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Abstract

In this paper, we calculate the annihilator of an Artinian module over a
complete local ring; moreover, we present a certain generalization of Grothen-
dieck’s Non-Vanishing Theorem for local cohomology modules over a local
ring which is the homomorphic image of a Gorenstein local ring. Finally,
as application of our results, we study the finiteness of local cohomology
modules.

1 Introduction

Throughout this paper, let R denote a commutative Noetherian ring (with iden-
tity) and I be an ideal of R. For an R-module M, the ith local cohomology module
of M with respect to I is defined as

Hi
I(M) = lim

−→
n≥1

Exti
R(R/In, M).

We refer the reader to [1] for more details about local cohomology. I.G. Macdon-
ald in [5] developed the theory of attached prime ideals and secondary
representations of module, which is in a certain sense dual to the theory of
associated prime ideals and primary decompositions. This theory was success-
fully applied to the theory of local cohomology by him and R. Y. Sharp [7]. An
R-module M is said to be secondary if M 6= 0 and , for each a ∈ R, the endo-
morphism ϕa : M → M defined by ϕa(m) = am (for m ∈ M) is either surjective
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or nilpotent. If M is secondary, then p = Rad(0 : M) is a prime ideal, and M
is said to be p-secondary. Any non-zero quotient of a p-secondary module is a
p-secondary.
Before going on, let us fix the following notation: first of all, given any ideal b of
R, the radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b

for some n ∈ N}; moreover, we denote by V(b) the set {p ∈ Spec(R) : p ⊇ b}.
Finally, given an R-module L, we denote by AttRL its set of attached prime ideals
and also we denote by AsshRL the set {p ∈ AssR L : dim R/p = dim L}. Given
an Artinian R-module A, it is known (see [1, 7.2.11]) that its set of attached prime
ideals is finite, and Rad(0 :R A) = ∩p∈AttR Ap.
In Section 2, building upon a result due to L. Melkersson (see [8, Theorem 1.6]),
we provide an alternative expression for Rad(0 :R A) in case R is a complete local
ring (see Theorem 2.4).
One important result in the study of local cohomology modules is the so-called
Non-Vanishing Theorem (see [1, 7.3.2]); it says that, for a local ring (R,m) and a
finitely generated R-module M of (Krull) dimension d, one has that Hd

m(M) 6= 0,
and

AttR(Hd
m(M) = {p ∈ AssR(M) | dim R/p = d}.

In Section 3, we show (see Theorem 3.2) that if, in addition, R is a homomorphic
image of a Gorenstein local ring, then for any 0 ≤ t ≤ d,

{p ∈ AttR(Ht
m(M) : dim R/p = t} = {p ∈ AssR(M) : dim R/p = t}.

In particular, we will see (see Remark 3.3 and Theorem 3.2) that [2, Corollary 1]
and [3, Theorem 2.2], can be deduced from our Theorem 3.2. For any unex-
plained notation and terminology we refer the reader to [1] and [6].

2 Artinian modules

Remember that one says that a module is representable provided it can be
expressed as finite direct sum of secondary modules.

Lemma 2.1. Let R be a commutative Noetherian ring, let A be a representable
R-module, and let x ∈ R which is not a unit. Then, for any n ≫ 0, AttR(A) ∩ V(x) ⊆
AttR((0 :A xn)).

Proof. Let AttR(A) ∩ V(x) = {pi}
t
i=1, and AttR(A) − V(x) = {pi}

s
i=t+1. Now

let A = T1 + ... + Ts, be a minimal secondary representation of A, where Ti is
pi-secondary for every i = 1, ..., s. By definition for all n ≫ 0, we have xnTi = 0,
for all 0 ≤ i ≤ t. Since x 6∈ pi, for all t + 1 ≤ i ≤ s, it follows that xnTi = Ti

for all t + 1 ≤ i ≤ s, and hence xn A = Tt+1 + · · · + Ts is a minimal secondary
representation for xnA where Ti is pi-secondary for every i = t+ 1, ..., s. Therefore
by definition of attached prime ideals, AttR(x

n A) = {pi}
s
i=t+1=AttR(A) − V(x)

for all n ≫ 0. Now for all n ≫ 0 there is an exact sequence:

0 → (0 :A xn) → A → xnA → 0

That implies AttR(A) ⊆ AttR(x
n A) ∪ AttR((0 :A xn)), now by AttR(x

n A) =
AttR(A)− V(x), it is easy to see that AttR(A) ∩ V(x) ⊆ AttR((0 :A xn)).
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Definition 2.2. (See [4]) Let M be an R-module and I be an ideal of R. The

R-module M is said to be I-cofinite if Supp M j V(I) and Ext
j
R(R/I, M) is finitely

generated for all j.

