94. Normed Rings and Spectral Theorems, II.

By Kôsaku Yosida.
Mathematical Institute, Nagoya Imperial University.

(Comm. by T. Takagi, m.I.A., Oct. 12, 1943.)
§ 1. Introduction. The purpose of this note is to give an algebraic treatment and version of Fredholm-Riesz-Schauder's theory ${ }^{1)}$ of completely continuous (c.c.) functional equations with the aide of the theory of normed ring ${ }^{2}$. Our method seems to be suited to obtain the results concerning conjugate equations. We also give a proof to S. Nikolski's extension ${ }^{3}$, which is of importance in view of applications, of F-R-S's theory. Lastly we extend the existence theorem of proper values $\neq 0$ for c.c. hermitian operator $\neq 0$ as a corollary of our arguments.
§ 2. Preliminaries and lemmas. Let V be a linear operator from a complex Banach space E into $E . \quad V$ is called c.c. if it transforms any bounded set into a compact set. Let \boldsymbol{R} be the commutative ring generated by the c.c. V and the identity operator I, completed by the uniform limit defined by the norm $\|T\|=\sup _{|x| \leq 1}\|T \cdot x\| \cdot R$ is a normed ring with unit I and the norm $\|T\|$, such that any element $T \in \boldsymbol{R}$ may be represented as $T=\lambda I-U, U$ being c.c. Let E^{*} denote the conjugate space ($=$ the space of all the linear functionals f on E with the norm $\left.\|f\|=\sup _{|x| \leq 1}|f(x)|\right)$, then the operator T^{*} conjugate to T is defined by $T^{*} \cdot f=g, f(T \cdot x)=g(x), f \in E^{*}$.

Lemma 1. Since ${ }^{4}\|T\|=\left\|T^{*}\right\|$, the set R^{*} of all the operators T^{*}, $\boldsymbol{T} \in \boldsymbol{R}$, is also a normed ring linear-isomorphic and linear-isometric with \boldsymbol{R} by the correspondence $T \leftrightarrow T^{*}$.

Lemma $2^{5)}$. \boldsymbol{R} is, as a normed ring, linear homomorphically mapped upon a complex-valued function ring defined on the space \mathfrak{M} of all the maximal ideals M of $R: R \ni T \rightarrow T(M), I \rightarrow I(M) \equiv 1$ such that $T \equiv T(M) I(\bmod . M), \sup _{\boldsymbol{M}}|T(M)|=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\| . \quad \text { Moreover } T \text { ad- }-2 .}$ mits inverse T^{-1} in R if and only if $T(M) \neq 0$ on \mathfrak{M}.

Lemma $3^{6)}$. Let $I_{1} \in \boldsymbol{R}$ be an idempotent viz. $I_{1}^{2}=I_{1}$, then the

[^0]subring $\boldsymbol{R}_{1}=\boldsymbol{R} I_{1}$ of \boldsymbol{R} constitutes normed ring with unit I_{1} ．For any maximal ideal $M \ni I_{1}$ of $\boldsymbol{R}, M^{\prime}=\boldsymbol{M} \cap \boldsymbol{R}_{1}$ is a maximal ideal of \boldsymbol{R}_{1} ． Conversely for any maximal ideal \boldsymbol{M}^{\prime} of \boldsymbol{R}_{1} ，there exists a maximal ideal $\boldsymbol{M} \boldsymbol{\ni} I_{1}$ of \boldsymbol{R} such that $M^{\prime}=\boldsymbol{M} \cap \boldsymbol{R}_{1}$ ．

Lemma 4^{11} ．Let E_{1} be a closed linear proper subspace of E ，then there exists $x_{0} \in E-E_{1}$ such that $\left\|x_{0}\right\|=1$ ， $\operatorname{dis}\left(x_{0}, E_{1}\right)=\inf _{x \in E_{1}}\left\|x_{0}-x\right\|=\frac{1}{2}$ ．
§3．A deduction of F－R－S＇s theory．By the lemma 2
（1）the range $R(V)$ of the function $V(M)$ coincides with the spectra of V ，
viz．with the set of complex numbers λ such that $T=\lambda I-V$ does not have inverse \boldsymbol{T}^{-1} in \boldsymbol{R} ．Thus，by the isomorphism $\boldsymbol{R} \leftrightarrow \boldsymbol{R}^{*}$ ，
（2）the spectra are the same for V and for V^{*} ．
We first show that
（3）any complex number $\neq 0$ from the spectra of V is a proper value of V ．

