 0 Pr-{ }9.
where Or e, i= 1, ..., n, and {7", --., r} is an arbitrary finite system
from r. Let us denote by * the Borel field of subsets of 9" generated.
by *, and by * the family of all open subsets O* of .O* belonging
to D*. It is then easy to see that * and hence D* consist only of
those subsets of 9" which are determined by a countable number of
coordinates), while the converse is not necessarily true.

Then, by the results obtained in the first paper, there exists a
countably additive measure m*(B*} defined on D* such that

(5) zz*(V*)=z,,(O,) ’(O)
if V* e* * is of the form (4).

Let us further denote by )**--#. the family of all open subsets
O**of 9", and by D**--$9#. the Borel field of all Borel subsets B**
of .O*, i.e. the Borel field generated by D**. If r is countable and

2) Cf. S. Kakutani, Concrete representation of abstract (M)-spaces, and the charac-
terization of the space of continuous functions, Annals of Math., 42 (1941).

3) A subset A* of * is ined by a countable number of coordinate if
there exists a countable set ro={r]n=l,2 } =<r such that *={rlrer} belongs
to A* whenever there exists an (ire r} belonging to A* such that
n=1,2,
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if each r is compact and metric then it is easy to see that we have
D*--3"* and hence *--9"*. But these equalities do not hold in
general; this is, for example the case if F is not countable and if
each r is a compact metric space containing at least two points.

teem . ezists a countably additive measure m**(B**)
dened on the Bord fidd **=u. which coineide with m*(B*)

Proof. Let us put

(6) **(O**)---SUpo. e.. o. _o**m*(O*)

for any open subset O** of .* and

(7) m**(A**)--info**v**. o** _A**m**(O**)

for any subset A** ot 9". It is then clear that **(O*)=m*(O*)if
O* belongs to )*, and that the definition (7) coincides with (6)
A**---O** is open. It is then not difficult to see that m**(A**) is a
Carathlory measure and that every open, and hence every Borel,
subset of 9" is m**-measurable. We omit the detail of the prooi).
This shows the. possibility ot extension. It is to be remarked that

extension is unique if we require that the measure m**(B**) is

4. In this section we shall give another proot to Theorem 2. Let
us consider each C() as a subring of the real normed ring C() by
identifying a function xr(r)eC(r) with
where wr(*) is the -c6ordinate of w*--(wr !" e/} *. Let further
R be the algebraic subring of C(*) generated by the system of sub-
gings {C(-W) lT" r}. R is the set of all functions y*(w*) C(*) of
the form

(8) y*(*)=,r_ q
..., ...,

r. We shall first see that R is dense in C(*). This follows easily
from the fact that or any two different points o, w *, there
exists a coordinate 7’ e r such that ()= r *() and hence a function

Let nw j.r(,r) be litve lundl lin thneinal t nrm 1
defined on C(2r) which corresponds to the measure mr(Br), r e r, by
Theorem 1. Let us further put

(9) f.(.) 1_ ._fr’ (z,)
if y*(*) is of the form (8). Then f*(y*) is a positive bounded linear
functional defined on R satisfying Ilf*ll=supw,<_llf*(y*)l=l. This
follows easily rom the fact that it is possible to define an independent
product measure space P(R)rer(.Qr, Dr, mr) on the finite product space
PrerolJr where r0= {r if 1, ..., nk k 1, ..., p}.

4) Cf. S. Kakutani, loc. cir. 2).
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Since R is dense in C(9"), the positive bounded linear functional
f*(y*) defined on R by (9) can be uniquely extended to a positive
bounded linear unctional f*(*) defined on C(9") satisfying
From this ollows, by applying the second part of Theorem 1, that
there exists a countably additive measure m.**(B**) defined on the
Borel field ** satisfying

(10) f*(z*) I.*(,o*)m**(dw*)
for any *(<o*)eC(9*). It is then easy to see that m**(V*) coincides
with (5) if V* e* D** is of the form (4), and hence that m**(B**)
coincides with m*(B*) on D*. This completes the proof of Theorem 2.

5. A measure space (9, , m) is completed if B e, re(B)=0 and
B’B imply B’ e D and m(B’)=O. It is easy to see that for any
measure space (9, D,.m), there exists a smallest completed measure
space (9, D, ) which is an extension of (9, D, m). In fact, - consists
of all subsets / of 9 such that there exists two subsets B and N of
9 such that BeD, NeD, m(N)=O and .B-fBN. This
measure space is called the completion of (9, , m).

