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12. Projective Parameters in Projective and Conformal
Geometries.
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Mathematical Institute, Tokyo Imperial University.

(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1944.)

1. Projective parameters in projective geometry.
In an n-dimensional space A with the affine connection Ijk, a

system of curves called paths is defined by the differential equations
of the form

dx d’ dz -0 i, j, k 1, 2,..., n)(1.1) ds--- - t.. ds ds

as autoparallel curves, where s is called affine parameter on each path.
Conversely, if we are given the differential equations of the form (1.1)
in an n-dimensional space .., we can define a symmetric affine con-
nection in this space taking F. as the components of the connection.
The study of the properties of these differential equations constitutes
the affine geometry of paths>. But, an affine connection is not defined
uniquely by the system of paths (1.1). H. Weyl> and L. P. Eisenhart>
have independently shown that any two affine connections whose com-
ponents /:, and [ are related by the equations of the form

(1.2) F, =/’/
where are components of an arbitrary covariant vector not neces-
sarily gradient, give the same paths. In this sense, the change over
from F to /, is called the projective change of affine connections,
and the study of those properties which are invariant under such
changes of affine connections is called the projective geometry
paths>.

To study the projective geometry of paths, T.Y. Thomas has
introduced the functions

(1.3) H /:, 1
n+l

which are invariant under projective change of affine connections (1.2.).

1) L.P. Eisenhart and O. Veblen" The Riemann geometry and its generalisation.
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3) L.P. Eisenhart: Spaces with corresponding paths. Proc. Nat. Acad. Sci. 8
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Although H are invariant under the projective change of affine
connections, their law of transformation under the change of coordinates
is not identical with that of the components of the affine connection,
that is the case when and only when the jacobian of the transforma-
tion is constant. The study of the invariant properties of //] under
such restricted transformations constitutes the equi-projective geometry
of pathsD.

To avoid this inconvenience, T.Y. Thomas has introduced an
extra dimension z and defined an affine connection *// (2, p, ,, ...=

0, 1, 2, ..., n) in an associated space of (n+ 1) dimensions by means of
the relations

(1.4) *//0 * 1 n+lIIo---- 3, *IIj’- II, *I1- H,
n+l n-1

where

H //. and [Ijk ]-I]h’jf"
.l$’k ah ]-1jhllakl].jkh n a 11ixt xk

and formulated the projective geometry of paths as the invariant
theory of the affine connection of this (n+l)-dimensional associated
space under the special change of coordinates

(1.g) ’="+log ’--x’(,%...,’9.

This idea of introdueing an extra coordinate : is adopted later by
O. Veblen. O. Veblen has defined the projeetive geometry as the
invariant theory of H, symmetric and satisfying the following eon-
ditions

under seeial transformations of eoordinates

(1.7) ’=+log (, , ..., ) ’=’(, , ..., )
Let H the components of an ane eonneetion in an (+l)-

dimensional saee A+. If there exists a coordinate sysm in whieh
the eomonents of eonneetion g satisfy the eoMitions (1.6), then the
A+ referred to this eoordinate system may be aken to reresent a
rojeetive saee P. Prom this oin o view, J. H.C. Whitehead has
studied the representation of rojeetive saees, and derived many
interesting results on generalized rojeetive geometry.

Let be the components of an symmetric anne eonneetion
an -dimensional saee A, then introdueing a symmetrie tensor

1) T.Y. Thomas" On the equi-projective geometry of paths, ibidem, pp. 592-594.
2) T.Y. Thomas: A projective theory of affinely connected manifolds. Math.

Zeitschr. 25 (1926), pp. 723-733.
3) O. Veblen" Generalized projective geometry. Journal of the London. Math.

Soc. (1929), pp. 140-160.
4) J.H.C. Whitehead The representation of projective spaces, Annals of Math,

32 (1931), pp. 327-360.
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we can construct a symmetric affine connection H of an (n+l)-
dimensional space A+ by means of Ii.j, II] and llo,=IIo=.

The equations of paths in A/ are given by

dx(1.8)
dt

t- II dx dx 0
dt dt

Where t is an affine parameter for the paths of A+I. Putting =0
and 2=i in (1.8), we obtain

dx dx dx
dt

+ II]
dt dt

(1.9)
dx dx dx

dt dtdt
+II

( dx+\-/=0 and

\dt -d-=0

respectively. If we introduce a new parameter s by means of the

relation 2( dx dt /( dt 1 dt
\dt / --s/\-s/ or x=lg2 the equations (1.9)

take respectively the form

dx d.x dx dx(1.10) {t, s} -211’ and +II -0
ds ds ds ds ds

where {t, s} denotes the Schwarzian derivative of t with respect to s.
Thus, the projective connection of O. Veblen and J.H.C. White-

head defines a system of paths in A and a projective parameter t on
each path. The projective parameter t introduced first by J.H.C.
Whitehead plays an important part in the study of projective geometry
of paths.

