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1. Let E be a measurable set of points in |2]| <1. We define
its hyperbolic measure o(E) by a(E')=” rdrdf (z=7re®). Similarly

B (11—
the hyperbolic length A(C) of a rectifiable curve C is defined by
dz|
ol Lzl
©=| S

Let G be a Fuchsian group of linear transformations, which make
|z]| <1 invariant and D, be its fundamental domain, which contains
2,=0 and is bounded by at most enumerably infinite number of ortho-
gonal circles to |z|=1, 2z, be equivalents of z=0 and n(r) be the
number of 2z, in |2]<r. For any 2 in |z| <1, we denote its
equivalent in D, by (). Let E(f) be the set of points (r¢%) in D,
which are equivalent to points on a radius z=7re? (0<r <<1). In my
former paper®, I have proved

Theorem 1. (i) If E (1—|2n|)=1c0, then E’(H) is everywhere dense
in Dy for almost all e’” on |z|=1, (i) If Z(I—Izn])<oo then
l}tjll | (re®®) | =1 for almost all ¢ on |z|=1.

Theorem 2. The mnecessary and sufficient condition that there
exists a set e on |z|=1, which is invariant by G and 0 <me <2, is
that g(l—lzn ) < oo.

Theorem 1 (i) is an extension of Myrberg’s theorem®, who assumed
that D, lies with its boundary entirely in |z| <1, in which case, it is
easily proved that g(l—l Zn|)=o0.

2. Let 7,=¢", 7,=¢" be two points on |z|=1, |w|=1 respective-

ly. Then the pair (7;,7;) can be considered as a point on a torus
20505 2r, 0< ¢ =<2r). For any measurable set £ on £, we define

its measure mE by mE=SSEd0dgo, so that m2=4r%

Let S be any substitution of G and T': 7.=S8(7), 75=S(7.), then
the totality of T constitutes a group &, which is isomorphic to G.
Hopf proved the theorem?® :
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Theorem 8 (Honf). If o(Dy) << o, then there does mot exist a set
E on 2, which s invariant by & and 0 <mE < 4%
From Hopf’s lemma 1, it is easily proved that if (D) < <, then

n(r) = Elo%s;:_.’ (0<r<<1). We will prove the following extension of
Hopf’s theorem.
Theorem 4 (Main theorem). If @n(r) (1—7)> 0, then there does

not exist a set E on 2, which is tnvariant by & and 0 <mE << 4
3. We will use some lemmas in the proof.
Lemma 1. Let E be a wmeasurable set on £ and f(0, ¢) be its
chracteristic function and

u(z, w)=u(re?, pe*)

= _1_,S2"SZ" £, ¢Y1=1%) (1= PAd'dy/
47® Jo Jo (1 —2r cos (0’-—0)+7‘2)(1—2p cos (¢’ — ¢)+¢*)

0<r<1,0Zp<1).

Then u(z, w) — f(0, ¢) almost everywhere on 2, when 2 — ¢, w— e*
non-tangentially to |z|=1, |w|=1 respectively.
Proof. By the strong density theorem,

Lg”"”r"”'ma 0)—F (O, 20 | dodp—0, as 60, &—0 (1)
o8 Joo-8)o-0r" 0 7o g ’

almost everywhere on £. It can be proved that if (1) holds at (6, ¢o),
then u(z, w) — f (6o, ¢o), When z — e, w — ¢**° non-tangentially to |z|=1,
| w|=1 respectively.

Lemma 2. If errgn(r) (1—7) >0, then there does mot exist a set
e on |2|=1, which is invariant by G and 0 < me <2m.

°°Proof'. Under the hypothesis, it is easily proved that S:;n(’r)dr= o,
or ”Z_E)(l—lz,.l)= o, so that the lemma follows from Theorem 2.

Lemma 3. Let Ky:|2| <1 be a disc contained in D, and K, be
its equivalents and rL(r) be the measure of the part of |z|=r contained
in iOK,, If l_i__)rﬁln(r)(l—r)> 0, there exists p, —1, such that L(p,) >
a>0 (»=1,2,...).

