131. On Brownian Motions in n-Space.

By Shizuo Kakutani.
Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.I.A., Nov. 13, 1944.)

1. The one-dimensional Brownian motion $\{x(t, \omega) \mid-\infty<t<\infty$, $\omega \in \Omega\}$ is defined as a real-valued temporally homogeneous differential process with no moving discontinuities and having a Gaussian distribution : ${ }^{1)}$

$$
\begin{equation*}
\operatorname{Pr}\{\omega \mid a<x(t, \omega)-x(s, \omega)<b\}=\frac{1}{\sqrt{2 \pi(t-s)}} \int_{a}^{b} e^{-\frac{u^{2}}{2(t-s)}} d u \tag{1}
\end{equation*}
$$

where $-\infty<s<t<\infty$ and $-\infty \leqq a<b \leqq \infty$. The n-dimensional Brownian motion (or equivalently, the Brownian motion in n-space $\left.R^{n}\right)\left\{\boldsymbol{x}(t, \omega)=\left\{x_{i}(t, \omega), i=1, \ldots, n\right\} \mid-\infty<t<\infty, \omega \in \Omega\right\}$ is an n-system of mutually independent one-dimensional Brownian motions $x_{i}(t, \omega)$ (with the same normalization). It is known that this definition is independent of the choice of coordinate system in R^{n}.

The mathematical theory of Brownian motions was discussed by N. Wiener ${ }^{2}$ and P. Lévy ${ }^{33}$, and many important results were obtained. But, for the most part, their investigations were restricted to the oneor the two-dimensional case or concerned only with the properties of Brownian motions in which the dimension number n does not play an important rôle. The purpose of this paper is to discuss some new properties of Brownian motions which do not appear in the one- or the two-dimensional case. Our main results are stated in Theorems 1, 2 and 4.

It is to be noticed that in the Brownian motion in 3 -space almost all paths constitute a nowhere dense set in R^{3} (Theorem 4) and tend to ∞ as $t \rightarrow \infty$ (Theorem 2), while, as may be shown ${ }^{4}$ by appealing to the theory of harmonic functions, in the two-dimensional Brownian motion almost all paths describe a curve everywhere dense in the entire plane and come back to any neighborhood of any given point infinitely many times (for infinitely large value of t). It is known that in the two-dimensional Brownian motion almost all paths have infinitely many double points. We have a conjecture that already in 3 -space almost all paths have no double points, although thus far we could prove this only for 5 -space (Theorem 1).
2. Lemma $1^{5)}$. If $x(t, \omega)$ is a one-dimensional Brownian motion and if $-\infty<t_{0}<t_{1}<\infty$, then

1) $\operatorname{Pr}\{\omega \mid A\}$ denotes the probability (=measure) of the set of all $\omega \in \Omega$ with the property A, i.e. the probability of A.
2) N. Wiener, Generalized harmonic analysis, Acta Math., 54 (1932).
3) P. Lévy, Les mouvements browniens plans, Amer. Journ. of Math., 62 (1940).
4) This will be discussed in a forthcoming paper of the author.
5) Cf. P. Lévy, loc. cit. 3).

$$
\begin{gather*}
\operatorname{Pr}\left\{\omega \mid \max _{t_{0} \leq t \leq t_{1}}\left(x(t, \omega)-x\left(t_{0}, \omega\right)\right)>\eta\right\} \tag{2}\\
=2 \operatorname{Pr}\left\{\omega \mid x\left(t_{1}, \omega\right)-x\left(t_{0}, \omega\right)>\eta\right\} \equiv \frac{2}{\sqrt{2 \pi\left(t_{1}-t_{0}\right)}} \int_{\eta}^{\infty} e^{-\frac{u^{2}}{2\left(t_{1}-t_{0}\right)}} d u, \eta>0,
\end{gather*}
$$

and hence
(3)

$$
\begin{aligned}
& \operatorname{Pr}\left\{\omega\left|\max _{t_{0} \leq t \leq t_{1}}\right| x(t, \omega)-x\left(t_{0}, \omega\right) \mid>\eta\right\} \\
& \quad \leqq \frac{4}{\sqrt{2 \pi\left(t_{1}-t_{0}\right)} \int_{\eta}^{\infty} e^{-\frac{u^{2}}{2\left(t_{1}-t_{0}\right)}} d u, \eta>0 .}
\end{aligned}
$$

