# 47. Notes on Fourier Series (XII). On Fourier Constants. 

By Tatsuo Kawata.

Tokyo.
(Comm. by S. Kakeya, m.i.A., April 12, 1944.)

1. G. H. Hardy proved ${ }^{1)}$ that, if $a_{n}$ are the Fourier sine or cosine coefficients of a function of $L_{p}(0,2 \pi), p>1$, then their arithmetic means $\frac{1}{n} \sum_{1}^{n} a_{k}$ are also. Fourier coefficients of some function of $L_{p}$.

In this section, the author considers the another combination of Fourier coefficients instead of arithmetic means. From the well known K. Knopp's inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{k=n}^{\infty} \frac{a_{k}}{k}\right)^{2} \leqq 4 \sum_{n=1}^{\infty} a_{n}^{2} \tag{1}
\end{equation*}
$$

it readily results that if $a_{n}$ are Fourier coefficients of a function of $L_{2}$, then

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{a_{k}}{k} \tag{2}
\end{equation*}
$$

are convergent ${ }^{2}$ and are Fourier coefficients of a function of $L_{2}$. We ask here whether the similar results will hold for a function of $L_{p}$, $p \geqq 1$. With regard to this we obtain the following theorem.

Theorem 1. Let $p>1$ and $a_{n}$ be the Fourier sine coefficients of a function of $L_{p}$. Then (2) are the Fourier sine coefficients of some function of $L_{p}$.

We have

$$
a_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin k x d x, \quad f(x) \in L_{p}(0, \pi), \quad p>1
$$

Thus

$$
\sum_{k=n}^{\infty} \frac{a_{k}}{k}=\sum_{k=n}^{\infty} \frac{1}{k} \cdot \frac{2}{\pi} \cdot \int_{0}^{\pi} f(x) \sin k x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sum_{k=n}^{\infty} \frac{\sin k x}{k} d x
$$

where the change of order of integration and summation is legitimate since the series $\sum(\sin k x) / k$ is boundedly convergent.

Now since

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n}=\frac{\pi-x}{2}(0<x<\pi)
$$

we get

1) G. H. Hardy, On some points in the integral calculus 66. The arithmetic meanof Fourier constants, Messenger of Math. 58 (1928-29).
2) It is well known that if $a_{n}$ are Fourier sine coefficients, then $\Sigma a_{n} / n$ is convergent.

$$
\sum_{k=n}^{\infty} \frac{a_{k}}{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \frac{\pi-x}{2} d x-\frac{2}{\pi} \int_{0}^{\pi} f(x) \sum_{k=1}^{n} \frac{\sin k x}{k} d x
$$

which is, by the integration by parts on the last integral, equal to

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi} f(x) \frac{\pi-x}{2} d x+\frac{2}{\pi} \int_{0}^{\pi} \sum_{k=1}^{n-1} \cos k x \cdot \int_{0}^{x} f(t) d t d x \\
& \quad=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin \left(n-\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} d x \int_{0}^{x} f(t) d t \\
& \quad=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x \cdot \frac{1}{2 \tan (x / 2)} \int_{0}^{x} f(t) d t-\frac{1}{\pi} \int_{0}^{\pi} \cos n x d x \int_{0}^{x} f(t) d t \\
& \quad=I_{n}+J_{n},
\end{aligned}
$$

say. Since $J_{n}$ are the Fourier coefficients of an integral, we get $J_{n}=o\left(n^{-1}\right)$. Therefore they are Fourier sine ceofficients of a function of $L_{p}$ for any $p>1$.
$I_{n}$ are clearly the Fourier sine coefficients of $\frac{1}{2 \tan (x / 2)} \int_{0}^{x} f(t) d t$ which is a function of $L_{p}, p>1^{11}$.

By the similar arguments we have also the theorem.
Theorem 2. If $a_{n}$ are the Fourier sine coefficients of a function of Zygmund class, then (2) are the Fourier sine coefficients of an integrable function.
2. We shall add a following theorem.