The main reason for introducing cofinite modules is the below statement, due
to Melkersson, because it plays a key role in the proof of the main result of this
section (namely, Theorem 2.4); the interested reader may like to consult [8, Theo-
rem 1.6].

Theorem 2.3. Let (R,m) be a Noetherian local ring, let I be an ideal of R, and let A be
an Artinian R-module. Then:
A is I−cofinite if and only if HomR(R/I, A) is a finitely generated R-module.
If, in addition, R is complete, then A is I-cofinite if and only if Rad(I + p) = m for any
p ∈ Att A.

Theorem 2.4. Let (R,m) be a complete Noetherian local ring. Let M be a non-zero
Artinian R-module. Set J := Rad(0 :R M) and S = {p ∈ Spec R : M is not
p− co f inite and dim R/p = 1}. If M is not finitely generated, then J =

⋂

p∈S
p.

Proof. (i). First we show that S is non-empty. By our assumption and by [1, Corol-
lary 7.2.12], Att M * {m}. Therefore, we can deduce that there exists q ∈ Att M
such that q 6= m. Hence there exists p ∈ V(q) such that dim R/p = 1. Now in
view of Theorem 2.3, M is not p-cofinite and hence p ∈ S, that means S 6= ∅.
Now assume that p ∈ S. Hence by [8, Theorem 1.6], there exists q ∈ Att M such
that Rad(p+ q) 6= m. Consequently, dim R/(p+ q) = dim R/p = 1 that implies
q ⊆ p. Since 0 :R M ⊆ q ⊆ p, it follows that J ⊆ p and so J ⊆

⋂

p∈S
p. In order to

prove
⋂

p∈S
p ⊆ J, suppose on the contrary that

⋂

p∈S
p * J. Since J =

⋂

q∈Att M
q, it fol-

lows that there is x1 ∈
⋂

p∈S
p such that x1 6∈ q for some q ∈ Att(M). Suppose that

dim R/q = t. Then t ≥ 1 and there are elements x2, ..., xt ∈ m such that x1, x2, ..., xt

forms a system of parameters for R-module R/q. Hence dim R/q+ (x2, ..., xt) =
1 and so there exists a prime ideal p of R such that p ∈ Ass R/q+ (x2, ..., xt) and
dim R/p = 1. Therefore, as q ⊆ p, according to Melkersson’s theorem [8, Theo-
rem 1.6], it follows that M is not p-cofinite and so p ∈ S and hence x1 ∈ p. But
0 = dim R/q+ (x1, ..., xt) ≥ dim R/p = 1, which is a contradiction.

3 Attached primes

In [2, Corollary 1 ], the set Att Hdim M
m (M) is calculated and Theorem 3.2, for

t = dim M easily follows from this. Therefore, the results of this paper at point
i = dim M are very interesting and general.
The aim of this section is to show a certain variant of the Non-Vanishing Theorem
for local cohomology modules; before doing so, we want to review the below
statement ([1, 11.2.12]), because it plays some role in the proof of the main result
of this section.
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Theorem 3.1. Let (R,m) be a Noetherian local ring, and let M be a non-zero finitely
generated R-module. Let p ∈ Ass M and dim R/p = n. Then Hn

m(M) 6= 0 and
p ∈ Att Hn

m(M).

Now, building upon our previous results, we are ready to establish the main
result of this paper, namely:

Theorem 3.2. Let (R,m) be a Noetherian local ring, which is a homomorphic image of
a Gorenstein local ring, and let M be a finitely generated R-module of dimension d, then
for all 0 ≤ t ≤ d, we have:

{p ∈ AttR(Ht
m(M) | dim R/p = t} = {p ∈ AssR(M) | dim R/p = t}.

Proof. Suppose that 0 ≤ t ≤ d. By Theorem 3.1, we have {p ∈ AssR(M) |
dim R/p = t} ⊆ {p ∈ AttR(Ht

m(M) | dim R/p = t}. Now set,

S := {Ń | Ń is a submodule of M and dim Ń < t}.

