94. Normed Rings and Spectral Theorems, II.

By Kôsaku Yosida.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., Oct. 12, 1943.)

§ 1. Introduction. The purpose of this note is to give an algebraic treatment and version of Fredholm-Riesz-Schauder's theory¹⁾ of completely continuous (c.c.) functional equations with the aide of the theory of normed ring³⁾. Our method seems to be suited to obtain the results concerning conjugate equations. We also give a proof to S. Nikolski's extension³⁾, which is of importance in view of applications, of F-R-S's theory. Lastly we extend the existence theorem of proper values $\neq 0$ for c.c. hermitian operator $\neq 0$ as a corollary of our arguments.

§ 2. Preliminaries and lemmas. Let V be a linear operator from a complex Banach space E into E. V is called c.c. if it transforms any bounded set into a compact set. Let **R** be the commutative ring generated by the c.c. V and the identity operator I, completed by the uniform limit defined by the norm $||T|| = \sup_{|x| \le 1} ||T \cdot x|| \cdot R$ is a normed ring with unit I and the norm ||T||, such that any element $T \in R$ may be represented as $T = \lambda I - U$, U being c.c. Let E^* denote the conjugate space (=the space of all the linear functionals f on E with the norm $||f|| = \sup_{|x| \le 1} |f(x)|$), then the operator T^* conjugate to T is defined by $T^* \cdot f = g$, $f(T \cdot x) = g(x)$, $f \in E^*$.

Lemma 1. Since⁴ $||T|| = ||T^*||$, the set R^* of all the operators T^* , $T \in \mathbf{R}$, is also a normed ring linear-isomorphic and linear-isometric with \mathbf{R} by the correspondence $T \leftrightarrow T^*$.

Lemma 2⁵). R is, as a normed ring, linear homomorphically mapped upon a complex-valued function ring defined on the space \mathfrak{M} of all the maximal ideals M of $R: R \ni T \to T(M), I \to I(M) \equiv 1$ such that $T \equiv T(M)I \pmod{M}, \sup_{M} |T(M)| = \lim_{n \to \infty} \sqrt[N]{\|T^n\|}$. Moreover T admits inverse T^{-1} in R if and only if $T(M) \neq 0$ on \mathfrak{M} .

Lemma 3⁶⁾. Let $I_1 \in \mathbb{R}$ be an idempotent viz. $I_1^2 = I_1$, then the

¹⁾ See, for example, S. Banach's book: Théorie des opérations linéaires, Warsaw (1932), 151. Cf. M. Nagumo: Jap. J. of Math., 13 (1936), 6.

²⁾ I. Gelfand: Rec. Math., 9 (1941), 3.

³⁾ C. R. URSS, 16 (1926), 315. Cf. also K. Yosida: Jap. J. Math., 15 (1939), 297.

⁴⁾ S. Banach: loc. cit., 100.

⁵⁾ I. Gelfand: loc. cit.

⁶⁾ Cf. I. Gelfand: loc. cit., 18. For the sake of completeness we will give the proof below. For any $T \in \mathbb{R}$ we have $(T-T(M)I)I_1 \in M \cap R_1$, since $(T-T(M)I)I_1(M) = (T(M)-T(M)I)(I_1(M)) = 0$, $(T-T(M)I)I_1 \cdot I_1 = (T-T(M)I)I_1$. Thus $TI_1 = T(M)I_1 + (T-T(M)I)I_1 \equiv T(M)I_1 \pmod{M \cap R_1}$, proving that $M' = M \cap R_1$ is a maximal ideal of R_1 . Next let M' be a maximal ideal of R_1 . We will show that there exists a maximal ideal M of R such that $M \ge M'$, $M \ge I_1$. To this purpose consider $M = M' + R(I-I_1)$. That $M \ge I_1$ is trivial. Since $T = TI_1 + T(I-I_1)$, $TI_1 \equiv \lambda I_1 \pmod{M'}$ by the lemma 2), we obtain $T \equiv \lambda I_1 \pmod{M}$, proving that M is a maximal ideal of R.

subring $R_1 = RI_1$ of R constitutes normed ring with unit I_1 . For any maximal ideal $M \ni I_1$ of R, $M' = M \cap R_1$ is a maximal ideal of R_1 . Conversely for any maximal ideal M' of R_1 , there exists a maximal ideal $M \ni I_1$ of R such that $M' = M \cap R_1$.

