70. On the Theory of Hypersurfaces in the Path-space of the Third Order.

By Yasuro Tomonaga.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.i.A., July, 12, 1943.)
§0. The theory of path-space of the third order has been developed by Prof. H. Hombu ${ }^{1)}$. In the present note, we shall deal with the theory of hypersurfaces in such a space. In an n-dimensional manifold V_{n} referred to a coordinate system $x^{\lambda}(\lambda=1,2, \ldots, n)$, let us consider a system of paths, defined by the differential equations of the third order,

$$
\begin{equation*}
T^{\lambda}=x^{(3) \lambda}+H^{\lambda}\left(x, x^{(1)}, x^{(2)}\right)=0 . \tag{0.1}
\end{equation*}
$$

In order that our system of paths admits of projective parameters, it is necessary that
(a) $H_{(1)}^{\lambda} x^{(1) \nu}+2 H_{(2)}^{\lambda} x^{(2) \nu}=3 H^{\lambda}$,
(b) $H_{(2)}^{\lambda}, x^{(1) \nu}=-3 x^{(2) \lambda}$.

The base connections of our V_{n} are defined by
(a) $\delta x^{(1) \lambda}=d x^{(1) \lambda}+\frac{1}{3} H_{(2) \nu}^{(\lambda)} d x^{\nu}$,
(b) $\delta x^{(2) \lambda}=d x^{(2) \lambda}+\frac{2}{3} H_{(2) \nu}^{(\lambda)} d x^{(1) \nu}+\frac{1}{3} H_{(1) \nu}^{\lambda} d x^{\nu}$.

We see that $\frac{\delta x^{(1) \lambda}}{d t}=0$ (along any curve) and $\frac{\delta x^{(2) \lambda}}{d t}=0$ (along paths).

The covariant derivative of a vector v^{λ} in V_{n} is given by

$$
\begin{equation*}
\dot{\partial} v^{2}=d v^{2}+w_{\mu}^{2} v^{\mu}, \tag{0.4}
\end{equation*}
$$

(a) ${\underset{(0)}{\Gamma_{\mu \nu}^{\lambda}}=\frac{1}{3} H_{(2) \mu(1) \nu}^{\lambda}-\frac{2}{9} H_{(2) \mu(2) \sigma}^{\lambda} H_{(2) \nu}^{\sigma},}^{\sigma}$
(b) $\underset{(1)^{\prime}}{\stackrel{*}{\mu_{\nu}}}=\frac{2}{3} H_{(2) \mu(2) \nu}^{\lambda}$.

The equation (0.4) can be also written as follows:

$$
\delta v^{\lambda}=\Gamma_{\nu}^{(0)} v^{\lambda} \cdot d x^{\nu}+\nabla_{\nu}^{(1)} v^{\lambda} \cdot \delta x^{(1) \nu}+\nabla_{\nu}^{(2)} v^{\lambda} \cdot \delta x^{(2) \nu},
$$

where

$$
\begin{equation*}
\nabla_{\nu}^{(0)} v^{\lambda}=\bar{\Gamma}_{\nu}^{(0)} v^{\lambda}+\stackrel{\Gamma_{(0)}^{\lambda}}{*} v^{\mu}, \quad \nabla_{\nu}^{(1)} v^{\lambda}=\bar{\Gamma}_{\nu}^{(1)} v^{\lambda}+{\underset{(1)}{\mu}}_{*}^{*} v^{\mu}, \quad \nabla_{\nu}^{(2)} v^{\lambda}=\bar{\nabla}_{\nu}^{(2)} v^{\lambda}, \tag{0.6}
\end{equation*}
$$