Lemma 4. Let Ky:|z|=7, and K: ‘lz:g'z ‘=1’o (a]|<1) be two

circles in 2| <1. We transform K into K, by S:

S: z'=ew-li-'—ﬁ‘£z—, such that S(K)=K,, S(0)=pe™.

Then S(K))=K s obtained from K by a.rotation about z=0.



642 M. TsuJL [Vol, 20,

Let ¢ be a set on |z|=1 contained in an arc C:n=>|argz—
arga|=7>0. Then S(e) is contained in an arc C on |z|=1, whose
center 1s at ¢, such that mC=xR (R=radius of K) and

1 mS(e)
—me > —=" > Ame,
2 mC
where x= 2,” , A= sin® 7(1 —15) .
79 8in% 7 81

4. Proof of Theorem 4. Suppose that there exists a set E on £,
which is invariant by & and 0<<mE <<4r%. Let f(0,¢) be its
characteristic function and we construct u(z, w) as Lemma 1. Then
u(z, w) = f(0, ¢) almost everywhere on £, when z— e, w—¢* non-
tangentially to |z|=1, |w|=1 respectively. For any substitution S
of G,

u( S(z), S(w)) =u(z, w). 1

Let E(6,), E(p)) be the sub-sets of E, which lie on the line
f=const.=@, and ¢=const.=¢, respectively, then

mE=jz"mE(0)do=ﬁ”mE(¢)d¢. @)
Now
_ 1 F()A—p)de
w0, w) P So 1—2pcos (¢ —p)+p%
where F(so)=21—ﬂsz"f(0, o)ds=-LmEe). 3)

Let E(0)=0 on a set e of positive measure, then since such a set is
invariant by G, we have me=27 by Lemma 2. Hence mE=0 by (2),
which contradicts the hypothesis, so that mE(0) 30 for almost all 4.
Hence if 7 is small, then there exists a set e of measure me>2r—e
(e <), such that

mE(0) = 47 for any fee.
Let E) be a sub-set of E consisting of points (4, ¢), such that
E :fee, lo—0|=7. 4)
If E\(0) is defined as E(f) with respect to E), then
mEy(0) = mE(0)—27 = 47—27=27, (5)
so that mE =J.emE' (9)d0 = 27 me = 27 (2r—¢) = 2n7.

By Egoroff’s theorem, there exists a closed sub-set E; of E; of
positive measure consisting of points (6, ¢), such that
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E,: (1) Oee, | p—0| =7, where ¢ is a closed sub-set of e,

such that me, > 2r—e, (6)
(ii) mEy0) =%, where Eyf) is defined as E(d) with respect
tO EO’ (7)

(iii) u(z, w) — 1 uniformly, when z — ¢?, w — ¢® from the inside
of angular domains: 4(0): |arg (1—z¢ %) | < w, 4(p):
|arg(1—we )| <w, where o is so chosen that, if an
equivalent K; of Kp: |z|<m, intersects a radius z=7e"
(0 <r<1), then its non-euclidean center z; is contained in
4(6).

Hence if |z;—e? | <d(e), | w—e® | <d(e), wed(p), then

1—eZulz;, w) <1, ®)
where d(c) depends on e only and is independent of (4, ¢) on Ej.

Let L(r) be defined as Lemma 3. Then there exists o, > 1, such
that L(p,)=a (»=1,2,...). Now the part of |z|=p, contained in

ZOK,. consists of a set of ares. If we project these arcs from z=0

on |z|=1, we have a set of arcs on |z|=1. We divide these arcs
into two classes: S)a;(0,)+ 3] Bi(p,), where a;(p,) contains at least one
J J

point 0;e¢ and B;(s,) does not contain such points. If we denote the
arc length of an arc « on |2|=1 by |«|, then

L(p,) =§ | ai(p,) l+]E,l Bilp) | Za.

Let ¢, be the complementary set of e, then me; <<e, so that if we
take ¢ < %—, then 33| Bi(p) | Sme<e < %. Hence
J

m=m(v)
L/(pv)= j2=1 ‘ a’j(tov) l Z,qu ’ (9)
where «;(p,) is the projection of an arc on |z|=p, contained in Kj,
which intersects a radius z=7re¥ (0 <r <C1), such that ;€e,.