Lemma 4¹). Let E_1 be a closed linear proper subspace of E, then there exists $x_0 \in E - E_1$ such that $||x_0|| = 1$, dis $(x_0, E_1) = \inf_{x \in E_1} ||x_0 - x|| = \frac{1}{2}$.

- \$3. A deduction of F-R-S's theory. By the lemma 2
- (1) the range R(V) of the function V(M) coincides with the spectra of V,

viz. with the set of complex numbers λ such that $T = \lambda I - V$ does not have inverse T^{-1} in R. Thus, by the isomorphism $R \leftrightarrow R^*$,

(2) the spectra are the same for V and for V^* .

We first show that

(3) any complex number $\neq 0$ from the spectra of V is a proper value of V.

Proof. Let $\lambda = 1 \in R(V)$ and let $\lambda = 1$ be not a proper value of V. Then T = I - V maps E on $T \cdot E$ in one-to-one manner. The inverse mapping T^{-1} is continuous from $T \cdot E$ on E viz. there exists a positive number a > 0 such that $||T \cdot x_{\parallel}| \ge a ||x||$ on E. Assume the contrary and let $\lim_{n \to \infty} ||T \cdot x_n|| = 0$, $||x_n|| = 1$ (n = 1, 2, ...). By the c.c. of V we may suppose that $\lim_{n \to \infty} V \cdot x_n = y$ exists, whence $\lim_{n \to \infty} (x_n - V \cdot x_n) = 0$ or $\lim_{n \to \infty} x_n = y$, ||y|| = 1, $y = V \cdot y$, contrary to the hypothesis. Thus T^{-1} must be continuous from $T \cdot E$ on E and hence $T \cdot E$ is a closed set of E. $T \cdot E \neq E$, since otherwise T^{-1} exists in R and thus $\lambda = 1 \in R(V)$. Hence, if we put $E_1 = T \cdot E$, $E_2 = T \cdot E_1, \ldots, E_{n+1}$ is a closed linear proper subspace of E_n $(n = 1, 2, \ldots)$. By the lemma 4, there exists a sequence $\{y_n\}$ such that $y_n \in E_n$, $||y_n|| = 1$, $\operatorname{dis}(y_n, E_{n+1}) = \frac{1}{2}$. Hence, for n > m, $V \cdot y_m - V \cdot y_n = y_m - (y_n + T \cdot y_m - T \cdot y_n) = y_m - y$, $y \in E_{m+1}$ and therefore $||V \cdot y_m - V \cdot y_n|| \ge \frac{1}{2}$, contrary to the c.c. of V.

Remark 1. Let E be a general euclid space and let V be a c.c. normal operator in E. Since²⁾, by the normality, $\| \boldsymbol{x} \| = \lim_{n \to \infty} \sqrt[n]{||} T^n \|$, $T = \lambda I - U$, the mapping $T \to T(M)$ is isomorphic. Thus, if $V \neq 0$, R(V) contains complex numbers $\neq 0$. Hence V admits proper values $\neq 0$, in accordance with the well-known theorem due to Hilbert-Schmidt³⁾.

Since V is c.c. we have, by (3),

¹⁾ S. Banach: loc. oit., 83.

²⁾ See K. Yosida: Proc. 19 (1943), 338.

³⁾ A short cut to *H-S*'s theorem is given by Y. Mimura: 全國紙上數學談話會, 第 170 號 (昭和'14 年).

(4) the spectra of V constitute an enumerable set which may accumulate only at 0^{0} .

Next let $\lambda = 1$ be a proper value of V. We will show that $\lambda = 1$ is also a proper value of V^* , without making use of the fact that V^* is c.c. with V.