Lemma 2.

$$
\begin{equation*}
\int_{\eta}^{\infty} e^{-\frac{u^{2}}{2}} d u \leqq \frac{1}{\eta} e^{-\frac{\eta^{2}}{2}}, \quad \eta>0 \tag{4}
\end{equation*}
$$

3. Theorem 1. In the Brownian motion in $R^{n}(n \geqq 5)$, almost all paths have no double points.

Proof. It suffices to discuss the case $n=5$. Further it is sufficient to prove that
(5) $\quad \alpha \equiv \operatorname{Pr}\left\{\omega \mid x_{i}(s, \omega)=x_{i}(t, \omega), i=1, \ldots, 5\right.$, for some $s \in I$ and $t \in J\}=0$
for any two disjoint closed intervals $I=\left(s_{0}, s_{1}\right)$ and $J=\left(t_{0}, t_{1}\right)$ with $s_{1}<t_{0}$. It is easy to see that

$$
\begin{align*}
\alpha & \leqq \operatorname{Pr}\left\{\omega| | x_{i}\left(s_{1}, \omega\right)-x_{i}\left(t_{0}, \omega\right) \mid<2 \eta, i=1, \ldots, 5\right\} \tag{6}\\
& +\sum_{i=1}^{5} \operatorname{Pr}\left\{\omega\left|\max _{s \in I}\right| x_{i}(s, \omega)-x_{i}\left(s_{1}, \omega\right) \mid>\eta\right\} \\
& +\sum_{i=1}^{5} \operatorname{Pr}\left\{\omega\left|\max _{t \in J}\right| x_{i}(t, \omega)-x_{i}\left(t_{0}, \omega\right) \mid>\eta\right\}
\end{align*}
$$

hence, by (1) and (3),

$$
\begin{align*}
\alpha & \leqq\left(\frac{1}{\sqrt{2 \pi\left(t_{0}-s_{1}\right)}} \int_{-2 \eta}^{2 \eta} e^{-\frac{u^{2}}{2\left(t_{0}-s_{1}\right)}} d u\right)^{5} \tag{7}\\
& +5 \frac{4}{\sqrt{2 \pi\left(s_{1}-s_{0}\right)}} \int_{\eta}^{\infty} e^{-\frac{u^{2}}{2\left(s_{1}-s_{0}\right)}} d u+5 \frac{4}{\sqrt{2 \pi\left(t_{1}-t_{0}\right)}} \int_{\eta}^{\infty} e^{-\frac{u^{2}}{2\left(t_{1}-t_{0}\right)}} d u \\
& \leqq\left(\frac{4 \eta}{\sqrt{2 \pi d(I, J)}}\right)^{5}+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta}{\sqrt{I T}}}^{\infty} e^{-\frac{u^{2}}{2}} d u+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta}{\sqrt{I J}}}^{\infty} e^{-\frac{u^{2}}{2}} d u,
\end{align*}
$$

where $d(I, J)=t_{0}-s_{1}=$ the distance of I and $J,|I|=s_{1}-s_{0}=$ the length of $I,|J|=t_{1}-t_{0}=$ the length of J, and $\eta>0$ is an arbitrary positive number.