It is easy to see that the product measure spaces (9*, D*,m*) and
(9*, D**, m**) are not necessarily completed. Let us consider their
completions (9", -, m*) and (9*, D**, **). Then

Theorem 3. If each r is a compact metric space and if mT(Or) 0
for any non-empty open subset 0 of 9r, 7" e [’, then the two measure

sides (9", *, m*) and (*, **, m**) coincide. (We do not assume
tha I" is countable).

Proof. It suffices to show that every open subset O**of 9* be-
longs to D*-. Because of the relation (6), there exists a sequence
{0* In= 1, 2, ...} such that 0* e D*, O* 0"* and m*(O*) ::> m**(O**)
> l/n, n= 1, 2, Then the open set O* U -10* clearly satisfies
0* e *, 0* O** and m*(O**-O*)=O. Hence it suffices to show
that there exists a Borel set B* e D* such that O**-O* B* and
m*(B*)=O.

Let ={rln=1, 2, ...} /" be a countable number of coordinates
which determine the set 0". By means of this system / we may
decompose 9* into two factors"

(11) 9*=.*")x.*(), where -*(1)=Prr0, Y*()=Prr_r09

and each * e g* may be expressed i the form- o*
*") e 9*D, *) e 9*). Let us put Proj o* *) for any o* e 9*,
and Proj A* {Proj o* (o* e A*} for any subset A* of .0". Further,
let us denote by m*(D(B*(I)) the independent product measure defined
on the Borel field B*D=D.(;) of all Borel subsets B*") of
Since the space 9*D is clearly compact metric, and hence separable,
we have no need to distinguish the Borel field D**() and the measure
m**(1)(B**(1)) from *D and m*cl(B*D) respectively. It is also clear
that

(12) O*=Proj 0* x 9*s.
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For each *O**-O* take a neighborhood IJ*(*)* of w* such
that r.(.) O**. Since tr*(w*) 9", the definition of O* implies that

m*(F’*(w*)uO’)=m*(O*) or equivalently m’(V*(w*)- r*(w*)O*)
=0. If we observe that every r*(*) is of the form (4), then, by
decomposing the finite set {r---, r} into two parts- {a, ...,
and {/, ...,/q} F- F0 we see that

(13) V*(o*) (O, x x O x Pro-{,

x (0, x x 0 x Pr-ro-{,

Proj V*(o*) x Os’ x x Os x Pr-ro-{,

Consequently, V*(o*)-V* (*) O* (Proj V* (o*)- Proj V*(*)

Proj 0") x 0 x x OS x Psr-ro-{, }.Q, and since m(O)> 0,

i=1, ..., q, we finally see that m*(’(Proj V*(o*)- Proj V*(o*)
Proj O*) =0.

On the other hand, the obvious relation 0"* O* U,,,o**-o. V*(,o*)
implies Proj (O** -O*) U,.o**-o. Proj V*(*). Since the space
is compact metric and hence separable, and since each Proj V*(*) is
open there exists a countable set { k 1, 2,...}

_
O** O* such that

V*lto*Proj (O** O*) . L] -1Proj k, and consequently Proj (O* -O*)
U 0-1 (Proj V*(o,)-Proj V*(oT) cProj O*). Thus, by putting B*

U -x (Proj V* (,)-Proj V* (wT,)r Proj 0") x 9*‘2’ we have B* e

O**-O* B* and m*(B*)=0 as we wanted to prove. This completes
the proof of Theorem 3.

6. As an illustration, consider the infinite direct product group
G* =PTerGr, where each G is a group topologically isomorphic with
the group of real numbers rood. 1. G is then a oompact abelian group
which is not metric separable if the set of indices is not countable.
The result obtained above shows that it is possible to define two kinds
of Haar measure spaces (G*, D*, m*) and (G*, $9**, m**), of which the
latter is a proper extension of the former, while these both lmve the
same completion. This follows easily from the fact that we may con-
sider the Haar measure of G* as an infinite direct product measure of
the Haar (=Lebesgue) measures on Gr, r e F. An interesting example is
given by the case when F has exactly the power of continuum. In
this ease G* is not separable in the sense of Hausdorff, but there exists
a countable subset which is dense in G*. In fact, we can even show
that there exists an element of the group G* such that the set
{’i n=1,2, ...} is everywhere dense in G*. This group is, indeed,
the only essential example of a non-separable compact abelian group
with the said property.