Proof. By (1) and (4) there exists $\epsilon > 0$ such that $(\lambda I - V)^{-1}$ exists in **R** if $0 < |\lambda - 1| < 3\epsilon$. Consider the resolvent integral

(5)
$$I_1 = \frac{1}{2\pi i} \int_{|\lambda-1|-\delta} (\lambda I - V)^{-1} d\lambda, \qquad 0 < \delta < 3\epsilon.$$

By Cauchy's theorem, I_1 is independent of δ . Thus

(6)
$$I_{1}^{2} = \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} (\lambda I - V)^{-1} d\lambda \cdot \frac{1}{2\pi i} \int_{|\mu-1|-2\epsilon} (\mu I - V)^{-1} d\mu$$
$$= \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} \left(\frac{1}{2\pi i} \int_{|\mu-1|-2\epsilon} \frac{d\mu}{\mu-\lambda}\right) (\lambda I - V)^{-1} d\lambda$$
$$- \frac{1}{2\pi i} \int_{|\mu-1|-2\epsilon} \left(\frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} \frac{d\lambda}{\mu-\lambda}\right) (\mu I - V)^{-1} d\mu$$
$$= \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} (\lambda I - V)^{-1} d\lambda = I_{1}.$$

Hence we obtain the direct decomposition

(7)
$$R = RI_1 + R(I - I_1)$$
.

By Cauchy's theorem and the lemma 2 we have

$$\begin{cases} I_{1}(M_{1}) = \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} (\lambda \cdot 1 - 1)^{-1} d\lambda = 1 & \text{if } V(M_{1}) = 1, \\ I_{1}(M_{\mu}) = \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} (\lambda \cdot 1 - \mu)^{-1} d\lambda = 0 & \text{if } V(M_{\mu}) = \mu \neq 1. \end{cases}$$

Hence, by the lemma 3, we obtain the results :

 $M_1 = M_1 \cap RI_1$ is the only maximal ideal of RI_1 ,

 $M'_{\mu} = M_{\mu} \cap R(I - I_1)$ with $\mu \neq 1$ exaust the maximal ideals of $R(I - I_1)$.

Therefore, siece $(I-V)(I-I_1)(M_{\mu})_{\mu \neq 1} = (1-\mu)(1-0) \neq 0$,

(8) $(I-V)(I-I_1)$ admits inverse (in $R(I-I_1)$) as an element of the ring $R(I-I_1)$.

Moreover, since $(I-V)I_1(M_1) = (1-1)1 = 0$,

(9) $(I-V)I_1$ is, as an element of RI_1 , contained in all the (in the truth, only one) maximal ideals of RI_1 .

[Vol. 19,

468

¹⁾ S. Banach: loc. cit., 160.

On the other hand, if we put $(\lambda I - V)^{-1} = \frac{I}{\lambda} - R_{\lambda}$ then $R_{\lambda} = \frac{R_{\lambda}}{\lambda} \cdot V - \frac{V}{\lambda^{2}}$ is c.c. with V. Thus, by Cauchy's theorem,

(10)
$$I_{1} = \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} \left(\frac{I}{\lambda} - R_{\lambda} \right) d\lambda = \frac{-1}{2\pi i} \int_{|\lambda-1|-\epsilon} R_{\lambda} d\lambda \quad \text{is c.c.}^{1}$$

A Banach space is, by the lemma 4, of finite dimension if and only if its unit sphere is compact²). Hence, by the c.c. and the idempotent character of I_1 , $I_1 \cdot E$ is of finite dimension. Therefore

(11) the ring $RI_1 = I_1RI_1$ may be considered as a commutative matrix ring with unit I_1 operating upon the vector space $I_1 \cdot E$ of finite dimension.

Thus, by (9), the matrix $(I-V)I_1$ must be nilpotent. Hence

(12) $(I-V)I_1$ is nilpotent.

 $I_1 \neq 0$, since otherwise T = I - V admits inverse in R by (8), contrary to the hypothesis $\lambda = 1 \in R(V)$. By the isomorphism $R \leftrightarrow R^*$, (5)-(12) hold good when we assign *-notation to every operator or set in these equations (M^* , for example, means the set $\mathop{\mathscr{O}}_{T^*} \{T \in M\}$). Thus, by the formula corresponding to (12), we see that $\lambda = 1$ is also a proper value of V^* . (We will denote the formulae corresponding to (5)-(12) by (5)*-(12)*). Q. E. D.