Let z;=1;6"%i be its non-euclidean center and put U w)=u(z;, w).
Then U,(w) is a bounded harmonic function in |w|< 1, so that by
Fatou’s theorem, lim U (w) exists almost everywhere on |w|=1, when
w tends to |w|=1 non-tangentially. We write this limiting value
by u(z;, ). Hence there exists a sub-set Ey(f;) of Ey(0;), such that
mEy0;)=mEy0;) and for any ¢eE0;), the limiting value u(z;, %)
exists.

Let 0;€e, 9 Ey(6;), then by (7),

mE(0;) 27, (10)

and from (6), if »=w, Ey06;) is contained in an arc C; on |z|=1,
such that

Ci: n=|argz—g;| = L. (11)
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Let S; be the substitution of G, such that S/(K;)=K, S;j(2;)=0
and put S;(K)=K;. Then by Lemma 4, K; is obtained from K; by
a rotation about 2=0. Let |2|=p, intersect K; in an arc, whose pro-
jection from 2=0 on |z|=1 be @;p,). We put

m=m(y)

Av= Z aj(pu); A=1£—I£1°Av=(A1+A2+"')(A2+A3+"°)'"’

g=1

then, since |ap,) |=|a;(p,) 1, mAy=L’(py)=ﬁ|aj(py)lz%, so that
P
ma > —02—‘. . (12)

By (10), (11) and Lemma 4, S,-(E'é(ﬂj)) is contained in an arc Cj
on |z|=1, concentric with @j(p,) and mC;=xR; (R;=radius of Kj),
such that

mC;
where x, 2 depend on 7 anly. Sinece x > 2r, C; contains ;(p,).
We put
M,=S,(E0))+S:(E(02)) +-+ +Su( (EY6.)), (m=m()),
MP=M,+M,n+-, M=lim M,=(M;+ M+ ) (Me+Mz+---)... .

y>c0

> 2mEy0;) = A7, (13)

Let pe A, then pe 4, (n=1,2,...), so that
¢ e (p,) < Cp (1< in<mla).
Hence if » < »,, then by (13),
mM®-Cs,) 2 mM,,- C;) = m(S,,(E40;,))-Cs,)
=m(S;,(Ei6,,)) = 17mC;, .
Since C; — ¢ for n—> oo, the lower density of M® at ¢ is =17, so
that mM» = mA _>_=—g—. Hence

mM=lim mM®» = % .

V>0

Let pe M, then pe M, (n=1,2,..), so that
0e S, (Ei6;))(1 < u < misn)) -

Let K;, be the disc, such that S; (K;)=XK, intersecting a radius
z=reli, (0Zr<1, 0;, € &), whose non-euclidean center is z;,.
Then
Sile)=y¢;, € E«b;,), S;, (2;,)=0.

By making w — ¢*4, in (8), we have by (1),
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1—e < ulz;, e¥in)=u(0,e*) <1,

if [2;, —e"n|<d(e). Since [z, —e“n|—>0 for n-— oo, we have
#(0, ¢¥)=1. Hence u(0, ¢*)=1 at every point ¢ on M. Since the set
on |w|=1, such that u(0, w)=1 is invariant by G and mM >0, we
have by Lemma 2, mM=2r, so that #(0, w)=1 almost everywhere

on |w|=1. Since by (3), u(0, ew)— mE'(sv) almost everywhere on
|w|=1, we have mE(y)=2r almost everywhere on |w]|=1, so that

by (2), mE=4x% which contradicts the hypothesis, which proves the
Theorem.

Theorem 5. If io(l—lzn [) < oo, then there exists a set E on 2,

which is invariant by & and 0 < mE < 4%

Proof. By theorem 2, there exists a set e¢ on |z|=1, which is
invariant by G and 0 <me <27. Then the product set E=eXe is
invariant by & and 0 <mE=(me)* <4r’. We can also prove directly
as follows.

Let Q: }0—%‘§e, |¢—n[ge(e <—1%> be a square contained in
£ and «,a, B,B be arcs on |z|=1, such that

<<

=€,

K1

T T T
: largz—— ar z——hl ==
[ ’ 23 2 ‘ 4 9 | =

B: largz—n|<e, G: Iargz—vrlﬁg,

and @ be the complementary set of a+B on |z2|=1. Let Ky:|z| <7
be a disc contained in the fundamental domain of G and K, 2,=7n¢%
be equivalents of K, z=0 by G respectively, such that S,.(K,)= K,
Sn(z,) =0, 2, € K, and p, be its radius.