1) H. Hombu: Projektive Transformation eines Systems der gewöhnlichen Differentialgleichungen dritter Ordnung. Proc. 13 (1937), 187-190, Die projektive Theorie der "paths" 3-ter Ordnung. Proc. 14 (1938), 36-40.
(a) $\left.\bar{\nabla}_{\nu}^{(0)}=\frac{\partial}{\partial x^{\nu}}-\frac{1}{3} H_{(2) \nu}^{\mu} \frac{0}{\partial x^{(1) \mu}}-\left(\frac{1}{3} H_{(1) \nu}^{\mu}-\frac{2}{9} H_{(2),}^{\mu} H_{(2) \nu}^{(}\right)\right) \frac{\partial}{\partial x^{(2) \mu}}$,
(b) $\quad \bar{\nu}_{\nu}^{(1)}=\frac{\partial}{\partial x^{(1) \nu}}-\frac{2}{3} H_{(2) \nu}^{\mu} \frac{\partial}{\partial x^{(2) \mu}}$,
(c) $\overline{\bar{\Gamma}}_{\nu}^{(2)}=\frac{\partial}{\partial x^{(2) \nu}}$.

Then, the curvature and torsion tensors of our $V_{\boldsymbol{n}}$ are given by

$$
\begin{aligned}
& +R_{\mu \sigma \pi}^{\lambda(0)(1)}\left[d_{1}^{\sigma} \delta x_{2}^{(1) \pi}\right]+R_{\mu \sigma \pi}^{\lambda(0) 2}\left[d x_{2}^{\sigma} \delta x^{(2) \pi}\right]
\end{aligned}
$$

where

(e) $R_{\mu \sigma \pi}^{\lambda(\alpha)(2)}=\bar{\Gamma}_{\pi}^{(2)} \stackrel{*}{\left.i_{1}\right)_{\sigma}^{\prime}}$,
and

(b) ${ }_{21}^{\delta \delta x^{(1) \lambda}}-{ }_{12}^{\delta \delta x^{(1) \lambda}}=S_{\mu \sigma(1)}^{(0)(0) \lambda}{ }_{1}^{\left(x^{\mu}\right.} d x^{\sigma}+S_{\mu(1)}^{(0)(2)}\left[d x_{1}^{\mu} x_{2}^{(2) \sigma}\right]$

$$
+S_{\mu_{\sigma}(1)}^{(1)(1)}\left[d x_{2}^{\mu} \delta x^{(1) \rho}\right],
$$

$+S_{\mu(2)}^{(0)(2)}\left[d_{1} x_{2}^{\mu} \delta x^{(1) \rho}\right]$,
where
(0.11)
(a) $S_{\mu_{0}(0)}^{(0)(0) \lambda}=\stackrel{*}{\Gamma_{(0)}} \stackrel{*}{\mu \sigma}-\stackrel{*}{(0)}{ }_{(0)}{ }^{\wedge}$,
(b) $S_{\mu \sigma(0)}^{(0)(1) \lambda}=\stackrel{*}{\Gamma_{(1)} \lambda} \lambda$,
(c) $S_{\mu(1))}^{(0)(0) \lambda}=\frac{1}{3} \bar{\nabla}_{\dot{\sigma}}^{(0)} H_{(2) \mu}^{\lambda}-\frac{1}{3} \bar{\nabla}_{\mu}^{(0)} H_{(2),}^{\lambda}$,

(e) $S_{\mu(2)}^{(0)(0) \lambda}=\frac{1}{3} \bar{\Gamma}_{\sigma}^{(0)} H_{(1) \mu}^{\lambda}-\frac{2}{9} H_{(2) \sigma}^{\pi} \bar{\nabla}_{\mu}^{(0)} H_{(2) \pi}^{\lambda}-\frac{1}{3} \bar{F}_{\mu}^{(0)} H_{(1) \sigma}^{\lambda}$

$$
+\frac{2}{9} H_{(2), \mu}^{\pi} \bar{r}_{4}^{(2)} H_{(2) \pi}^{\lambda},
$$

(f) $S_{\mu \sigma(2)}^{(1)(1) \lambda}=S_{\mu(0)}^{(0)(0) \lambda}$,
(g) $S_{\left.\mu_{\sigma}(2)\right)}^{(0)(1) \lambda}=\frac{1}{3} \bar{\nabla}_{\sigma}^{(1)} H_{(1) \mu}^{\lambda}-\frac{2}{3} \bar{\nabla}_{\mu}^{(0)} H_{(2) \sigma}^{\lambda}-\frac{2}{9} H_{(2) \mu}^{\tau} \overline{\bar{F}}_{\sigma}^{(1)} H_{(2) \tau}^{\lambda}$,
(h) $S_{\mu(1)}^{(0)(1) i}=S_{\mu(0)}^{(00 X(0) \lambda}$.
§1. Let us consider a hypersurface V_{n-1} immersed in the V_{n} whose parametric representation is

$$
x^{\lambda}=x^{\lambda}\left(y^{\mathbf{i}}, y^{\dot{2}}, \ldots, y^{\dot{n}-\mathbf{i}}\right)
$$