Now let $\lambda = 1$ be a proper value of V and of V^* . Then

(13) the dimension of the proper space belonging to the proper value 1 is the same for V and for V^* .

Proof. By (7) and (8) the proper value equation

 $(14) x = V \cdot x, x \in E$

is equivalent to $(I-V)I_1 \cdot x = 0$, $(I-I_1) \cdot x = 0$. Thus (14) is equivalent to

$$(14)' \qquad \qquad x = V \cdot x , \qquad x \in I_1 \cdot E .$$

Similarly, by $(7)^*$ and $(8)^*$, the proper value equation

$$(15) f = V^* \cdot f, f \in E^*$$

is equivalent to

(15)' $f = V^* \cdot f, \quad f \in I_1^* \cdot E^*$

Since $I_1^* \cdot f = f$ means $f((I-I_1) \cdot x) = 0$ on E, $I_1^* \cdot E$ must be of the same dimension as $I_1 \cdot E$. Therefore the mutual conjugate matrix equation

¹⁾ A uniform limit of a sequence of c.c. linear operators is c.c. also. See S Banach: loc. cit., 96.

²⁾ S. Banach: loc. cit., 84.

(14)' and (15)' admit respectively the same number of linearly independent solutions. Q. E. D.

Lastly we will prove that, if $\lambda = 1$ is a proper value of V and of V^* , then

(16) the equation $y=(I-V)\cdot x$ admits solution x if and only if f(y)=0 when $f=V^*\cdot f$,

and similarly

(16)' the equation $g = (I^* - V^*) \cdot f$ admits solution f if and only if g(x) = 0 when $x = V \cdot x$.

Proof of (16). The necessity is trivial. Because of (8) and (11), $(I-V) \cdot E$ is a closed set of E. Thus, if $y \in (I-V) \cdot E$, there exists by Hahn-Banach's theorem $f \in E^*$ such that $f(y) \neq 0$, $f((I-V) \cdot E) = 0$, sontrary to the hypothesis. Q. E. D.

§4. An extension. F-R-S's theory may be extended to linear operator V which satisfies

(17) V^n is c.c. for a certain $n \ge 1$.

We will show that this extension, first pointed out by S. Nikolski, is obtained as a corollary to our arguments in \$3.

Since, by the lemma 2, the spectra of V are contained in $\{\lambda^n\}$, $\lambda \in R(V^n)$, (4) holds goods for our V. Moreover if $\lambda = 1 \in R(V)$, then I_1 is, as will be proved below, c.c. These two facts would be sufficient for the validity of our extension, as will be verified reflecting upon the arguments in § 3.

Proof of the c.c. of I_1 . By the assumption $\lambda = 1 \in R(V^n)$. Let $(\lambda^n I - V^n) = \frac{I}{\lambda^n} - R_{\lambda}(n)$, then $R_{\lambda}(n)$ is c.c. with V. From

$$I = (\lambda^{n}I - V^{n}) \left(\frac{I}{\lambda^{n}} - R_{\lambda}(n) \right) = (\lambda I - V) (\lambda^{n-1}I + \lambda^{n-2}V + \dots + V^{n-1}) \left(\frac{I}{\lambda^{n}} - R_{\lambda}(n) \right)$$

we obtain

 $I=(\lambda I-V)\left(\frac{I}{\lambda}-R_{\lambda}\right),$

$$\frac{I}{\lambda}-R_{\lambda}=\frac{I}{\lambda}+\frac{V}{\lambda^{2}}+\cdots+\frac{V^{n-1}}{\lambda^{n}}-R_{\lambda}(n)(\lambda^{n-1}I+\lambda^{n-2}V+\cdots+V^{n-1}).$$

Thus, by Cauchy's theorem and the c.c. of $R_{\lambda}(n)$,

$$I_1 = \frac{1}{2\pi i} \int_{|\lambda-1|-\epsilon} \left(\frac{I}{\lambda} - R_{\lambda} \right) d = c.c. \qquad Q. E. D.$$

Remark 2. The proposition stated in the remark 1 is valid for nor⁻⁻ l operators satisfying (17).