Let us now divide I and J into p closed subintervals I_{k} and J_{l} of the lengths $|I| / p$ and $|J| / p$, respectively: $I=\bigvee_{k=1}^{p} I_{k}, J=\cup_{l-1}^{p} J_{l}$. Then

$$
\begin{align*}
& \alpha \leqq \sum_{k=1}^{p} \sum_{i-1}^{p} \operatorname{Pr}\left\{\omega \mid x_{i}(s, \omega)=x_{i}(t, \omega), i=1, \ldots, 5, \text { for some } s \in I_{k}\right. \tag{8}\\
& \text { and } \left.t \in J_{l}\right\}
\end{align*}
$$

$$
\begin{aligned}
& \leqq \sum_{k=1}^{p} \sum_{l=1}^{p}\left\{\left(\frac{4 \eta_{p}}{\sqrt{2 \pi d\left(I_{k}, J_{l}\right)}}\right)^{5}+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta_{p}}{\sqrt{\left|I_{k}\right|}}}^{\infty} e^{-\frac{u^{2}}{2}} d u+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta_{p}}{\sqrt{\sqrt{J_{l}}}}}^{\infty} e^{-\frac{u^{2}}{2}} d u\right\} \\
& \leqq p^{2}\left\{\left(\frac{4 \eta_{p}}{\sqrt{2 \pi d(I, J)}}\right)^{5}+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta_{p} v^{p}}{\sqrt{|I|}}}^{\infty} e^{-\frac{u^{2}}{2}} d u+\frac{20}{\sqrt{2 \pi}} \int_{\frac{\eta_{p} v^{p}}{\sqrt[V]{|J|}}}^{\infty} e^{-\frac{u^{2}}{2}} d u\right\}
\end{aligned}
$$

where η_{p} is an arbitrary positive number.
Let us now put $\eta_{p}=p^{-\sigma}$, where σ is a fixed real number satisfying $2 / 5<\sigma<1 / 2$. Then, by using the inequality (4), it is easy to see that the right hand side of (8) tends to 0 as $p \rightarrow \infty$. This completes the proof of Theorem 1.
4. Theorem 2. In the Brownian motion in $R^{n}(n \geqq 3)$ almost all paths tend to ∞ as $t \rightarrow \infty$, i.e.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sum_{i-1}^{3}\left|x_{i}(t, \omega)-x_{i}(0, \omega)\right|^{2}=\infty \tag{9}
\end{equation*}
$$

for almost all ω.
Proof. It suffices to discuss the case $n=3$. Let M be an arbitrary positive number. Let us put $t_{k}=k^{\frac{3}{4}}, k=1,2, \ldots$ Then $t_{k}<t_{k+1}, k=1$, $2, \ldots, t_{k} \rightarrow \infty$ and $t_{k+1}-t_{k} \rightarrow 0$. It is easy to see that

$$
\begin{align*}
\beta_{k} \equiv & \operatorname{Pr}\left\{\omega \left|\left|x_{i}(t, \omega)-x_{i}(0, \omega)\right|<M, i=1,2,3 \text { for some } t\right.\right. \text { with } \tag{10}\\
& \left.t_{k} \leqq t \leqq t_{k+1}\right\} \\
& \leqq \operatorname{Pr}\left\{\omega| | x_{i}\left(t_{k}, \omega\right)-x_{i}(0, \omega) \mid<2 M, i=1,2,3\right\} \\
& +\sum_{i=1}^{3} \operatorname{Pr}\left\{\left.\omega\right|_{t_{k} \leq t \leq t_{k+1}}\left|x_{i}(t, \omega)-x_{i}\left(t_{k}, \omega\right)\right|>M\right\} \\
\leqq & \left(\frac{1}{\sqrt{2 \pi t_{k}}} \int_{-2 M}^{2 M} e^{-\frac{u^{2}}{2 t_{k}}} d u\right)^{3}+3 \frac{4}{\sqrt{2 \pi\left(t_{k+1}-t_{k}\right)}} \int_{M}^{\infty} e^{-\frac{u^{2}}{2\left(t_{k+1} t_{k}\right)}} d u \\
\leqq & \left(\frac{4 M}{\sqrt{2 \pi t_{k}}}\right)^{3}+\frac{12}{\sqrt{2 \pi}} \int_{\frac{M}{\sqrt{t_{k+1}-t_{k}}}}^{\infty} e^{-\frac{u^{2}}{2}} d u
\end{align*}
$$