In our V_{n-1}, we take a system of paths with projective parameter defined by

$$
T^{i}=y^{(3) i}+H^{i}\left(y, y^{(1)}, y^{(2)}\right)=0, \quad(i=\dot{1}, \dot{2}, \ldots, \dot{n}-\dot{1})
$$

The quantities of V_{n-1} corresponding to that of V_{n} are derived from H^{i} in the same way as last paragraph. If we put

$$
\begin{equation*}
\Im^{\lambda}=H^{\lambda}-\xi_{i}^{\lambda} H^{i}+3 \xi_{j k}^{\lambda} y^{(2) j} y^{(1) k}+\xi_{j k h}^{\lambda} y^{(1) j} y^{(1) k} y^{(1) k} \tag{1.1}
\end{equation*}
$$

where

$$
\xi_{i}^{\lambda}=\frac{\partial x^{\lambda}}{\partial y^{i}}, \quad \xi_{j k}^{\lambda}=\frac{\partial^{2} x^{\lambda}}{\partial y^{j} \partial y^{k}}, \quad \xi_{j k h}^{\lambda}=\frac{\partial^{3} x^{\lambda}}{\partial y^{j} \partial y^{k} \partial x^{h}},
$$

then \mathfrak{S}^{λ} is a vector of V_{n} and scalar of V_{n-1}.
According to the assumption on H^{λ} and H^{i}, \Im^{λ} must satisfy the following relations:
(a) $\mathfrak{F}_{(1) s}^{\lambda} y^{(1) s}+2 \mathfrak{Y}_{(2) s}^{\lambda} y^{(2) s}=3 \mathfrak{S}^{\lambda}$,
(b) $\Im_{(2) s}^{\lambda} y^{(1) s}=0$.

We have from (1.1)
(1.3) (a) $\Im_{(1) s}^{\lambda}=H_{(1) \nu}^{\lambda} \xi_{s}^{\nu}+2 H_{(2) \nu}^{\lambda}, \xi_{i s}^{\nu} y^{(1) i}-\xi_{i}^{2} H_{(1) s}^{i}+3 \xi_{i s}^{\lambda} y^{(2) i}+\xi_{s i k}^{\lambda} y^{(1) j} y^{(1) k}$,
(b) $\mathfrak{Y}_{(2) s}^{\lambda}=H_{(2)}^{\lambda}, \xi_{s}^{\nu}-\xi_{i}^{\lambda} H_{(2) s}^{i}+3 \xi_{i s}^{\lambda} y^{(1) i}$.

Now we get
(a) $\bar{V}_{l}^{(0)} \Phi=\xi_{l}^{\lambda} \overline{\bar{L}}_{\lambda}^{(1)} \varphi+\frac{1}{3} \Im_{(2) l}^{\lambda} \overline{\bar{V}}_{\lambda}^{(1)} \Phi+\frac{1}{3}\left(\bar{V}_{l}^{(1)} \mathcal{J}^{\lambda}\right) \bar{\Gamma}_{\lambda}^{(2)} \Phi$,
(b) $\overline{\tilde{r}}_{l}^{(1)} \Phi=\xi_{l}^{\lambda} \overline{\bar{D}}_{\lambda}^{(1)} \varphi+\frac{2}{3} \Im_{(2) l}^{\lambda} \bar{J}_{\lambda}^{(2)} \Phi$,
(c) $\overline{\bar{D}}_{l}^{(2)} \Phi=\xi_{l}^{1} \bar{D}_{\lambda}^{(2)} \Phi$,
(\$) being an arbitrary quantity of V_{μ}.
On our hypersurface $V_{n-1}, x^{(1) \lambda}$ and $x^{(2) \lambda}$ being expressed as $x^{(1) \lambda}=$ $\xi_{i}^{\lambda} y^{(1) i}, x^{(2) \lambda}=\xi_{i}^{\hat{i}} y^{(2) i}+\xi_{i j}^{\lambda} y^{(1) i} y^{(1))}$, it can be readily proved that
(a) $\delta x^{(1) \lambda}=\xi_{i}^{\lambda} \delta y^{(1) i}+\frac{1}{3} \Im_{(2) i}^{\lambda} d y^{i}$,
(b) $\delta x^{(2) \lambda}=\xi_{i}^{\lambda} \delta y^{(2) i}+\frac{2}{3} \Im_{(2)}^{\lambda} \delta y^{(1) i}+\frac{1}{3}\left(\bar{V}_{j}^{(1)} \mathfrak{Y}^{\lambda}\right) d y^{i}$.