It is easy to see that as in [1, Lemma, 7.3.1], S has a largest element with respect
to inclusion, as, N. Set G := M/N, we have Ht

m(G) ∼= Ht
m(M), and G has no

non-zero submodule of dimension less than t. In fact, if N 6= 0 then we set,
{p ∈ AssR(M) | dim R/p < t} := {pi}

s
i=1, and I :=

⋂s
i=1 pi. It is easy to see that

N = ΓI(M), and hence AssR(G) = {p ∈ AssR(M) | dim R/p ≥ t}. Hence we
may assume, without loss of generality, that M is a non-zero finitely generated
R-module such that {p ∈ AssR(M) | dim R/p < t} = ∅. Now, if

{p ∈ AttR(Ht
m(M) | dim R/p = t} 6= {p ∈ AssR(M) | dim R/p = t},

then there is q ∈ AttR(Ht
m(M)), such that dim R/q = t, and q 6∈ AssR(M). Now

if q ⊆
⋃

p∈AssR(M) p, then byPrime Avoidance Theorem we have q ⊆ p, for some

p ∈ AssR(M), but since, t = dim R/q ≥ dim R/p ≥ t, it follows that q = p ∈
AssR(M), which is a contradiction. So we have q 6⊆

⋃
p∈AssR M p. Hence there is an

element x ∈ q, such that x 6∈
⋃

p∈AssR M p. Now, for all n ≫ 0 the exact sequence

0 −→ M
xn

−→ M −→ M/xn M −→ 0

induces a long exact sequence

· · · −→ H
j
m(M)

xn

−→ H
j
m(M) −→ H

j
m(M/xn M) −→

H
j+1
m (M)

xn

−→ H
j+1
m (M) −→ · · ·

Consequently, it yields the following short exact sequence,

0 −→ Ht−1
m (M)/xn Ht−1

m (M) −→ Ht−1
m (M/xn M) −→ (0 :Ht

m(M) xn) −→ 0.

But by Lemma 2.1 for all n ≫ 0, we have q ∈ AttR(Ht
m(M)) ∩ V(x) ⊆

AttR((0 :Ht
m(M) xn)), and hence by the above exact sequence we have

q ∈ AttR(Ht−1
m (M/xn M)), and so by [1, Corollary, 11.3.5], it follows that
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dim R/q ≤ t − 1, which is a contradiction, so we obtained the desired conclu-
sion; therefore,

{p ∈ AttR(Ht
m(M) | dim R/p = t} = {p ∈ AssR(M) | dim R/p = t}.

In what follows, we would like to pinpoint the connections of our Theorem 3.2
with earlier results that have already appeared in the literature.

Remark 3.3. In [9], the authors obtained (see [9, Theorem 1.4 and Theorem 2.9
(ii)]) an expression for the attached prime ideals of local cohomology modules
supported at the maximal ideal, whereas in Theorem 3.2 we only have calculated
a subset of the attached prime ideals of Hi

m(M); however, the reader will easily
note that the description we provide of the elements of the set of attached primes
of Hi

m(M) is quite different from the one given in [9], so it is not clear for us the
connection between both descriptions. On the other hand, in [2, Corollary 1],
the set of attached primes of Hdim M

m (M) is calculated; one can easily see that this
result immediately follows from our Theorem 3.2 (just taking in our statement t
= dimM).
Our next goal is to provide an alternative proof of [3, Theorem 2.2], using The-
orem 3.2; from this point of view [3, Theorem 2.2], can be regarded as a conse-
quence of our Theorem 3.2.

Theorem 3.4. Let (R,m) be a complete local ring of dimension d. Let I be an ideal of R.

Assume that Hd−1
I (R) is representable and Hd

I (R) = 0. Then

1) AttR Hd−1
I (R) ⊆ {P ∈ Spec(R) | dim R/P = d − 1, Rad(I + P) = m} ∪

Assh R.
2) {P ∈ Spec(R) | dim R/P = d − 1, Rad(I + P) = m} ⊆ AttR Hd−1

I (R).

Proof. Let P ∈ Spec(R) be such that dim R/P = d − 1 and Rad(I + P) = m. Then

Hd−1
I (R/P) = Hd−1

I+P(R/P)) = Hd−1
m (R/P). Since R is complete, it follows that R

is a homomorphic image of a Gorenstein local ring. Therefore, by our Theorem

3.2, we conclude that P ∈ Att Hd−1
m (R/P) = Att Hd−1

I (R/P). On the other hand,

Hd
I (R) = 0 and so Hd

I (P) = 0. The following exact sequence,

0 −→ P −→ R −→ R/P −→ 0,

induce the following exact sequence

Hd−1
I (R) −→ Hd−1

I (R/P) −→ 0,

Since Hd−1
I (R) has a P-secondary representation, it follows that P ∈ AttR Hd−1

I (R)
and so

{P ∈ Spec(R) | dim R/P = d − 1, Rad(I + P) = m} ⊆ AttR Hd−1
I (R).