Proof．Let $\lambda=1 \in R(V)$ and let $\lambda=1$ be not a proper value of V ． Then $T=I-V$ maps E on $T \cdot E$ in one－to－one manner．The inverse mapping T^{-1} is continuous from $T \cdot E$ on E viz．there exists a positive number $\alpha>0$ such that $\|T \cdot x\| \geqq a\|x\|$ on E ．Assume the contrary and let $\lim _{n \rightarrow \infty}\left\|T \cdot x_{n}\right\|=0,\left\|x_{n}\right\|=1 \quad(n=1,2, \ldots)$ ．By the c．c．of V we may suppose that $\lim _{n \rightarrow \infty} V \cdot x_{n}=y$ exists，whence $\lim _{n \rightarrow \infty}\left(x_{n}-V \cdot x_{n}\right)=0$ or $\lim _{n \rightarrow \infty} x_{n}=y,\|y\|=1, y=V \cdot y$ ，contrary to the hypothesis．Thus T^{-1} must be continuous from $T \cdot E$ on E and hence $T \cdot E$ is a closed set of E ． $T \cdot E \neq E$ ，since otherwise T^{-1} exists in R and thus $\lambda=1 \bar{\epsilon} R(V)$ ． Hence，if we put $E_{1}=T \cdot E, E_{2}=T \cdot E_{1}, \ldots, E_{n+1}$ is a closed linear proper subspace of $E_{n}(n=1,2, \ldots)$ ．By the lemma 4，there exists a sequence $\left\{y_{n}\right\}$ such that $y_{n} \in E_{n},\left\|y_{n}\right\|=1$ ，dis $\left(y_{n}, E_{n+1}\right)=\frac{1}{2}$ ．Hence，for $n>m$ ， $V \cdot y_{m}-V \cdot y_{n}=y_{m}-\left(y_{n}+T \cdot y_{m}-T \cdot y_{n}\right)=y_{m}-y, \quad y \in E_{m+1}$ and theretore $\left\|V \cdot y_{m}-V \cdot y_{n}\right\| \geqq \frac{1}{2}$ ，contrary to the c．c．of V ．Q．E．D

Remark 1．Let E be a general euclid space and let V be a c．c． normal operator in E ．Since ${ }^{2)}$ ，by the normality，$\ell \|=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|\boldsymbol{T}^{n}\right\| \text { ，}}$ $T=\lambda I-U$ ，the mapping $T \rightarrow T(M)$ is isomorphic．Thus，if $V \neq 0$ ， $R(V)$ contains complex numbers $\neq 0$ ．Hence V admits proper values $\neq 0$ ，in accordance with the well－known theorem due to Hilbert－ Schmidt ${ }^{3}$ ．

Since V is c．c．we have，by（3），

[^1](4) the spectra of V constitute an enumerable set which may accumulate only at 0^{12}.
Next let $\lambda=1$ be a proper value of V. We will show that $\lambda=1$ is also a proper value of V^{*}, without making use of the fact that V^{*} is c.c. with V.