Then we have from (1.5)

$$
\begin{equation*}
\delta \xi_{i}^{\lambda}=F_{j_{k}}^{\lambda} d y^{k}+\frac{2}{3} \Im_{(2) j(2) k}^{\lambda} \delta y^{(1) k}, \tag{1.6}
\end{equation*}
$$

where

Furthermore we get from (1.3) and (1.4)

$$
\begin{equation*}
F_{j k}^{\lambda}=\frac{1}{3} \bar{\nabla}_{k}^{(1)} \Im_{(2) j}^{\lambda} \tag{1.9}
\end{equation*}
$$

If we have a vector v^{λ} tangent to the hypersurface V_{n-1}, then v^{λ} being expressed as $v^{\lambda}=\xi_{i}^{\lambda} v^{i}$, we have along V_{n-1}

$$
\begin{equation*}
\delta v^{\lambda}=\xi_{i}^{\lambda} \delta v^{i}+v^{j}\left(F_{j k}^{\lambda} d y^{k}+\frac{2}{3} \mathfrak{S}_{(2) j(2) k}^{\lambda} \delta y^{(1) k}\right) \tag{1.10}
\end{equation*}
$$

Definition 1. If we have $\mathfrak{J}^{2}=0$ at every point of V_{n-1}, such a V_{n-1} is called totally geodesic V_{n-1}.

Then it is evident from (1.1), that any path of a totally geodesic V_{n-1} immersed in V_{n} is also a path of V_{n}.

Definition 2. If we have $\mathfrak{J}_{(2) k}^{\lambda}=0$ at every point on V_{n-1}, such a V_{n-1} is called semi-geodesic V_{n-1}.

From (1.9) and (1.2), it can be proved that semi-geodesic V_{n-1} has following properties:
(a) $\delta \xi_{j}^{\lambda}=0$,
(b) With respect to $x_{3}^{(1)}, \mathfrak{J}^{\lambda}$ are homogenous of degree 3.

That is to say: When a vector of semi-geodesic V_{n-1} is displaced parallelly to itself in V_{n} along V_{n-1}, it moves also parallelly to itself in V_{n-1}.

We have from (1.7) and (1.8) the next fundamental relations,

$$
\begin{equation*}
\xi_{j}^{\mu} w_{\mu}^{\lambda}=\xi_{i}^{\lambda} w_{j}^{i}-\xi_{j k}^{\lambda} d y^{k}+F_{j_{k}}^{\lambda} d y^{k}+\frac{2}{3} \Im_{(2) j(2) k}^{\lambda} \delta y^{(1) k} . \tag{1.11}
\end{equation*}
$$

§ 2. With use of (1.6) and (1.10), we obtain the integrability conditions of (1.11) as follows:

$$
\begin{align*}
& \text { (a) } \stackrel{*}{R_{\mu \circ \pi}^{\lambda(0) 0} \xi_{j}^{\mu} \xi_{k}^{a} \xi_{h}^{\pi}}+\frac{1}{9} R_{\mu \sigma \pi}^{\lambda(1)(1)} \mathcal{J}_{(2) k}^{(2)} \mathcal{F}_{(2) h}^{\pi} \xi_{j}^{\mu} \tag{2.1}\\
& +\frac{1}{3} R_{\mu \sigma \pi}^{\lambda(0)(1) \xi_{j}^{\mu}\left(\xi_{k}^{\sigma} \mathfrak{S}_{(2) h}^{\pi}-\xi_{h}^{\sigma} \mathfrak{Y}_{(2) k}^{\pi}\right)} \\
& +\frac{1}{3} R_{\mu \sigma \pi}^{\lambda(0)(2) \xi_{j}^{\mu}\left(\xi_{k}^{a} \bar{V}_{h}^{(1)} \mathcal{S}^{\pi}-\xi_{h}^{\sigma} \bar{\sigma}_{k}^{(1)} \mathfrak{Y}^{\pi}\right)} \\
& +\frac{1}{9} R_{\mu \sigma \pi}^{\chi(1) 2)} \xi_{j}^{\mu}\left(\Im_{(2) k}^{\sigma} \bar{F}_{h}^{(1)} \mathcal{J}^{\pi}-\Im_{(2) h}^{\sigma} \overline{\bar{F}}_{k}^{(1)} \mathfrak{J}^{n}\right)
\end{align*}
$$

No. 7.] On the Theory of Hypersurfaces in the Path-space of the Third Order.

$$
\begin{aligned}
& =\xi_{i}^{\lambda} R_{j k h}^{i(0)(0)}+\nabla_{h}^{(0)} F_{j k c}^{\lambda}-\nabla_{k}^{(0)} F_{j h}^{\lambda}+F_{j a}^{\lambda} S_{k k k}^{(0)(0) a} \\
& +\frac{2}{3} \mathcal{J}_{(2) \dot{(2) a}}^{\lambda} S_{k h(1)}^{(0)(0) a}
\end{aligned}
$$

(b) $R_{\mu \sigma \pi}^{\alpha(1)(1) \xi_{j} \xi_{j} \xi_{h}^{\pi}}+\frac{2}{3} R_{\mu \sigma \pi}^{\alpha(1)(2) \xi_{j}^{\mu}\left(\xi_{k} \mathcal{V}_{(2) h}^{\pi}-\xi_{h}^{\sigma} \mathcal{Y}_{(2) k}^{\pi}\right)}$

$$
=\xi_{i}^{\lambda} R_{j k h}^{i(1)(1)}+\frac{2}{3}\left(\nabla_{h}^{(1)} \mathfrak{J}_{(2) j(2) k}^{\lambda}-\nabla_{k}^{(1)} \mathfrak{J}_{(2) j(2) h}^{\lambda}\right)
$$

(c) $R_{\mu \sigma \pi}^{\mu(1)(1) \xi_{j}^{\mu} \xi_{k}^{\sigma} \xi_{h}^{\pi}}+\frac{1}{3} R_{\mu \sigma \pi}^{\lambda(1)(1) \xi_{j}^{\mu} \mathfrak{Y}_{(2) k}^{\sigma} \xi_{h}^{\pi}+\frac{2}{3} R_{\mu \sigma \pi}^{\lambda(0)(2)} \xi_{j}^{\mu} \xi_{k}^{\sigma} \mathfrak{V}_{(2) h}^{\pi}}$

$$
\begin{aligned}
& -\frac{1}{3} R_{\mu \sigma \pi}^{\lambda(1)(2) \xi_{j}^{\mu} \xi_{h}^{\sigma} \bar{F}_{k}^{(1)} \mathfrak{J}^{\pi}+\frac{2}{9} R_{\mu \sigma \pi}^{\lambda(1)(2)} \xi_{j}^{\mu} \mathfrak{Y}_{(2) k}^{\sigma} \mathcal{Y}_{(2) \pi}^{\pi}} \\
& =\dot{\zeta}_{i}^{\lambda} R_{j k h}^{j 0 \kappa(1)}+\nabla_{k}^{(1)} F_{j h}^{\lambda}-\frac{2}{3} \nabla_{k}^{(0)} \mathfrak{J}_{(2) \dot{j}(2) h}^{\lambda}+F_{j a}^{\lambda} S_{k h(0)}^{(0)(1) a} \\
& +\frac{2}{3} \Im_{(2) j(2) a}^{\lambda} S_{k h(1)}^{(0)(1) a},
\end{aligned}
$$