Now let q ∈ AttR Hd−1
I (R). Then by definition, there is a homomorphic image

of Hd−1
I (R) which has annihilator equal to q. This implies that qHd−1

I (R) 6=

Hd−1
I (R) ( indeed, otherwise, one can easily check through snake’s Lemma that

Hd−1
I (R) = 0, a contradiction), and therefore Hd−1

I (R) ⊗ R/q 6= 0. Clearly
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Cd(I, R) = d − 1 and so by [1, Exercise, 6.1.10], Hd−1
I (R/q) ∼= Hd−1

I (R)⊗ R/q 6=
0. Therefore by Grothendick’s vanishing Theorem, dim R/q ≥ d − 1. Now, if
dim R/q = d − 1, then by Lichtenbaum Hartshorne vanishing Theorem,
Rad(I + q) = m and consequently

q ∈ {P ∈ Spec(R) | dim R/P = d − 1, Rad(I + P) = m}.

If dim R/q = d, then by definition q ∈ Assh R.

Definition 3.5. (See [1, definition, 9.1.3]) Let M be a finitely generated R-module
and I be an ideal of R. We define the finiteness dimension f I(M) of M relative to
I by

f I(M) = inf{i ∈ N | Hi
I(M) is not finitely generated }

Corollary 3.6. Let (R,m) be a Noetherian local ring, which is a homomorphic image of
a Gorenstein local ring, and let M be a finitely generated R-module of dimension d ≥ 1,
then the followings hold:
i) AttR(H1

m(M)) − {m} = {p ∈ AssR(M) | dim R/p = 1}.
ii) We have fm(M) ≥ 2, if and only if {p ∈ AssR(M) | dim R/p = 1} = ∅.

Proof. i) By [1, Corollary, 11.3.5], it follows that for all p ∈ AttR(H1
m(M)) − {m},

we have dim R/p = 1. Now the assertion follows from Theorem 3.2.
ii) The assertion follows from the part i) and [1, Corollary, 7.2.12].

Theorem 3.7. Let (R,m) be a Noetherian local ring, which is a homomorphic image of
a Gorenstein local ring, and let M be a finitely generated R-module of dimension d, then
for all p ∈ AttR(Ht

m(M))− V(m), we have

depth(Mp) + dim R/p ≤ t

.

Proof. We use induction on t. When t = 1, the assertion holds by Corollary 3.4(i).
So suppose that t ≥ 2 and that the result has been proved for smaller values
of t. Suppose that p ∈ AttR(Ht

m(M)) − V(m). Now if dim R/p = t, then the
assertion holds by Theorem 3.2. So by [1, Corollary, 11.3.5], we can suppose that
dim R/p = j ≤ t − 1. Now if p ∈ AssR(M), then we have depth Mp = 0, and
hence the assertion holds. Therefore we can assume that p 6∈ AssR(M). Now we
set,

S := {Ń | Ń is a submodule of M and dim Ń < j},

it is easy to see that as in [1, Lemma, 7.3.1], S has a largest element with re-
spect to inclusion, as, N. Set, G := M/N. We have Ht

m(G) ∼= Ht
m(M), and

G has no non-zero submodule of dimension less than t. In fact if N 6= 0, set,
{p ∈ AssR(M) | dim R/p < j} = {pi}

s
i=1, and I :=

⋂s
i=1 pi. It is easy to see

that N = ΓI(M), and hence AssR(G) = {p ∈ AssR(M) | dim R/p ≥ j}. Also
by Np = 0, we have Gp

∼= Mp, hence by replacing M by G, we may assume
without loss of generality that M is a non-zero finitely generated R-module such
that {p ∈ AssR(M) | dim R/p < j} = ∅. Now if p ⊆

⋃
q∈AssR M q, then by

Prime Avoidance Theorem we have p ⊆ q, for some q ∈ AssR(M). But since,
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j ≤ dim R/q ≤ dim R/p = j, it follows that p = q ∈ AssR(M), which is a
contradiction. So we have p 6⊆

⋃
q∈AssR(M) q, hence there is an element x ∈ p,

such that x 6∈
⋃

q∈AssR M q. Arguing like in the proof of Theorem 3.2 (switching

the roles of q and p, one can show that p ∈ AttR(Ht−1
m (M/xn M)), for all n ≫ 0.

So by the inductive hypothesis we have

depth((M/xn M)p) + dim R/p ≤ t − 1,

But this implies

depth(Mp) + dim R/p = depth((M/xn M)p) + 1 + dim R/p ≤ t.

This completes the inductive step.
As an immediate cosequence of Theorem 3.7 and the so-called Grothendieck’s
Finiteness Theorem (see [1, Theorem, 9.5.2]), we obtain the following:

Corollary 3.8. Let (R,m) be a Noetherian local ring, which is a homomorphic image of
a regular local ring, and let M be a finitely generated R-module of dimension d, and let
t = fm(M). Then for all p ∈ AttR(Ht

m(M))− V(m), we have

depth(Mp) + dim R/p = t.
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