and further that $\sum_{k=1}^{\infty} \beta_{k}<\infty$. The last fact follows from (10) by using the inequality (4) and the relation $t_{k+1}-t_{k}=O\left(k^{-\frac{1}{4}}\right)$. From this follows, by Borel-Cantelli's theorem, that for almost all ω there exists an integer $k_{0}=k_{0}(\omega)$ such that $\max _{i=1,2,3}\left|x_{i}(t, \omega)-x_{i}(0, \omega)\right|>M$ for $t>t_{k_{0}}$ $=k_{0}^{\frac{3}{4}}$. Since M is arbitrary, this proves our theorem.
5. Theorem 3. Let $S=S\left(x^{0}, r\right)$ be a sphere in R^{3}, with a center $\boldsymbol{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ and a radius r. Denote by $\rho=\left(\sum_{i-1}^{3}\left|x_{i}^{0}\right|^{2}\right)^{\frac{1}{2}}$ the distance of \boldsymbol{x}^{0} from the origin of \boldsymbol{R}^{3}. Then the probability

$$
\begin{align*}
r & \equiv \operatorname{Pr}\left\{\omega \mid \boldsymbol{x}(t, \omega)-\boldsymbol{x}(0, \omega) \in S\left(\boldsymbol{x}^{0}, r\right) \text { for some } t>0\right\} \tag{11}\\
& \equiv \operatorname{Pr}\left\{\omega\left|\sum_{i=1}^{3}\right| x_{i}(t, \omega)-x_{i}(0, \omega)-\left.x_{i}^{0}\right|^{2}<r^{2} \text { for some } t>0\right\}
\end{align*}
$$

which is clearly ${ }^{1)}$ a function of ρ / r, tends to 0 as $\rho / r \rightarrow \infty$.
Remark. By appealing to the theory of potential functions in R^{3}, it may be shown ${ }^{2}$ that $\gamma=1$ if $\rho \leqq r$ and $\gamma=r / \rho$ if $\rho>r$.

Proof of Theorem 3. Without the loss of generality we may assume that $x_{1}^{0}=\rho, x_{2}^{0}=x_{3}^{0}=0$ and $r=1$. Put $t_{k}=k^{\frac{3}{4}}, k=1,2, \ldots$ as in the proof of Theorem 2. Then in the same way as in above

$$
\begin{align*}
r_{k} \equiv & \operatorname{Pr}\left\{\omega \mid \boldsymbol{x}(t, \omega)-\boldsymbol{x}(0, \omega) \in S\left(\boldsymbol{x}^{0}, 1\right) \text { for some } t\right. \text { with } \tag{12}\\
& \left.t_{k} \leqq t \leqq t_{k+1}\right\} \\
\leqq & \operatorname{Pr}\left\{\omega \left|\left|x_{1}(t, \omega)-x_{1}(0, \omega)-\rho\right|<1,\left|x_{2}(t, \omega)-x_{2}(0, \omega)\right|<1,\right.\right. \\
& \left.\left|x_{3}(t, \omega)-x_{3}(0, \omega)\right|<1 \text { for some } t \text { with } t_{k} \leqq t \leqq t_{k+1}\right\} \\
\leqq & \operatorname{Pr}\left\{\omega \left|\left|x_{1}\left(t_{k}, \omega\right)-x_{1}(0, \omega)-\rho\right|<2,\left|x_{2}\left(t_{k}, \omega\right)-x_{2}(0, \omega)\right|<2,\right.\right. \\
& \left.\left|x_{3}\left(t_{k}, \omega\right)-x_{3}(0, \omega)\right|<2\right\} \\
+ & \sum_{i=1}^{3} \operatorname{Pr}\left\{\left.\omega\right|_{t_{k} \leq t \leq t_{k+1}} \max ^{2}\left|x_{i}(t, \omega)-x_{i}\left(t_{k}, \omega\right)\right|>1\right\} \\
\leqq & \left(\frac{1}{\sqrt{2 \pi t_{k}}} \int_{\rho-2}^{\rho+2} e^{-\frac{u^{2}}{2 t_{k}}} d u\right)\left(\frac{1}{\sqrt{2 \pi t_{k}}} \int_{-2}^{2} e^{-\frac{u^{2}}{2 t_{k}}} d u\right)^{2} \\
+ & \frac{4}{\sqrt{2 \pi\left(t_{k+1}-t_{k}\right)}} \int_{1}^{\infty} e^{-\frac{u^{2}}{2\left(t_{k+1}-t_{k}\right)}} d u \\
\leqq & \left(\frac{4}{\sqrt{2 \pi t_{k}}}\right)^{3}+\frac{12}{\sqrt{2 \pi}} \int_{\frac{1}{\sqrt{t_{k+1}-t_{k}}}}^{\infty} e^{-\frac{u^{2}}{2}} d u,
\end{align*}
$$