Theorem 3. Let $a_{n}>0$. Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{k=n}^{\infty} \frac{a_{k}}{k}\right) \sin n x \tag{3}
\end{equation*}
$$

is a Fourier sine series, if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{a_{n}}{n} \log n<\infty . \tag{4}
\end{equation*}
$$

This readily follows from the following fact ${ }^{2}$ : If $a_{n} \downarrow 0$, the series $\sum \alpha_{n} \sin n x$ is a Fourier sine series of an integrable function if and only if $\sum a_{n} \log n<\infty$.

We take $\alpha_{n}=\sum_{k=n}^{\infty} \frac{a_{k}}{k}$ whose convergence is a consequence of (4). Thus the sufficiency is immediate Next if (3) is a sine series then $\sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=n}^{\infty} \frac{a_{k}}{k}$ converges and from this $\sum_{n=1}^{\infty} \Delta\left(\sum_{k=n}^{\infty} \frac{a_{k}}{k}\right) \log n<\infty$ follows, which is (4).

[^0]We note that if $a_{n}>0$ and (3) is Fourier sine series then it is also cosine series. This follows by the monotoneness of the sequence $\left\{\sum_{k=n}^{\infty} a_{k} / k\right\}$ and the fact that monotone sine coefficients are also cosine coefficients ${ }^{1)}$.
3. If $\Delta^{2} a_{n}>0, a_{n} \downarrow 0$, then the series

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{5}
\end{equation*}
$$

is a Fourier series of a non-negative integrable function. This is well known. We discuss here the additional conditions in order that the series (5) is a Fourier series of a function of $L_{p}, p>1$.

Let $\sigma_{n}(x)$ be the ( $\mathrm{C}, 1$ ) means of (5) and $\Delta^{2} a_{n}>0, a_{n} \downarrow 0$. Since

$$
\begin{aligned}
S_{n}(x) & =\frac{1}{2} a_{0}+\sum_{k=1}^{n} a_{k} \cos k x \\
& =\sum_{n=0}^{n} \Delta^{2} a_{k} \cdot(k+1) K_{k}(x)+K_{n}(x)(n+1) \Delta a_{n+1}+D_{n}(x) \cdot a_{n+1},
\end{aligned}
$$

where $K_{n}$ and $D_{n}$ denotes Fejèr's and Dirichlet's kernels, we have, by partial summation,

$$
\begin{align*}
& (N+1) \sigma_{N}(x)=\sum_{n=0}^{N} S_{n}(x)=\sum_{n=0}^{N} \sum_{k=0}^{n} \Delta^{2} a_{k}(k+1) K_{k}(x)  \tag{6}\\
& \quad+\sum_{n=0}^{N} K_{n}(x) \cdot(n+1) \Delta a_{n+1}+\sum_{n=0}^{N} D_{n}(x) \cdot a_{n+1} \\
& =\sum_{n=0}^{N} \sum_{k=0}^{n} \Delta^{2} a_{k}(k+1) K_{k}(x)+2 \sum_{n=0}^{N-1}(n+1) K_{n}(x) \Delta a_{n+1} \\
& \quad+2(N+1) K_{N}(x) \cdot a_{N+1} .
\end{align*}
$$

If (5) is a Fourier series of a function of $L_{p}, p>1$, then $\int_{0}^{2 \pi}\left|\sigma_{N}(x)\right|^{p} d x<C$, $C$ beidg a constant inependent of N . Hereafter $C$ denotes a constant which may differ on can occurrence. Since every term of the right hand side of (6) is non-negtive, we have

