17. Normed Rings and Spectral Theorems, III.

By Kôsaku Yosida.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., Feb. 12, 1944.)

§1. A Spectral theorem. Let \mathbf{R} be a function ring of real-valued continuous functions S(M) on a bicompact Hausdorff space \mathfrak{M} . We assume that \mathbf{R} satisfies

(1) for any pair $M_1, M_2 \in \mathfrak{M}$ there exists $S(M) \in \mathbb{R}$ such that $S(M_1) \neq S(M_2)$.

Then, by Gelfand-Silov's abstraction of Weierstrass' polynomial approximation theorem¹,

(2) every continuous function on \mathfrak{M} may be uniformly approximated by functions $\in \mathbf{R}$.

Next let F(S) be a linear functional on R:

(3)
$$\begin{cases} F(\alpha S + \beta U) = \alpha F(S) + \beta F(U) & (\alpha, \beta = \text{scalars}), \\ F(S_n) \to F(S) & (n \to \infty) & \text{if } \sup_{M} |S_n(M) - S(M)| \to 0 \quad (n \to \infty). \end{cases}$$

We further assume that

(4)
$$F(S) \ge 0$$
 if $S(M) \ge 0$ on \mathfrak{M} ,

(5)
$$F(I)=1$$
, where $I(M)\equiv 1$ on \mathfrak{M}

Then, by (2)–(5) and Riesz-Markoff-Kakutani's theorem²⁾, we have the representation :

(6)
$$F(S) = \int_{\mathfrak{M}} S(M)\varphi(dM) \qquad S \in \mathbf{R}$$

where φ is a non-negative, continuous from above set function countably additive on Borel sets $\subseteq \mathfrak{M}$ and $\varphi(\mathfrak{M})=1$. Here the continuity from above means that the value of the function on a set is equal to the infimum of its values on open sets covering this set.

We have, from (6),

(7)
$$\begin{cases} F(T) = \int_{\mathfrak{M}} T(M)\varphi(dM) = \int_{\lambda_0}^{\lambda_1} \lambda d\tau(\lambda), \quad \lambda_0 = \inf_M T(M), \quad \lambda_1 = \sup_M T(M), \\ \tau(\lambda) = \varphi(M; T(M) < \lambda). \end{cases}$$

Put

(8)
$$\mu = \sup_{\lambda} \left(\lambda \, ; \, \tau(\lambda + \varepsilon) - \tau(\lambda - \varepsilon) > 0 \quad \text{for all} \quad \varepsilon > 0 \right).$$

 μ may be called as the maximal spectrum of F referring to T. We will prove the

¹⁾ Rec. Math., 9 (1941), Cf. also H. Nakano: 全國紙上數學談話會, 218 (1941).

²⁾ A. Markoff: Rec. Math., 4 (1938). S. Kakutani: Proc. 19 (1943).

Theorem. Let λ_0 be > 0, then we have

(i)
$$\sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})}} \ge \sqrt{\frac{F(T^{2(n+1)})}{F(T^{2(n+2)})}} \ge \frac{1}{\mu} \quad (n \ge 0)$$

(ii)
$$\sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})}} \ge \frac{F(T^{2n+1})}{F(T^{2(n+1)})} \ge \frac{1}{\mu} \qquad (n \ge 0)$$

(iii)
$$\lim_{n \to \infty} \sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})}} = \lim_{n \to \infty} \frac{F(T^{2n+1})}{F(T^{2(n+1)})} = \frac{1}{\mu}$$

(iv)
$$0 \leq \frac{F(T^{2n+1})}{F(T^{2(n+1)})} - \frac{1}{\mu} \leq \sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})} - \frac{F(T^{2n+1})^2}{F(T^{2(n+1)})^2}} \quad (n \to \infty).$$

Proof. By Schwarz's inequality, we have

$$F(T^m) = \int \lambda^m d\tau(\lambda) \leq \sqrt{\int \lambda^{2k} d\tau(\lambda)} \sqrt{\int \lambda^{2(m-k)} d\tau(\lambda)} = \sqrt{F(T^{2k})} \sqrt{F(T^{2(m-k)})}.$$

Thus, by taking m=2k+2 and m=2k+1, we obtain the first parts of (i) and of (ii). We have, by (8),

$$\sqrt{rac{F(T^{2n})}{F(T^{2(n+1)})}} \ge rac{F(T^{2n+1})}{F(T^{2(n+1)})} = rac{\int \lambda^{2n+1} d au(\lambda)}{\int \lambda^{2(n+1)} d au(\lambda)} \ge rac{\int \lambda^{2n+1} d au(\lambda)}{\mu \int \lambda^{2n+1} d au(\lambda)} = rac{1}{\mu} \,,$$

.

and, by (i) and

$$\lim_{n\to\infty} \sqrt[2n]{F(T^{2n})} = \lim_{n\to\infty} \sqrt[2n]{\int} \lambda^{2n} d\tau(\lambda) = \mu,$$

$$\sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})}} = \sqrt{\frac{\int \lambda^{2n} d\tau(\lambda)}{\int \lambda^{2(n+1)} d\tau(\lambda)}} \to \frac{1}{\mu} \qquad (n \to \infty).$$

