
218 [Vol. 20,

Notes on Fourier eres (XII).
On Fourier Constants.

By Tatsuo KAWATA.
Tokyo.

(Comm. by S. K.mi:YA, M.I.,., April 12, 1944.)

1. G.H. Hardy proved1) that, if as are the Fourier sine or cosine
coefficients of a function of L(0, 2), p > 1, then their arithmetic means
1

ak are also. Fourier coefficients of some function of L.
In this section, the author considers the another combination of

Fourier coefficients instead of arithmetic means. From the well known
K. Knopp’s inequality

(1)

it readily results that if a are Fourier coefficients of a function of
L, then

(2) ], a

are convergent) and are Fourier coefficients of a function of L. We
ask here whether the similar results will hold for a function of L,
p 1. With regard to this we obtain the following theorem.

Theorem 1. Let p > 1 and as be the Fourier sine coefficients of
a function of L. Then (2) are the Fourier sine coe2icients of some
function of L.

We have

Thus

a=-- f() sin kdx, f() e L(0, r), p > 1.

where the change of order of integration and summation is legitimate
since the series , (sin kx,)/k, is boundedly convergent.

Now since . sin n_____ = u-___x (0 < x < )
,-1 2

we get

1) G.H. Hardy, On some points in the integral calculus 66. The arithmetic mean.
of Fourier constants, Messenger of Math. 58 (1928-29).

2) It is well known that if an are Fourier sine coefficients, then Dan]n is con-
vergent.
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a_ 2 f(x) r

k-r, T

sinkx-x dx_ 2__ f(x) ] dx
2 r -1 k

which is, by the integration by parts on the last integral, equal to

sin (n---)x
2 sin __x

2

dx I:f(t)dt
=__2 sin nxdx.

2 tan (x/2)

=.+&,

say. Since J are the Fourier coefficients of an integral, we get
J,=o(n-1). Therefore they are Fourier sine ceofiicients of a function
of L for any p ::> 1.

1 If(t)dtI. are clearly the Fourier sine coefficients of
2 tan (x/2)

which is a function of L, p > 11).
By the similar arguments we have also the theorem.
Theorem 2. If a, are the Fourier sine coefficients of a function

of Zygmund class, then (2) are the Fourier sine coecients of an
integrable function.

2. We shall add a following theorem.
Theorem 3. Let a, O. Then the series

(3) ] a sinnx
-1 k----

is a Fourier sine series, if and only if

(4) , a, log n <

This readily follows from the following factS>: If a, $ 0, the series
J a, sin nx is a Fourier sine series of an integrable function if and
only if a. log n <2 o.- akWe take a.=_,- whose convergence is a consequence of (4).

Thus the sufficiency is immediate Next if (3) is a sine series then
1 a

--1----k-- converges and from this -’ log n < c follows,

which is (4).

1) A. Zygmund, Trigonometrical series (1935), Warsaw p. 244. This is a special
case of Hardy-Littlewood’s maximal theorem.

2) A. Zygmund, ibid., p. 112,
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We note that if a 0 and (3) is Fourier sine series then it is
also cosine series. This follows by the monotoneness of the sequence

{ ak/k) and the fact that monotone sine coefficients are also cosine

coefficients1).
3. If Ja 0, a 0, then the series

(5) --- +E a. cos nx

is a Fourier series of a non-negative integrable function. This is well
known. We discuss here the additional conditions in order that the
series (5) is a Fourier series of a function of L, p :> 1.

Let as(x) be the (C, 1) means of (5) and /a:> 0, a 0. Since

1 ao+, ak cos kxS(z)

] 3a. (k+1)K(z)+K,(x) (n+ 1)3a=+1+D,(x). a,+,

where K. and D. denos Fejr’s and Dirichlet’s kernels, we have, by
partial summation,

(6) (N+1)a(x)= &(x)= 32a(k+l)K(x)
n-0 n-0 k-0

+, K.(x) (n+ 1)3a.+x+ D.(x) .a.+x
n-0

N N-1
za(k+)K(z)+ 2 (n+ )K.(z)za.+

n-O k-O

+ 2(N+ 1)K(x).a+.

If () is a Pourier series of a funeion of , > 1, ghen ()ld<,
beid a eonstan ineenden o N. Hereafter denotes a eonsan

which may differ on can occurrence. Sinee every term of he righ
hand side o (6) is non-negive, we have

0 -0

1 N-I ((k+l)-a)/g N-1

d(kg+a)/N

1 1((k+l)g-)/N -1
( ,. (l)()d,

where 0 a <:-" ’ krc-{-’a
0 a. But for every such that

((k-t- 1)-)/N> > (Icr-i-a)/N, we have

1) A. Zygmund, ibid., p. 129, ex. 5.
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(k-l- 1)-a> ((k+l)-a)n n(k.-l-a)> nx k+,
N N

(n .N), Thus for such x there exists . constant C such that
sin nx C. Therefore we have

N-1 ((k+l)u-a)/N ZZ
i -o (}+)/

CN-(a)
Thus we get the inequality

(7) a,=O(n-+)
Similarly or more simply we get

(8) a.=O(n-+) a.=O(n-+)
which, however, doea not nd for our purposes

Next we assame that

(9) za,-n- <
and that (7) holds. Then

(o) %.n- <
which is evident by partial summation.

N,w by (6) we have

JO k-O

which ds not exc by Minkowski inequality

-0



222 T. KAWATA. [Vol. 20,

Sinc

we have

(11) JaN(x) I"dx 0 Yl a’a,
n=O k=0

/1 - )+ +

The first term o the right is 0(1) by (10), the second term is also
9(1) by (9), Since

by (6) which is O(N-+), the last term is also O(1). Thus

fom which, by the known result, it results that the series (5) is a
Fourier series of a function of L. Thus we get the theorem.

Theorem 4. Let a, .a O. If the series (5) is a Fourier series
of a function of L,, p 1, then (7) holds. Conversely if (7) and (9)
hold, then (5) is a Fourier series of a function of L, p 1.

As a corollary we obtain
Cor. Let Za.a O. If (7) holds then (5) is a Fourier series of

a function of L, where 1 p’ p.

This is trivial, since (6) implies the convergence of a,. n-.