L. BerwaldD developed, on the other hand, the projective geometry
of paths resting on two notions" the notion of the class of affine con-
nections belonging to a system of paths and the notion of a projective
parameter of a system of paths. He defines the paths by (1.1) and
projective parameter by

(1.11) {t, s} -2F- dx dx
ds ds

The projective parameter t being defined by a Schwarzian deri-
vative,

(a) it is determined, up to an arbitrary linear fractional trans-
formation, on each path of the system at the same time,

he requires moreover that
(b) it is not altered by transformations of coordinates,
(c) it remains the same for all affine connections of the class

belonging to the system of paths.
From the condition (b) and (1.11), we know that F are the com-

ponents of a tensor, and from the condition (c), we conclude that, the

1) L. Berwald" On the projective geometry of paths. Annals of Math. 37 (1936),
pp. 879-898,
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law of transformation of F under the projective change of affine
connections (1.2) is

(1.12) [-0

The term A( + appears owing to the fact that in
2 k x /

(1.11) are the coecients of a quadratic form and consequently only
the symmetric part of is in question.

The present author) has shown that all these projective geometries
of paths may be naturally interpretated from the standpoint of E.
Cartan). If we define Cartan’s projective connection by the formulae

(1.13) dAo=dxA dA=dxAo+dxA
and paths as the curves whose developments in tangent projective space
are straight lines, then the equation of paths may be written as

d(1.14)
dt

and the differential equations of the paths coincide with (1.1) and t is
precisely the projective parameter defined by (1.11). The theory
T.Y. Thomas is obtained if we adopt the so-called repre naturel in
the space with normal projective connection.

J. Haantjes) studied the projective geometry of paths using the
homogeneous coordinates of D. van Dantzig). The differential equa-
tions of the paths are

dx_ dx dx ,x + dx(1.15)
dr

H, d d- dr

where x are homogeneous coordinates, H components of the symmetric
projective connection which are homogeneous functions of degree -1
and satisfy Hx 0, and r an arbitrary parameter on the paths.
J. Haantjes also introduced special homogeneous coordinates u and
on each paths and showed that their ratio coincides with the projective
parameter t appeared in old theories.

It is shown in the author’s These that if we choose a suitable
factor p and parameter t on each path, the equations of paths (1.15)
may be written as

H(1.16) dpx ,,- -0.
dt dt

1) K. Yano: Les espaces connexion projective et la g6om6trie projective des
paths. Thse, Paris, (1938).

2) ]. Caftan" Lecons sur la th6orie des espaces a connexion projective. Paris,
Gauthier-Villars, (1937).

3) J. Haantjes" On the projective geometry of paths. Proc. Edinburgh Math.
Soc. 5 (1937), pp. 103-115.

4) D. van Dantzig" Theorie des projektiven Zusammenhangs n-dimensionaler
Riume. Math. Ann. 106 (1932), pp. 400-454,
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It is interesting to remark that, in all these theories, the equations
of paths in their most simple forms (1.8), (1.14) and (1.16) have the
same form that the second derivatives of the coordinates vanish, and
that the parameter t which admits this simplification is the projective
parameter.

2. Projective parameters in conformal geometry.
In this section, we shall show that the method of L. Berwald

explained in 1 may be applied also to the conformal geometry.
(i) Conformal geometry.
Let us consider an n-dimensional Riemann space V. with the

fundamental quadratic form ds=gdxdx. By a conformal trans-
formation =pg of the fundamental tensor, the line-element ds of
each curve and the Christoffel symbols {} are transformed into d
and (]} respectively by the formulae of the form

(2.1) d rids,

(2.2) {jik}"(k}+PI+ikp giaagjk, ( X
log 9)

dxconsequently the tangent vector-s and the curvature vector dx
s ds

x dx x
s. of any curve are transformed into - and --- respectively by

(2.3) dx dx* / dd ds ds

ds ds /\ ds /
g fla/\ ds /

where /s denotes the covariant differentiation along the curve with
respect to the Christoffel symbols (]} and / with respect to {}.

Now we define a projective parameter t on each curve x(s) by
means of the Schwarzian differential equation of the form

(2.5) (t,s}=l x $x dx dx-g s s -11 ds ds

t being defined on each curve up to an arbitrary linear fractional
transformation, we assume moreover that it is not altered by trans-
formations of coordinates and that it remains same for all metrics
related by a conformal transformation =pg. From the first as-
sumption, we can conclude that the functions //] are components of
a symmetric tensor. From the second assumption, we find, by a
straightforward calculation with the aid of (2.1), (2.3), (2.4) and

{t,}=({t,s}-{,s}) -s
that the law of transformation of H] under a conformal transforma-
tion =g is
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(2.6) I ab

Thus the conformal geometry is fixed by giving g- and consequently
{} and fl] whose laws of transformations under the conformal trans-
formation =p2g are (2.2) and (2.6) respectively.