Proof. By (1) and (4) there exists $\varepsilon>0$ such that ($\lambda I-V)^{-1}$ exists in \boldsymbol{R} if $0<|\lambda-1|<3 \varepsilon$. Consider the resolvent integral

$$
\begin{equation*}
I_{1}=\frac{1}{2 \pi i} \int_{|\lambda-1|-\varepsilon}(\lambda I-V)^{-1} d \lambda, \quad 0<\delta<3 \varepsilon \tag{5}
\end{equation*}
$$

By Cauehy's theorem, I_{1} is independent of δ. Thus

$$
\begin{align*}
I_{1}^{2} & =\frac{1}{2 \pi i} \int_{|\lambda-1|-\varepsilon}(\lambda I-V)^{-1} d \lambda \cdot \frac{1}{2 \pi i} \int_{|\mu-1|-2 t}(\mu I-V)^{-1} d \mu \tag{6}\\
& =\frac{1}{2 \pi i} \int_{|\lambda-1|-c}\left(\frac{1}{2 \pi i} \int_{|\mu-1|-2 t} \frac{d \mu}{\mu-\lambda}\right)(\lambda I-V)^{-1} d \lambda \\
& -\frac{1}{2 \pi i} \int_{|\mu-1|-2 t}\left(\frac{1}{2 \pi i} \int_{|\lambda-1|-\epsilon} \frac{d \lambda}{\mu-\lambda}\right)(\mu I-V)^{-1} d \mu \\
& =\frac{1}{2 \pi i} \int_{|\lambda-1|-c}(\lambda I-V)^{-1} d \lambda=I_{1} .
\end{align*}
$$

Hence we obtain the direct decomposition

$$
\begin{equation*}
R=R I_{1}+R\left(I-I_{1}\right) \tag{7}
\end{equation*}
$$

By Cauchy's theorem and the lemma 2 we have

$$
\left\{\begin{array}{ll}
I_{1}\left(M_{1}\right)=\frac{1}{2 \pi i} \int_{|\lambda-1|-i}(\lambda \cdot 1-1)^{-1} d \lambda=1 & \text { if } \quad V\left(M_{1}\right)=1 \\
I_{1}\left(M_{\mu}\right)=\frac{1}{2 \pi i} \int_{|\lambda-1|-c}(\lambda \cdot 1-\mu)^{-1} d \lambda=0 & \text { if } \quad
\end{array} \quad V\left(M_{\mu}\right)=\mu \neq 1 .\right.
$$

Hence, by the lemma 3, we obtain the results :
$\left\{\begin{array}{l}M_{1}^{\prime}=M_{1} \cap R I_{1} \text { is the only maximal ideal of } R I_{1}, \\ M_{\mu}^{\prime}=M_{\mu} \cap R\left(I-I_{1}\right) \text { with } \mu+1 \text {. }\end{array}\right.$
$\boldsymbol{M}_{\mu}^{\prime}=\boldsymbol{M}_{\mu} \cap \boldsymbol{R}\left(\boldsymbol{I}-I_{1}\right) \quad$ with $\mu \neq 1$ exaust the maximal ideals of $\boldsymbol{R}\left(I-I_{1}\right)$.
Therefore, siece $(I-V)\left(I-I_{1}\right)\left(M_{\mu}\right)_{\mu+1}=(1-\mu)(1-0) \neq 0$,
(8) $(I-V)\left(I-I_{1}\right)$ admits inverse $\left(\right.$ in $\left.R\left(I-I_{1}\right)\right)$ as an element of the $\operatorname{ring} \boldsymbol{R}\left(I-I_{1}\right)$.

Moreover, since $(I-V) I_{1}\left(M_{1}\right)=(1-1) 1=0$,
(9) ($I-V) I_{1}$ is, as an element of $R I_{1}$, contained in all the (in the truth, only one) maximal ideals of $R I_{1}$.

1) S. Banach: loc. cit.. 160.

On the other hand, if we put $(\lambda I-V)^{-1}=\frac{I}{\lambda}-R_{\lambda}$ then $R_{\lambda}=$ $\frac{R_{\lambda}}{\lambda} \cdot V-\frac{V}{\lambda^{2}}$ is c.c. with V. Thus, by Cauchy's theorem,

$$
\begin{equation*}
I_{1}=\frac{1}{2 \pi i} \int_{|\lambda-1|-\varepsilon}\left(\frac{I}{\lambda}-R_{\lambda}\right) d \lambda=\frac{-1}{2 \pi i} \int_{|\lambda-1|-\epsilon} R_{\lambda} d \lambda \quad \text { is } c . c .^{1)} \tag{10}
\end{equation*}
$$

A Banach space is, by the lemma 4, of finite dimension if and only if its unit sphere is compact ${ }^{23}$. Hence, by the c.c. and the idempotent character of $I_{1}, I_{1} \cdot E$ is of finite dimension. Therefore
(11) the ring $R I_{1}=I_{1} R I_{1}$ may be considered as a commutative matrix ring with unit I_{1} operating upon the vector space $I_{1} \cdot E$ of finite dimension.