(d) $R_{\mu \sigma \pi}^{(10)(2) \xi_{j}^{\mu} \xi_{k} \xi_{h}^{\pi}}+\frac{1}{3} R_{\mu \sigma \pi}^{\lambda(1)(2) \xi_{i}^{\mu} \Psi_{(2) k}^{\sigma} \xi_{h}^{\pi}}$

$$
=\xi_{i}^{\lambda} R_{j k h}^{i(0)(2)}+\nabla_{h}^{(2)} F_{j k}^{\lambda}+\frac{2}{3} \Im_{(2) j(2) a}^{\lambda} S_{k h(1)}^{(0)(2) a},
$$

where

The integrability conditions of (1.5) are
(a) $S_{\mu \sigma(0)}^{(0)(0) \lambda} \xi_{j}^{\mu} \xi_{k}^{\sigma}+\frac{1}{3}\left(\xi_{j}^{\mu} \mathcal{Y}_{(2) k}^{\sigma}-\xi_{k}^{\mu} \mathcal{Y}_{(2) j}^{\sigma}\right) S_{\mu \sigma(0)}^{(0)(1) \lambda}=\xi_{i}^{2} S_{j k(0)}^{(0)}(0) i+F_{j k}^{\lambda}-F_{k j}^{\nu}$,
(b) $S_{\mu \sigma(0)}^{(0)(1)} \xi_{j}^{\mu} \xi_{k}^{G}=\xi_{i}^{\lambda} S_{j k(0)}^{(0)(1) i}+\frac{2}{3} \mathfrak{J}_{(2) \dot{x}(2) k}^{\lambda}$,
(c) $S_{\mu \sigma(1)}^{(0)(1) \lambda \xi_{j}^{\mu} \xi_{k}^{\sigma}}+\frac{1}{3} S_{\mu \sigma(1)}^{(0)(1)} \xi_{j}^{\mu} \Im_{(2) k}^{\sigma}-\frac{1}{3} S_{\mu \sigma(1)}^{(0)(1) \lambda} \xi_{k}^{\mu} \mathfrak{Z}_{(2) j}^{\sigma}$

$$
\begin{aligned}
& -1 S_{j \sigma(1)}^{(0)(2)} \xi_{k}^{\mu} \overline{\bar{j}}_{j}^{(1)} \mathfrak{J}^{\sigma}+\frac{1}{3} S_{\mu \sigma(1)}^{(0)(2) \lambda \xi_{j}^{\mu} \bar{\nabla}_{k}^{(1)} \mathfrak{J}^{\sigma}} \\
& =\xi_{i}^{\lambda} S_{j k(1)}^{(0)(0) i}+\frac{1}{3} \mathfrak{J}^{\lambda}(2) i S_{j k(0)}^{(0)(0) i}+\frac{1}{3} \nabla_{k}^{(0)} \mathfrak{J}_{(2) j}^{\lambda}-\frac{1}{3} \nabla_{j}^{(0)} \mathfrak{J}_{(2) k}^{\lambda},
\end{aligned}
$$

(d) $S_{\mu \sigma(2)}^{(0 \times 0)} \xi_{j}^{\mu \xi_{k}^{\sigma}}+\frac{1}{3} S_{\mu \sigma(2)}^{(0)(1) \lambda} \xi_{j}^{\mu} \mathfrak{Y}_{(2) k}^{\sigma}-\frac{1}{3} S_{\mu(2)}^{(0)(1) \lambda} \xi_{k}^{\mu} \mathfrak{Z}_{(2) j}^{\sigma}$

$$
+\frac{1}{9} S_{\mu \sigma(2)}^{(1)(1) \lambda} \mathfrak{J}_{(2) j}^{\mu} \Im_{(2) k}^{\sigma}=\xi_{i}^{\lambda} S_{j k(2)}^{(0)(0) i}+\frac{2}{3} \mathfrak{J}_{(2) i}^{\lambda} S_{j k(1)}^{(0)(0) i}
$$

$$
+\frac{1}{3}\left(\bar{\Gamma}_{i}^{(1)} \mathcal{U}^{i}\right) S_{j k(0)}^{(0)(0) i}+\frac{1}{3} \nabla_{k}^{(0)} \overline{\bar{V}}_{j}^{(1)} \mathcal{J}^{2}-\frac{1}{3} \nabla_{j}^{(0)} \overline{\bar{V}}_{k}^{(0)} \dot{\mathscr{J}}^{\lambda},
$$

