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I. Positive definite integral quadratic forms.
Let /2 be a separable, metric space with metric p(p, q) (p e/2 and

q e 2). Suppose that the function (p, q) defined for all points p e/2

and q e 12 satisfies the following conditions 1)-5):

1) (P(p, q)= (P(q, p) __> 0, (p, p)-- + oo,

2) lim (p, q)= + co,
p(lo, q)-0

3) (p, q) is a continuous function of (p, q) whenever p =k q.

Before the condition 4 ) is mentioned, it seems convenient to begin
with some preliminary remarks.

Given a bounded Borel set E in /2, let a be any completely ad-
ditive function of Borel sets on E. Then by Jordan’s decomposition
theorem), we may write =a+- a-, where a+ and a- are the positive
and negative variations of a respectively, each of which is itself a
non-negative, completely additive set-function defined for all Borel sets
contained in E.

Now, consider the following integral:

II (’’ q)d,(p)d(q)

= lim ((p, q.)da+(p)dz-+(q)+ lim [[ (p, q)da-(p)dr-(q)
N->oo JJ N-,oo JJ

-limN II CN(P, q)da-(p)dr+(q) lim_.. II (1)N(P’ q)da+(P)dr-(q)’

where (P,(p, q)= Min {N, (p, q)}.

I is used for Ithroughout this Note, so that il for II"
If all the four terms involved are finite, then the integral is said

to be absolutely convergent. Thus the 4th condition is:

+ ->- II4) q)da(p)da(q) 0

except when the integral is meaningless,

5) if .I.I (p(p’ a)da(p)da(q)-- 0, then we have a(e)= 0 for any Borel

set eE.

1) S. Saks: Theory of the Integral, (1937), Chap. I.
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In case when is a three dimensional Euclidean space, the function

(p, q)= 1 (2 a ::> 0) satisfies the required properties stated
[p(p, q)]

above).
Let =E be the set of all the completely additive function a of

Borel sets on E such that the integral

II (p’ q)d(p)d(q)

is absolutely convergent. Then is a linear space, namely, if
and r e , then aa+r e for any real constants a and .

It is evident from the definition that if a e , then a/ e and- e, so that if e and r e , then

II (p’ q)d(p)d(q)

is also absolutely convergent, which we shall denote by (a, r) and say
the positive definite integral quadratic form.

Evidently the symbol (a, r) defined above for any pair of
and r e possesses the following properties of inner product"

I) (a, r)=(r, ) (Fubini-Tonelli’s Theorem),
I2) (aa, r)=a(, r) for any real constant a,

I3) (a, v-]-v.)-----(a, r)-]-(a, v2)
I) (a, a) 0, where equal sign holds when and only when a------0.

Thus, writing Ilall=/(a,a), we have introduced a "norm" into
the linear space considered"

I[l[=O for any e, II[[=O implies aO,

a II--! If, being any real constant, and / =< / II.
Notice also for any a e $ and r e

(a, r) a I1" r (Schwarz’s inequality).

The purpose of the present Note is to show how the general
principle, introduced by O. Frostmans), of sweeping out process in the
theory of Potential may be reduced to some simple considerations of
the normed space just stated.

Ii. Positive mass-distributions on the compact set E.
Given a Borel set E in the space Y, let/ be a completely additive,

non-negative function of Borel sets on E. Then, / is called a positive
mass-distribution on E, of total mass /4E). We have /=0, when
and only when z(E)=O.

It is well known that if {/} is a sequence of positive mass-dis-
tributions on the compac set E, of total nasses bounded"

2) O. Frostman" Potentiel d’quilibre et Capacit des Ensembles, etc. Thse, (1935),
Chap. II.

3) O. Frostman" Loc. cit.
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,,,(E)M(<4-) (n=l, 2, ...),

then there exists a sub-sequence (/.} such that, for every continuous

function f(p) defined on E, we have always

I f(p)d/,(p)--- I f(p)d/(p),(1) lim

which is often expressed as "/ converging weakly to/ ").

This fact is also true for the "product" distribution p. x p in
the product space /J x 9, namely, for any continuous function g(p, q)
((p, q)e E E), we have always

(2) lim ff g(p, q)d/,(p)d/,,(q)-- g(p, q)dl(p)d/(q)

If g(p, q) is replaced by the discontinuous function (P(p,q), then
such relations as above will not hold in general.