$$
\begin{aligned}
C> & \int_{0}^{2 \pi}\left|\sigma_{n}(x)\right|^{p} d x \geqq \frac{1}{N^{p}} \int_{0}^{2 \pi}\left\{\sum_{n=0}^{N-1} \Delta a_{n+1} \cdot(n+1) K_{n}(x)\right\}^{p} d x \\
& \geqq \frac{1}{N^{p}} \sum_{k=0}^{N-1} \int_{(k \pi+\alpha) / N}^{((k+1) \pi-\alpha) / \pi}\left\{\sum_{n=0}^{N-1} \Delta a_{n+1}(n+1) K_{n}(x)\right\}^{p} d x \\
& \geqq \frac{1}{N^{p}} \sum_{k=0}^{N-1} \int_{(k \pi+\alpha) / N}^{((k+1) \pi-a) / N}\left\{\sum_{n>N \cdot \beta_{k}}^{N-1} \Delta a_{n+1} \cdot(n+1) K_{n}(x)\right\}^{p} d x,
\end{aligned}
$$

where $0<\alpha<\frac{\pi}{2}, \quad \beta_{k}=\frac{k \pi+\varepsilon}{k \pi+\alpha}, 0>\varepsilon>\alpha$. But for every $x$ such that $\{(k+1) \pi-a\} / N>x>(k \pi+\alpha) / N$, we have

1) A. Zygmund, ibid., p. 129, ex. 5.

$$
(k+1) \pi-\alpha>\frac{((k+1) \pi-\alpha) n}{N}>n x>\frac{n(k \pi+\alpha)}{N}>k \pi+\varepsilon
$$

$\left(n \geqq \beta_{k} \cdot N\right)$. Thus for such $x$ there exists a constant $C$ such that $\sin ^{2} n x>C$. Therefore we have

$$
\begin{aligned}
C & \geqq C \frac{1}{N^{p}} \sum_{k=0}^{N-1} \int_{(k \pi+\alpha) / N}^{((k+1) \pi-a) / N}\left\{\sum_{n>N \beta_{k}}^{n-1} \Delta a_{n+1} \cdot \frac{1}{x^{2}}\right\}^{p} d x \\
& \geqq C \frac{1}{N^{p}} \sum_{k=0}^{N-1}\left(\Delta a_{N}\right)^{n} \cdot\left\{N\left(1-\beta_{k}\right)\right\}^{p} \int_{(k \pi+\alpha) / N}^{((k+1) \pi-\alpha) / N} \frac{d x}{x^{2 p}} \\
& \geqq C\left(\Delta a_{N}^{p}\right) \sum_{k=1}^{N-1} \frac{1}{k^{p}} \cdot \frac{1}{N}\left(\frac{N}{k}\right)^{2 p} \\
& \geqq C N^{2 p-1}\left(\Delta a_{N}\right)^{p} .
\end{aligned}
$$

Thus we get the inequality

$$
\begin{equation*}
\Delta a_{n}=O\left(n^{-2+\frac{1}{p}}\right) \tag{7}
\end{equation*}
$$

Similarly or more simply we get
(8)

$$
a_{n}=O\left(n^{-1+\frac{1}{p}}\right), \quad \Delta^{2} a_{n}=O\left(n^{-8+\frac{1}{p}}\right)
$$

which, however, does not need for our purposes
Next we assume that
(9)

$$
\sum \Delta a_{n} \cdot n^{1-\frac{1}{p}}<\infty
$$

and that (7) holds. Then

$$
\begin{equation*}
\sum \Delta^{2} a_{n} n^{2-\frac{1}{p}}<\infty \tag{10}
\end{equation*}
$$

which is evident by partial summation.
Now by (6) we have

$$
\begin{aligned}
& \left\{\int_{0}^{2 \pi}\left|\sigma_{N}(x)\right|^{p} d x\right\}^{\frac{1}{p}} \leqq \frac{C}{N}\left[\int_{0}^{2 \pi}\left\{\sum_{n=0}^{N-1} \sum_{k=0}^{n} \Delta^{2} a_{k}(k+1) K_{k}(x)\right\}^{p} d x\right]^{\frac{1}{p}} \\
& \quad+\frac{C}{N}\left[\int_{0}^{2 \pi}\left\{\sum_{n=0}^{N-1}(n+1) K_{n}(x) \cdot \Delta a_{n+1}\right\}^{p} d x\right]^{\frac{1}{p}} \\
& \quad+\frac{C}{N}\left[\int_{0}^{2 \pi}(N+1)^{p} K_{N}^{p}(x) a_{N+1}^{p} d x\right]^{\frac{1}{p}}
\end{aligned}
$$