(e) $S_{\mu \sigma(2)}^{(0)(1) \lambda} \xi_{j}^{\mu} \xi_{k}^{\sigma}+\frac{1}{3} S_{\mu(2)}^{(1)(1), ~} \mathfrak{Y}_{(2) j}^{\mu} \xi_{k}^{\sigma}-\frac{1}{3} S_{\mu \sigma(2)}^{(1)(1) \lambda} \mathfrak{J}_{(2) k}^{\mu} \xi_{j}^{\sigma}$

$+\frac{1}{3} \nabla_{k}^{(1)} \bar{F}_{j}^{(1)} \mathfrak{Y}^{\lambda}+\frac{1}{3}\left(\bar{F}_{i}^{(1)} \mathfrak{Y}^{\lambda}\right) S_{j k(0)}^{(0)(1) i}$.
§3. The equations of (2.2) or (2.1) correspond to the equations of Gauss and Codazzi in Riemannian geometry. Let us consider the geometric meaning of them. At first, we must go back to $\S 0$ and consider the classification of spaces.

Definition 3. If $\stackrel{*}{\boldsymbol{R}_{\mu \sigma \pi}^{\chi(\alpha)}(\theta)}=0$, at every point of V_{n}, such $a V_{n}$ is called 0-flat.

Definition 4. If $R_{\mu \sigma \pi}^{\lambda(1)(1)}=0$, at every point of V_{n}, such $a V_{n}$ is called 1-flat.

Then, we have from (0.8) the following theorems:
Theorem 1. In order that $\underset{21}{\delta \partial} v^{\lambda}-\delta \partial v^{\lambda}=0$ for an arbitrary v^{λ} and vanishing $\delta x^{(1) \lambda}, \delta x^{(2) \lambda}$, it is necessary and sufficient that V_{n} is 0 -flat.

Definition 5. If $S_{\mu(0)}^{(0)(0) \lambda}=0$, at every point of V_{n}, such $a V_{n}$ is called 0 -symmetric.

Definition 6. If $S_{\mu(1)}^{(0)(0) \lambda}=0$, at every point of V_{n}, such $a V_{n}$ is called 1-symmetric.

Definition 7. If $S_{\mu(2)}^{(0)(0) \lambda}=0$, at every point of V_{n}, such $a V_{n}$ is called 2-symmetric.

Then we have from (0.10) the following theorems:
Theorem 3. In order that $\delta d x^{\lambda}-\delta d x^{\lambda}=0$, for vanishing $\delta x^{(1) \lambda}$, it is necessary and sufficient that V_{n} is 0 -symmetric.
 it is necessary and sufficient that V_{n} is 1 -symmetric.
 is necessary and sufficient that V_{n} is ${ }_{2}{ }^{12}$-symmetric.

Remark. If V_{n} is 0 -flat, it is also 1 -symmetric. If V_{n} is 0 symmetric, it is also 1 -flat, because we have after some calculation

By means of these theorems and (2.1) or (2.2), we have the following results.

Theorem 6. (i) The totally geodesic V_{n-1} immersed in the 0-flat V_{u} is also 0-flat.
(ii) The totally geodesic V_{n-1} immersed in the 1-symmetric V_{n} is also 1-symmetric.

No. 7.] On the Theory of Hypersurfaces in the Path-space of the Third Order.
(iii) The totally geodesic V_{n-1} immersed in the 2-symmetric V_{n} is also 2-symmetric.
(iv) The semi-geodesic V_{n-1} immersed in the 1-flat V_{n} is also 1-flat.
(v) The semi-geodesic V_{n-1} immersed in the 0 -symmetric V_{n} is also 0 -symmetric.

In conclusion I wish to express my cordial thanks to Prof. K. Yano for his kind guidance and many benefical suggestions.