But we have by (2) for the fixed N( 0)

lim II Ov(p, q)d(p)d/(q)= II O(p, q)d/(p)d/(q)

and, from

we have also

lim ii (p’ q)d/,,,p)dl,,(q) > II v(P, q)d/,p)d/(q),

whence, making N-),

(3) lim

If f(p) is lower semi-continuous on the compact set E, then there
exists a monotone increasing sequence (f(p)} of continuous functions
on E such that f(p)f(p) (m- ). Similar argument as above
shows also

(4) lim I f()dl,(p) I f()dl().
III. Generalized Potentials and Capacity.
Given a bounded Borel set E in Y2, let / be a positive mass-

distribution on E. We shall consider now the following function:

(5) u(p) I (p’ q)dt4q)= v-lim I (av(P’ q)d/(q),

which is well defined at every point of /2. We call this function the
(generalized) potential of the distribution/ with respect o (p, q).

4) N. Kryloff and N. Bogoliouboff: La thorie g(nSrale de la mesure dans son
application l’tude des systmes de la m4canique non linaire. Ann. of Math. Vol.
38 (1937).
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If there exists a neighbourhood U of p e 9 such that/(U. E)=0,
then the potential u(p) is continuous at that point.

Being a limit of a monotone increasing sequence of continuous
functions as seen by the right-hand side of (5), u(p)is in general
lower semi-continuous a p e 12, if, for every neighbourhood U of p,
(U.E) > O.

The set E0 of points p e/2 such that, for every neighbourhood U
of p, /(U.E) 0 is called the kernel of/. It is evident that E0 is
closed and contained in Ea, the closure of E.

It is also evident that u(p) is continuous outside Eo.
Let/ be a positive mass-distribution on E, of total mass 1, and

consider the upper bound of the potential"

V2(E)-sup (P(p, q)d/(q)
peB J

Writing V*(E)=inf V2(E), we shall define

C*(E)=[V*(E)]-which is called the (P-capacity of E. We notice here that C*(E)=O
if and only if V*(E)=

A little consideration shows that the necessary and sufficien con-
dition for the existence of a positive mass-distribution / on E, of total
mass positive, with bounded potential is that the (P-capacity of E
should be positive5).

Let E be a compact set of positive capacity. Then there exists
a positive mass-distribution Z on E, of total mass 1, such that for
every p e/2

(P(p, q)d/(q) < M(</ c),

from which we have, integrating both sides with /,

IJ" (l)(p, q)d/(p)dt(q) < M,

whence /e E, SO that we have

inf II/ 2= W(E) ,
the lower bound being taken over all /e with /(E)= 1.

Then, there exists a sequence of positive distributions (p}, of
total mass 1, such that lim I[/. 2= W(E).

From the sequence, we can select a sub-sequence (/} converging

weakly to the positive distribution /0 of total mass 1. By (3), we
have

W(E) lim 0 W(E),

5) S. Kametani: On some Properties of Hausdorff’s Measure and the Concept of
Capacity in Generalized Potentials, Proc. 18 (1942), 617.
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rom which we find W(E) il/0 > 0, since otherwise, we would find
/0----0. Hence we have at last

(6) 0

IV. Gauss’ Variation.
Let E be a compact set of positive capacity. Given a upper semi-

continuous function f(p) 0 on E, let us write

G(/) / 21 f(p)d/(p)
where/ e is any positive mass-distribution on E.

C(E) being positive, there exists a positive distribution Z e,
of total mass positive. Let
and r(E)= 1. Hence

G(/) m -2m I f(p)dr(p)

(7) mW(E)-2mM=m( W(E)-2M.m-)
where M=supf(p) + o by the upper semi-continuity of f(p), and

W(E) 0 by (6). Since the right-hand side of (7) is positive for
m 2M]W(E)=K, G() 0 holds for any positive distribution / on
E, of total mass /4E) K.

As G(/)=O for =--0, we have

g inf G(/) 0,

from which and also from the consideration made above we have

inf G(/)= inf G(/).
,u (E) <K

Let (/.} be a sequence of positive mass-distributions such that

lim G(/.)=g and /.(E) K.

Then there exists a sub-sequence (/.} which converges weakly to
a positive mass-distribution/0 with the following properties"

lim 1[/, ![/o (by (3))

and lim I(-f(p))dl,,(p)I(-f(p))d/o(p) (by (4)).

