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1. The one-dimensional Brownian motion (x(t, )I
oe 2} is defined as a real-valued temporally homogeneous differential
process with no moving discontinuities and having a Gaussian distri-
bution

(1) Pr( a < x(t, o)-x(s, ,o) b} 2=(t-s) e du,

where -st and -ab. The n-dimensional
Brownian motion (or equivalently, the Brownian motion in n-space
R’) (x(t, )= (x(t, ), i 1, ..., n} t , e 9} is an n-system
of mutually independent one-dimensional Brownian motions x(t, ) (with
the same normalization). It is known that this definition is indepen-
dent of the choice of coordinate system in .

The mathematical theory of Brownian motions was discussed by
N. Wiener) and P. Lvy), and many important results were obtained.
But, for the most part, their investigations were restricted to the one-
or the two-dimensional case or concerned only with the properties of
Brownian motions in which the dimension number n does not play an
important rble. The purpose of this paper is to discuss some new
properties of Brownian motions which do not appear in the one- or
the two-dimensional case. Our main results are stated in Theorems 1,
2 and 4.

It is to be noticed that in the Brownian motion in 3-space
almost all paths constitute a nowhere dense set in R (Theorem 4)
and tend to as t (Theorem 2), while, as may be shown) by
appealing to the theory of harmonic functions, in the two-dimensional
Brownian motion almost all paths describe a curve everywhere dense
in the entire plane and come back to any neighborhood of any given
point infinitely many times (for infinitely large value of t). It is known
that in the two-dimensional Brownian motion almost all paths have
infinitely many double points. We have a conjecture that already in
3-space almost all paths have no double points, although thus far we
could prove this only for 5-space (Theorem 1).

2. Lemma 1). If x(t, ) is a one-dimensional Brownian motion
and if - to t , then

1) Pr(olA} denotes the probability (=measure) of the set of all e 9 with the
property A, i.e. the probability of A.

2) N. Wiener, Generalized harmonic analysis, Acta Math., 5, (1932).
3) P. L4vy, Les mouvements browniens plans, Amer. Journ. of Math., 62 (1940).
4) This will be discussed in a forthcoming paper of the author.
5) Cf. P. Lvy, loc. cit. 3).
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(2) Pr[o max (x(t, o)-x(to, )) > }
tott

2
2 " 2(t-to)

2Pr{o x(t, )--x(to, o1 > }- 2=(t-t0) e
and hence

(3)

du, :> O,

Lemma 2.

(4) e du N > O.

3. Theorem 1. In the Brownian motion in R’(n 5), almost
all paths have no double points.

Proof. It suffices to discuss the case n=5. Further it is sufficient
to prove that

(5) a =-- Pr(o x(s, o)=x(t, o), i= 1, ..., 5, for some s e I
and teJ}=O

for any two disjoint closed intervals I=(so, s) and J=(to, t) with
s to. It is easy to see that

(6) a Pr{o x(s, o)-x(to, o)1 < 2, i= 1, ..., 5}

ted

hence, by (1) and (3),
u2

(- /2u(to-sl) -, 2 2

+

(4)+. 20

J
20 e du/2 d(I, J)

e- du+

where d(LJ)=to-s=the distance of I and J, [I]=s-so=the lenh
of L J[ =t-to=the length of J, and y > 0 is an arbitrary positive
number.

Let us now divide I and J into p closed subintervals I and J of
the lenhs II/p and J l/p, respectively" I= U-h, J= UJ. Then

(8) a f_f_Pr{o [x(s, o)=x(t, o), i= 1, ..., 5, for some s e h
and te}
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where is an arbitrary positive number.
Let us now put y.=p-", where a is a fixed real number satis-

fying 2/5 a 1/2. Then, by using the inequality (4), it is easy to
see that the right hand side of (8) tends to 0 as p- . This com-
pletes the proof of Theorem 1.

4. Theorem 2. In the Brownian motion in R(n 3) almost all
paths tend to co as t i. e.

(9) limt_ x(t, o)-x(O, )=
for almost all .

Proof. It suffices to discuss the case n= 3. Let M be an arbitrary

positive number. Let us put t=k, k=l, 2, Then t < t+, k=l,
2, ..., t and t+-tO. It is easy to see that

(10) aPr{a ] x(t, w)-x(0, o) < M, i= 1, 2, 3 for some t with
t t g t}
Pr{w ] x(t, o)-x(O, )] < 2M, i= 1, 2, 3}

+Z-Pr{o max x(t, o).-x(t, )[ > M}
tkttk+

2 2

2
e du +32=(t+_t) M

e du

M

Vtk+l-tk

and further that _fl < . The last fact follows from (10)by

using the inequality (4) and the relation t+-t=O(k-z). From this
follows, by Borel-Cantelli’s theorem, that for almost all there exists
an integer ko= ko(w) such that max x(t, w)-x(0, to)! > M for

=k. Since M is arbitrary, this proves our theorem.
$. Theorem 3. Let S= S(x, r) be a sphere in Ra, with a center

x=(x?, xg, xg) and a radius r. Denote by p=(_]x [) the dtance
of x fr the origin of Ra. Then the probability

(11) =Pr(o Ix(t, o)-x(0, o) e S(x, r) for some t > 0}

Pr(o ,’- x(t, o)-x(O, o)-x < r for some t > 0},
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which is clearly) a function of p/r, tends to 0 as p/r-).
Remark. By appealing to the theory of potential functions in R,

it may be shown) that = 1 if p r and =r/[ if p r.
Proof of Theorem 3. Without the loss of generality we may

3

assume that x, , x x 0 and r 1. Put t kz, k 1, 2, as in
the proof of Theorem 2. Then in the same way as in above

(12) ------Pr{o Ix(t, o)-x(0, o)e S(x, 1) for some t with

Pr{o x(t, o)-x(O, o)-p[ < 1, x(t, o)-x(O, )[ < 1,
x(t, (o)-x(0, )1 < 1 for some t with t t ___< t/}

Pr{o x(t, o)-x(O, o)--I < 2, x(t, o)-x,.(O, o) < 2,
x(t, o)-x(O, o) < 2}

(13) r < Vr{o max (x(t, ,o)-x(O, o)) >
O<_.t<_tko

for any positive integer k0.
Let now p => n, and take ko-n. Then it is easy to see that the

right hand side of (13) tends to 0 as n- o. This shows that r-0
as p-- , completing the proof of Theorem 3.

6. Theorem 4. In the Brownian motion in R(n 3), almost
all paths constitute a nowhere dense set in R.

Proof. It suffices to show this for n 3. Let x (x, x, x) be an
arbitrary point in R different from the origin of Ra. It suffices to
show that for almost all (o there exists an r=r(,o) such that

1) This follows from the homogeneity property of the Brownian motion.
2) This will be discussed in a forthcoming paper. Here we shall give a direct

proof.



652 S. KAKUTANI. [Vol. 20,

(14) x(t, o)-x(O, o) e S(x
for no t > 0, or equivalently

for any t O.
In order to show this, let r. 0 be a sufficiently small number

such that

(16) Pr(o x(t, ,o)-x(O, ) e S(x, r) for some t 0} 2-.
The existence of such an r follows from Theorem 3. Our proposition
then follows from this immediately by using Borel-Cantelli’s theorem.