Thus, by (9), the matrix ($I-V) I_{1}$ must be nilpotent. Hence
(12) $(I-V) I_{1}$ is nilpotent.
$I_{1} \neq 0$, since otherwise $T=I-V$ admits inverse in R by (8), contrary to the hypothesis $\lambda=1 \in R(V)$. By the isomorphism $\boldsymbol{R} \leftrightarrow \boldsymbol{R}^{*}$, (5)-(12) hold good when we assign ${ }^{*}$-notation to every operator or set in these equations (M^{*}, for example, means the set $\underset{T *}{\mathscr{C}}\{T \in M j$). Thus, by the formula corresponding to (12), we see that $\lambda=1$ is also a proper value of V^{*}. (We will denote the formulae corresponding to (5)-(12) by (5)*-(12)*).
Q. E. D.

Now let $\lambda=1$ be a proper value of V and of V^{*}. Then
(13) the dimension of the proper space belonging to the proper value 1 is the same for V and for V^{*}.
Proof. By (7) and (8) the proper value equation

$$
\begin{equation*}
x=V \cdot x, \quad x \in E \tag{14}
\end{equation*}
$$

is equivalent to $(I-V) I_{1} \cdot x=0,\left(I-I_{1}\right) \cdot x=0$. Thus (14) is equivalent to

$$
\begin{equation*}
x=V \cdot x, \quad x \in I_{1} \cdot E . \tag{14}
\end{equation*}
$$

Similarly, by (7)* and (8)*, the proper value equation

$$
\begin{equation*}
f=V^{*} \cdot f, \quad f \in E^{*} \tag{15}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
f=V^{*} \cdot f, \quad f \in I_{1}^{*} \cdot E^{*} \tag{15}
\end{equation*}
$$

Since $I_{1}^{*} \cdot f=f$ means $f\left(\left(I-I_{1}\right) \cdot x\right)=0$ on $E, I_{1}^{*} \cdot E$ must be of the same dimension as $I_{1} \cdot E$. Therefore the mutual conjugate matrix equation

[^2](14)' and (15)' admit respectively the same number of linearly independent solutions.
Q.E.D.

Lastly we will prove that, if $\lambda=1$ is a proper value of V and of V^{*}, then
(16) the equation $y=(I-V) \cdot x$ admits solution x if and only if $f(y)=0$ when $f=V^{*} \cdot f$,
and similarly
$(16)^{\prime}$ the equation $g=\left(I^{*}-V^{*}\right) \cdot f$ admits solution f if and only if $g(x)=0$ when $x=V \cdot x$.

Proof of (16). The necessity is trivial. Because of (8) and (11), $(I-V) \cdot E$ is a closed set of E. Thus, if $y \bar{\epsilon}(I-V) \cdot E$, there exists by Hahn-Banach's theorem $f \in E^{*}$ such that $f(y) \neq 0, f((I-V) \cdot E)=0$, sontrary to the hypothesis.
Q. E. D.
§4. An extension. $F-R$-S's theory may be extended to linear operator V which satisfies
(17) V^{n} is c.c. for a certain $n \geqq 1$.

We will show that this extension, first pointed out by S. Nikolski, is obtained as a corollary to our arguments in $\S 3$.

Since, by the lemma 2, the spectra of V are contained in $\left\{\lambda^{\frac{1}{n}}\right\}$, $\lambda \in R\left(V^{n}\right)$, (4) holds goods for our V. Moreover if $\lambda=1 \in R(V)$, then I_{1} is, as will be proved below, c.c. These two facts would be sufficient for the validity of our extension, as will be verified reflecting upon the arguments in § 3 .