Hence we have

g lim G(Z,) lim p, [[/ 2 lim I (-f(P))dP(P)

G(/0) g,
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from which follows
G( o)

Thus we have proved the following"
Theorem 1. Le E be a compac se of positive capacity. Then

there exists a positive mass-distribution Zo e which minimizes the value
of G(/) for all the positive distributions on E. (Gauss’ Variation).

Let e be any positive distribution on E. Then /+e e for
e O. By Theorem 1, we have for any e > 0

0

_
G(/o+)--G(o)

-{’l/o ]l’-2 I f(p)dZo(p)}

Noticing r co and ( 0) arbitrary, we must have the follow-
ing inequality

")- I f(p)d,(p) O,

which is valid for any positive mass-distribution ..
If II/o :k: 0 on the one-hand, G(t/o)= ts [[/o z-2t .1 f(p)dZo(p) attains

its minimum at t =.I f(p)d/o(p)/H/o ]12, while G(t/o) must be minimized

at t=l, from which we have

(8) of- I f(p)do(p) O

If H/o {[-- 0 on the other hand, then we have /o---- 0, from which
we have also (8).

Thus we have proved the following fundamental"
Theorem 2. Let E be a compact set with C(E) > O.
Then, for any positive mass-distribution on E such that e,

we have
) j f(p)d(p) O

In paricuhzr, if --o, then we have

po I f(p)d/o(p) O.

Theorem 3. The positive mass-distribution/ on E which minimizes
G() is uniquely determined.

Proof. Let/o and ro be two distributions minimizing G(/). Then
by the preceding theorem, we have

(po, uo) I f(p)d,o(p)= .o z
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(o, to) I f(P)C/(P)=ll Po

Hence I[/o- o II/o - 2(/o, o)+ o 0,

which shows po- o 0, that is,

IV. Properti of the pontial of the distribution /o.
Throughout this stion, we shall denote by u(p) the ntial

(p, q)do(q) minimizing po on compact seto the distribution the E
of sitive capacity.

Theorem 4. The potential u(p) not less than f(p) evywhere
on E with the ssible excepti of -capacit O, namdy

C*{p; pe E, u(p) <f(p)} =0.

Proof. Denoting the set (p; p eE, u(p)f(p)) by Co, we find
this Borelian, since u(p)-f(p) is lower semi-continuous. Now if
C*(eo) O, then there would a positive distribution on e0, of total
mass 1, such that

oO(p, q)du(p)du(q)

Hence, regarding as the distribution on E,
Then, by Threm 2, we must have

(/o, )-- f(p)dr(p)=0

which is absurd.
mma. The set (p p s E, u(p) f(p)) ctains no

namdy
o(p p E, u(p) <f(p)} O

Proof. Supsing the contrary, let po(eo) 0.
Then we can define a positive mass-distribution r on E, of tal

mass Po()( 0), writing for every Borel set e, r(e)=po(.e).

Since

g #0

we have . By Theorem 2, it would follow

0 g (#o, )- ’f(p)d(p)

whence a contradiction.
Threm 5. Let Eo be the kernel of #o. Then, at every point

p E, we have
u(p)
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Proof. Supposing the contrary, let po be a point of Eo such that

u(po) f(Po) ;> O

The function u(p)-f(p) being lower semi-continuous on E, there
would exist a neighbourhood U of po such that

(9) u(p) f(p) > 0

for every p e U.E. Since po is a point of the kernel of P0, we have

o("E) > 0.

By the preceding lemma, eo (p; pE, u(p)f(p)) contains no
/0-mass, whence we must have by Theorem 2

0=I =I.-..(’(’>-:(’>

----I:.lt(10)--f(p))d/Xo(p) >0 (by (9)),
which is a contradiction.

Remark 1. If f(p) is a positive constant, then the distribution
/o gives the potential which corresponds to the equilibrium potential.

f(p)-- @(p,s), where sE, or more generally, if f(p)If

where p(E,F) 0, then the potential obtained corresponds to the one
given by sweeping ou the mass charging s or F.

Remark 2. Having not assumed on ((p, q) none of subharmonicity,
etc., the results obtained seem general enough, though there might be
rooms for more precise and complete results under additional conditions.
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