which does not exceed by Minkowski inequality

$$
\begin{aligned}
& \frac{C}{N}\left[\sum_{n=0}^{N-1} \sum_{k=0}^{n} \Delta^{2} a_{k}\left\{\int_{0}^{2 \pi}(k+1)^{p} K_{k}^{p}(x) d x\right\}^{\frac{1}{p}}\right. \\
& \quad+\sum_{n=0}^{N-1} \Delta a_{n+1}\left\{\int_{0}^{2 \pi}(n+1)^{p} K_{n}^{p}(x) d x\right\}^{\frac{1}{p}} \\
& \quad+a_{N+1}\left\{\int_{0}^{2 \pi}(N+1)^{p} K_{k}^{p}(x) d x\right\}^{\frac{1}{p}}
\end{aligned}
$$

Sinc

$$
\begin{gathered}
\int_{0}^{2 n}(n+1)^{p} K_{n}^{p}(x) d x=O\left(\int_{0}^{2 \pi}\left(\frac{\sin ^{2} n x}{x^{2}}\right)^{p} d x\right) \\
O=\left(n^{2 p-1} \int_{0}^{\infty}\left(\frac{\sin ^{2} u}{u^{2}}\right)_{0}^{p} d u\right)=\left(n^{2 p-1}\right)
\end{gathered}
$$

we have

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}\left|\sigma_{N}(x)\right|^{p} d x\right)^{\frac{1}{p}}=O\left(\frac{1}{N} \sum_{n=0}^{N} \sum_{k=0}^{n} \Delta^{2} a_{k} \cdot k^{2-\frac{1}{p}}\right)  \tag{11}\\
& \quad+O\left(\frac{1}{N} \sum_{n=0}^{N-1} \Delta a_{n+1} \cdot n^{2-\frac{1}{p}}\right)+O\left(a_{N+1} \cdot N^{1-\frac{1}{p}}\right)
\end{align*}
$$

The first term of the right is $O(1)$ by (10), the second term is also $O(1)$ by (9), Since

$$
a_{N}=\sum_{n=N}^{\infty} \Delta a_{n}=O\left(\sum_{n=N}^{\infty} \frac{1}{n^{2-\frac{1}{p}}}\right)
$$

by (6) which is $O\left(N^{-1+\frac{1}{p}}\right)$, the last term is also $O(1)$. Thus

$$
\int_{0}^{2 \pi}\left\{\sigma_{N}(x)\right\}^{p} d x=O(1)
$$

from which, by the known result, it results that the series (5) is a Fourier series of a function of $L_{p}$. Thus we get the theorem.

Theorem 4. Let $\Delta^{2} a_{n} \cdot a_{n} \downarrow 0$. If the series (5) is a Fourier series of a function of $L_{p}, p>1$, then (7) holds. Conversely if (7) and (9) hold, then (5) is a Fourier series of a function of $L_{p}, p>1$.

As a corollary we obtain
Cor. Let $\Delta^{2} a_{n} \cdot a_{n} \downarrow 0$. If (7) holds then (5) is a Fourier series of a function of $L_{p^{\prime}}$ where $1<p^{\prime}<p$.

This is trivial, since (6) implies the convergence of $\sum \Delta a_{n} \cdot n^{1-\frac{1}{p}}$.


[^0]:    1) A. Zygmund, Trigonometrical series (1935), Warsaw p. 244. This is a special case of Hardy-Littlewood's maximal theorem.
    2) A. Zygmund, ibid., p. 112.