Next put

$$\frac{F(T^{2n+1})}{F(T^{2(n+1)})} = a_{n+1}, \quad \sqrt{\frac{F(T^{2n})}{F(T^{2(n+1)})}} = \beta_{n+1}, \quad F\left((T^{-1} - a_{n+1}I)^2 \cdot \frac{T^{2(n+1)}}{F(T^{2(n+1)})}\right)$$
$$= \gamma_{n+1}.$$

We have

(9)
$$\gamma_{n+1} = \frac{F(T^{2n} - 2a_{n+1}T^{2n+1} + a_{n+1}^2T^{2n+2})}{F(T^{2(n+1)})} = \beta_{n+1}^2 - 2a_{n+1} \cdot a_{n+1} + a_{n+1}^2 \cdot 1$$
$$= \beta_{n+1}^2 - a_{n+1}^2.$$

Since

(10)
$$F_{n+1}(S) = F\left(S \cdot \frac{T^{2(n+1)}}{F(T^{2(n+1)})}\right), \qquad S \in \mathbb{R},$$

satisfies (3), (4) and (5), we have

(11)
$$F_{n+1}(S) = \int_{\mathfrak{M}} S(M)\varphi_{n+1}(dM), \qquad F_{n+1}(T) = \int \lambda d\tau_{n+1}(\lambda)$$

as in (6) and (7). We have

No. 2.]

(12)
$$\mu_{n+1} = \sup \left(\lambda; \tau_{n+1}(\lambda + \varepsilon) - \tau_{n+1}(\lambda - \varepsilon) > 0 \text{ for all } \varepsilon > 0 \right) = \mu,$$

for, by applying (iii) to $F_{n+1}(S)$,

$$\frac{1}{\mu_{n+1}} = \lim_{k \to \infty} \sqrt{\frac{F_{n+1}(T^{2k})}{F_{n+1}(T^{2(k+1)})}} = \lim_{k \to \infty} \sqrt{\frac{F(T^{2k+2(n+1)})}{F(T^{2(k+1)+2(n+1)})}} = \frac{1}{\mu}$$

Therefore, by (iii), (9)-(12), we obtain, for any $\epsilon > 0$ ($\mu > \epsilon$),

$$\beta_{n+1}^2 - \alpha_{n+1}^2 = F_{n+1} \Big((T^{-1} - \alpha_{n+1}I)^2 \Big) = \int \Big(\frac{1}{\lambda} - \alpha_{n+1}\Big)^2 d\tau_{n+1}(\lambda)$$
$$\geq \Big(\frac{1}{\mu - \epsilon} - \alpha_{n+1}\Big)^2 \tau_{n+1}(\mu - \epsilon) \,,$$

as $n \to \infty$. Since $\tau_{n+1}(\nu) = \tau \left(\frac{2n+3}{\sqrt{\nu} \int \lambda^{2(n+1)} d\tau(\lambda)} \right)$ we have $\lim_{n \to \infty} \tau_{n+1}(\mu - \varepsilon) = 1$.

§ 2. Application to Hilbert space. Let **B** denote the totality of bounded, self-adjoint operators in Hilbert space \mathfrak{H} and $T \in \mathbf{B}$ be positive-definite:

$$\lambda_1 \|f\|^2 \ge (Tf, f) \ge \lambda_0 \|f\|^2$$
, $f \in H$, $\lambda_0 > 0$.

Let (T)' denote the totality of operators $\in B$ that commute with T, and (T)'' be the totality of operators $\in B$ that commute with every operators $\in (T)'$. (T)'' is a (real) normed ring by the norm ||S|| $= \sup_{\substack{V = 1 \\ V = 1}} ||Sf||$ and the unit I (= the identity operator). In the first note¹, it is proved that (T)'' is ring-isomorphic (with real multipliers) and linear-isometric with the function ring R of all the real-valued continuous functions S(M) on the bicompact Hausdorff space \mathfrak{M} of all the maximal ideals M of (T)'':

 $(T)^{\prime\prime} \ni S \leftrightarrow S(M) \in \mathbb{R}, \quad I \leftrightarrow I(M) \equiv 1, \quad ||S|| = \sup_{M} |S(M)|,$

and moreover

S(M) is non-negative if and only if $(Sf, f) \ge 0$, $f \in \mathfrak{H}$.

Thus, by putting

 $F(S) = (Sf_0, f_0)$, $(f_0 \text{ is any element } \in \mathfrak{H} \text{ subject to the condition}$ $||f_0||=1)$,

$$\mu = \inf_{\lambda} (\lambda; E_{\lambda} \cdot f_0 = f_0), \qquad T = \int \lambda dE_{\lambda},$$

we may apply the theorem to $(T)^{\prime\prime}$ (=R). In this way the wellknown procedure of E. Schmidt concerning completely continuous selfadjoint operators is extended in a more precise form³⁾.

¹⁾ Proc. 19 (1943).

³⁾ Math. Ann. 63 (1907).

³⁾ Concerning (iv), cf. N. Kryloff-N. Bogoliouboff: Bult. de l'acad. Sci. URSS. (1929). D. H. Weinstein: Proc. Nat. Acad. Sci., **20** (1934). S. Huruya: Mem. Fac. Sci. Kyûsyû Imp. Univ. **1** (1941).