Proof of the c.c. of I_{1}. By the assumption $\lambda=1 \in R\left(V^{n}\right)$. Let $\left(\lambda^{n} I-V^{n}\right)=\frac{I}{\lambda^{n}}-R_{\lambda}(n)$, then $R_{\lambda}(n)$ is c.c. with V. From
$I=(\lambda I-V)\left(\frac{I}{\lambda}-R_{\lambda}\right)$,
$I=\left(\lambda^{n} I-V^{n}\right)\left(\frac{I}{\lambda^{n}}-R_{\lambda}(n)\right)=(\lambda I-V)\left(\lambda^{n-1} I+\lambda^{n-2} V+\cdots+V^{n-1}\right)\left(\frac{I}{\lambda^{n}}-R_{\lambda}(n)\right)$
we obtain

$$
\frac{I}{\lambda}-R_{\lambda}=\frac{I}{\lambda}+\frac{V}{\lambda^{2}}+\cdots+\frac{V^{n-1}}{\lambda^{n}}-R_{\lambda}(n)\left(\lambda^{n-1} I+\lambda^{n-2} V+\cdots+V^{n-1}\right) .
$$

Thus, by Cauchy's theorem and the c.c. of $R_{\lambda}(n)$,

$$
I_{1}=\frac{1}{2 \pi i} \int_{|\lambda-1|-\varepsilon}\left(\frac{I}{\lambda}-R_{\lambda}\right) d=c . c . \quad \text { Q.E.D. }
$$

Remark 2. The proposition stated in the remark 1 is valid for norr--l operators satisfying (17).

[^0]: 1) See, for example, S. Banach's book: Théorie des opérations linéaires, Warsaw (1932), 151. Cf. M. Nagumo: Jap. J. of Math., 13 (1936), 6.
 2) I. Gelfand: Rec. Math., 9 (1941), 3.
 3) C. R. URSS, 16 (1926), 315. Cf. also K. Yosida: Jap. J. Math., 15 (1939), 297.
 4) S. Banach: loc. cit., 100.
 5) I. Gelfand: loc. cit.
 6) Cf. I. Gelfand: loc. cit., 18. For the sake of completeness we will give the proof below. For any $T \in R$ we have $(T-T(M) I) I_{1} \in M \cap R_{1}$, since ($\left.T-T(M) I\right)$ $I_{1}(M)=(T(M)-T(M) 1)\left(I_{1}(M)\right)=0, \quad(T-T(M) I) I_{1} \cdot I_{1}=(T-T(M) I) I_{1}$. Thas $T I_{1}=$ $T(M) I_{1}+(T-T(M) I) I_{1} \equiv T(M) I_{1}\left(\bmod . M \cap R_{1}\right)$, proving that $M^{\prime}=M \cap R_{1}$ is a maximal ideal of \boldsymbol{R}_{1}. Next let M^{\prime} be a maximal ideal of \boldsymbol{R}_{1}. We will show that there exists a maximal ideal M of R such that $M \geqq M^{\prime}, M_{\ni} I_{1}$. To this purpose consider $M=M^{\prime}+R\left(I-I_{1}\right)$. That $M \ni I_{1}$ is trivial. Since $T=T I_{1}+T\left(I-I_{1}\right), T I_{1} \equiv \lambda I_{1}\left(\bmod . M^{\prime}\right.$ by the lemma 2), we obtain $T \equiv \lambda I_{1}(\bmod . M)$, proving that M is a maximal ideal of \boldsymbol{R}.
[^1]: 1）S．Banach：loc．oit．， 83.
 2）See K．Yosida：Proc． 19 （1943）， 338.
 3）A short cut to $H-S$＇s theorem is given by Y．Mimara：全國紙上數學弱話會，

[^2]: 1) A uniform limit of a sequence of c.c. linear operators is c.c. also. See S Banach: loc. cit., 96.
 2) S. Banach: loc. cit, 84.