(ii) Conformal circles.
Geodesic circles’) in Riemann geometry are defined by the equations

x x x dx+gjk -0.(2.7)
&s 3s s ds

The left-hand side of this equation is not invariant under a con-
formal transformation =pg. Under this transformation it is
transformed by

1 $x 2x 2x dx
Ffls +gs s ds ds ds ds ds

where

(2.9) p=--p(]}-p+g Pbg and p=gp

hence, from (2.6) and (2.8) we have

I1 dx dx dx
ds ds ds 8 -J

where

which shows that the curve defined by

(2.10) x +g$x 3x dx
s s s ds

dx dx dxII] +112 0
ds ds ds as

has conformal property. This is the conformal circle found by the
author in the conformally connected space).

(iii) Conformal curvature tensor.
It is well known that the Riemann-Christoffel curvature tensor

is transformed into -R.a under a conformal transformation .=pg
of the fundamental metric tensor g by the formulae

1) K. Yano: Concircular geometry I. Proc. 1{ (1940), pp. 195-200.
2) K. Yano" Sur les circonfrences gnralises darts les espaces connexion

conforme, Proc. 14 (1938), pp. 329-332.



No. 2.] Projective Parameters in Projective and Conformal Geometries. 51

(2.11) - R. +
Substituting the relation

obtained from (2.6) in the equation (2.11), we have

R.a+ I1+
Ho H

which shows that the curvature tensor defined by

(2.12) I1]3-H
is a conformal invariant.

(iv) Determination of II in terms of g.
Since the curvature tensor C.aa is a conformal one, the condition

(2.13) C.i 0

is also a conformal one. From (2.12) and (2.13), we have

O R+(n-2)H]+y(2.14)

from which

(2.15) flo R
ab--"

2(n- 1)

where R=R and R--gR.

Substituting (2.15) in (2.14) we find

(2.16) I1]=- R + Rg
n-2 2(n- 1) (n-2)

Thus, the functions ll] are completely determined in terms of g-
by imposing purely conformal condition (2.13). If we substitute (2.16)
in (2.5), we have

(2.17) {t, s} 1 8x 1
2-

dx dx Rg s s F- Rn- ds ds 2(n- 1) (n-2)

The projective parameter defined by this equation may be called
the preferred projective parameter on each curve in Riemann space.

Substituting (2.16) in (2.12), we have

(2.18) 1 RR.lkhC. -Ra6+gR.a-gaR.)
--2

+ R (g8-g8)
(n-1)(n-2)

which is the Weyl conformal curvature tensor.
(v) The theory of T. Y. Thomas".

1) T.Y. Thomas" The differential invariants of generalized spaces. Cambridge
University Press, (1935).
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Under a conformal transformation =p2g of the fundamental

tensor, the tensor density of weight _2 defined by

(2.19) G#=g#/g
is invariant where g denotes the determinant formed with g#. Then,
on each curve in V, a parameter a is defined by

(2.20) d, Gdxdx
this parameter a is a conformal one but is not a scalar and its law
of transformation under the transformations of coordinates x’=
x’(x, x, ..., x") is

(2.21)

where Z is the jacobian of the transformation"

Denoting by 5/5a the formal covariant differentiation along the
curve with the use of Christoffel symbols formed with G"

2 - 8X xa /

we define the projtive parameter t by

(2.22) {t, a} --1 6x x *Hdx dx
2
G

and require that t is a conformally invariant scalar under the trans-
formation of coordinates. From this assumption we obtain the law
of transformation of the functions *II]"

2

where
X,

II ing invariant under a conformal transformation =g.
The transformation law of the functions *II] ing thus obtainS,

we can show by a straightforward calculation that the curves defin
by the differential equations

. . d(2.24) x +Gx dx I1]. dx dx d + H 0

is a conformal one, where

g=G ,
and the left-hand side of these equations are the components of a
vr density and the quantities defin by
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(2.25) *C. *II.,+ *

are components of a tensor, where

.
The eonformal invarianee of (2.2.4) and (2.9.5) being evident, we

have thus defined a eonformal eurve and a eonformal tensor. If we
impose the eonformal eondiion

(2.26)

on *C, the functions *H may determined complexly in terms
of G, thus

(2.27) *H= + *

n-2 2(n- 1) (n-2)

where *// * * G*/[//. and //= .
It is shown by a straightforward calculation that, if we substitute

(2.27) in (2.24) and (2.25), we obtain precisely (2.10) and (2.18) and
we know that (2.24) defines the conformal circle and (2.25)defines the
Weyl’s conformal curvature tensor.