and consequently

$$
\begin{align*}
& r \leqq \operatorname{Pr}\left\{\left.\omega\right|_{0 \leq t \leq t_{k_{0}}}\left(x_{1}(t, \omega)-x_{1}(0, \omega)\right)>\rho-1\right\}+\sum_{k=k_{0}}^{\infty} \tau_{k} \tag{13}\\
& \quad \leqq \frac{2}{\sqrt{2 \pi}} \int_{\frac{\rho-1}{\nu t_{k_{k}}}}^{\infty} e^{-\frac{u^{2}}{2}} d u+\sum_{k=k_{0}}^{\infty}\left\{\left(\frac{4}{\sqrt{2 \pi t_{k}}}\right)^{3}+\frac{12}{\sqrt{2 \pi}} \int_{\frac{1}{v_{t_{k+1}-t_{k}}}}^{\infty} e^{-\frac{u^{2}}{2}} d u\right\}
\end{align*}
$$

for any positive integer k_{0}.
Let now $\rho>n^{4}$, and take $k_{0}=n^{8}$. Then it is easy to see that the right hand side of (13) tends to 0 as $n \rightarrow \infty$. This shows that $r \rightarrow 0$ as $\rho \rightarrow \infty$, completing the proof of Theorem 3 .
6. Theorem 4. In the Brownian motion in $R^{n}(n \geqq 3)$, almost all paths constitute a nowhere dense set in R^{n}.

Proof. It suffices to show this for $n=3$. Let $\boldsymbol{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ be an arbitrary point in R^{3} different from the origin of R^{3}. It suffices to show that for almost all ω there exists an $r=r(\omega)$ such that

[^0](14)
$$
\boldsymbol{x}(t, \omega)-\boldsymbol{x}(0, \omega) \in S\left(\boldsymbol{x}^{0}, r(\omega)\right)
$$
for no $t>0$, or equivalently
\[

$$
\begin{equation*}
\sum_{i=1}^{3}\left|x_{i}(t, \omega)-x_{i}(0, \omega)-x_{i}^{0}\right|^{2}>(r(\omega))^{2} \tag{15}
\end{equation*}
$$

\]

for any $t>0$.
In order to show this, let $r_{n}>0$ be a sufficiently small number such that
(16) $\operatorname{Pr}\left\{\omega \mid \boldsymbol{x}(t, \omega)-\boldsymbol{x}(0, \omega) \in S\left(\boldsymbol{x}^{0}, r_{n}\right)\right.$ for some $\left.t>0\right\}<2^{-n}$.

The existence of such an r_{n} follows from Theorem 3. Our proposition then follows from this immediately by using Borel-Cantelli's theorem.

[^0]: 1) This follows from the homogeneity property of the Brownian motion.
 2) This will be discussed in a forthcoming paper. Here we shall give a direct proof.