(i) If 6,ea, then, since e<~1%, for any 2z on «a,f,

|argz—6,| 21—7;-. Hence by Lemma 4,

mSu(a) <Xlrma=F 0, mS.p) <Zp.,
2r T T
so that
mS.(Q) <*~~pn < 2exPy -

(iil) If f,ea then for any 2z on B, |arg z—0n|_2_~1%—, so that
mS, () <———pn Since mS,(a) < 27, we have

mSn(Q) < 2€7cpn .
We have the same inequality, if 6, €p.
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Since as easily be proved, p,= 7'°(11_‘ z””l)<1 11—z,

we have ZO pn << oo, If we take e so small, that
=

S mSu(Q) <2ex 3 pu <47,
then E= E S,.(Q) is invariant by & and 0 <<mE <EmSn(Q) < 4n?,

n=0

g.e.d.
Remark. The condition Z})(l—-lzn |) <o is equivalent to

X:n(r)d'r< co, Hence we have three cases:
M [nyir=e; @ mar)a-r>0, @ limur)1-n=o,

(11) ﬂn(r)dr oo,

In case (I) (a), by Theorem 4, there does not exist a set E on £,
which is invariant by & and 0 <mE <4n% In case (II), by Theorem 5,
there exists such invariant sets. In case (I) (b) we have no informations
about the existence of such invariant sets. It seems that there exist
groups of class (I) (b), for which such invariant sets exist and groups,
for which such invariant sets do not exist, but I have no examples
for it.

5. Consider n points: 7=e",...,7,=¢e? on |z|=1, ... |z.|=1
respectively. Then the pair (74, ..., 7,) can be considered as a point on an
n-dimensional torus £, (0<6; <2r, j=1,2,...,n) and the measure of

a set E on £, is defined by mE=SE~--Sd01 .. df,, so that m®,=(2x)".

Let S be any substitution of G and T: 7.=S(p), ..., 7.=S(7.). Then
the totality of T constitues a group &,, which is isomorphic to G. We
will prove:

Theorem 6. If m=3, then there exists always a set £ on 2,
which is tnvariant by &, and 0 <mE << (@)™

Proof. We assume n=3, the other case can be proved similarly.

Let @Q: lﬂ——%lge, lo—7|Ze, ¢—%l§e<s<—l%) be a cube
on 2; in (6, ¢, ¢)-space and a, @, B3, B, 7,7 be arcs on |z|=1, such that

T T
. |ar z—-—'S—,
, B9 1=%

RI

T
:lar z—»«‘_<_ ,
a I g ) =

B:largz—n|<e, P largz—-ﬂé%,

T ’a!'g‘z—-%r’ée, largz—-—l<«~

‘(l

and @ be the complementary set of a+5+7 on |z|=1.
Let K,:|2| <7 be a disc contained in the fundamental domain
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of G and K,, z,=re"s be equivalents of K, 2=0 by G respectively
such that S.(K.,)=K, S.(2,)=0, z,€K, and p, be its radius, then

[~
since K, are non-overlapping, 3 p% << 1.
0

n=

(i) If 0,e€ @, then, since ¢ <-1%, for any z on «,B3,7, |argz—0,|
> T 5o that by Lemma 4, mS.(0) < mme=%p,, mS.(p)
16 2r T
3
<0, mSu(r) <% p,. Hence mS.(Q) g(ﬁ) 02 < 4200,
T T T
(i) If 0,ea then for any z on B,7, |arg z—ﬁnlz—l%—, so that
mSn(B) L& p,, mS(r) < p,. Since mS.(a) <27, we have
T T
2.2
mSu(Q) < 2 g2 < et
T
We have the same inequality, if 6,€B or 0,€7.
If we take ¢ so small, that EomSn(Q) <e2x220 P25 =% < 8r°,

then E’=§E)Sn(Q) is invariant by & and 0 <mE < i}omSn(Q) < 88,
q.ed.



