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Abstract

In this paper we compute the Nielsen numbers N( f m) and the Nielsen
type numbers NPm( f ) and NΦm( f ) for all m, for periodic maps f on tori and
nilmanifolds.

For fixed m, there are known formulas for these numbers for arbitrary
maps on tori and nilmanifolds. However when seeking to determine these
numbers for all m for periodic maps, fascinating patterns and shortcuts are
revealed. Our method has two main thrusts. Firstly we study N( f m), NPm( f )
and NΦm( f ) on primitives (maps whose linearizations consist of primitive
roots of unity), and then secondly we employ fibre techniques to give an in-
ductive approach to the general case adding one primitive at a time. This
approach is made possible by the eigen structure of the linearizations of the
maps involved.

1 Introduction

The Nielsen numbers N( f ), and the Nielsen type numbers NPm( f ) and NΦm( f )
of a self map f are f homotopy invariant lower bounds for respectively the num-
ber of fixed points of f , for the number of periodic points of period exactly m, and
for the number of periodic points of all periods dividing m. On tori these lower
bounds are sharp ([12]) and it seems likely they are too for nilmanifolds.

Received by the editors in October 2016 - In revised form in January 2017.
Communicated by Dekimpe, Gonçalves, Wong.
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As shown in [1, 2, 7, 8, 3] (see also Theorems 2.1 and 2.2) there are simple
formulas for the numbers N( f m), NPm( f ) and NΦm( f ) for fixed m on tori and
nilmanifolds. These formulas involve the linearization F of f (see [10] and section
2.1), which any self map of a torus or nilmanifold possesses. In fact this is a two
way thing, since any square matrix F gives rise to a map of the torus or nilmani-
fold, and the linearization of this map is F itself. Furthermore the computations
of the numbers N( f m), NPm( f ) and NΦm( f ) are independent of the choice of
matrix representing the linearization (which is defined only up to conjugation).
We therefore abuse notation and from now on fail to distinguish between the map
f and its linearization F. In particular, we will write N(Fm), NPn(F) and NΦn(F)
for N( f m), NPn( f ) and NΦn( f ) respectively.

Since, as we have said, for fixed m there are simple formulas for all of the
numbers N(Fm), NPm(F) and NΦm(F) on tori and nilmanifolds, the reader may
be wondering why the paper is either necessary or useful. There are, however,
several points that make this study worth while.

1. We compute N(Fm), NPm(F) and NΦm(F) for all m for periodic maps.
2. There are fascinating patterns that occur among these numbers.
3. There are shortcuts for determining the N(Fm), NPm(F) and NΦm(F) for

all m for periodic maps on tori and nilmanifolds.
To give some idea of the efficiency and simplicity of our considerations, we

give an example of a periodic map of period 3, 354, 120. We show that there are
only 33 different possible non-zero values for the numbers N(Fm), and that these
values can be computed by hand without the aid of a computer. In fact the N(Fm)
are given as a product of easily computed powers of the primes (in this case at
most 4) in the prime decomposition of the period of the map (3, 354, 120). We
show that NPm(F) = 0 outside the set of m for which the values of the N(Fm)
first occur, and use shortcuts developed in the body of the paper, to compute the
NPm(F) when m belongs to this same set, and to place them in a single table.
Furthermore, for an arbitrary m, we are then able to compute NΦm(F) from the
sum of an easily discerned subset of the set of 33 non zero values of the NPq(F).
In fact when N(Fm) 6= 0 it is even easier, in that for this example the NΦm(F) can
then be computed as the product of at most 4 numbers already computed in the
compilation of the said table.

In terms of patterns the simplest and most fascinating, on tori and nilman-
ifolds, are for primitive matrices (the eigenvalues are primitive roots of unity,
Definition 4.1). If F is such a matrix of period n = ps1

1 ps2
2 · · · psr

r , where p1, . . . , pr

are distinct primes, and r ≥ 1, then all three of the Numbers N(Fm), NPm(F) and
NΦm(F) can be easily read off from at most 1 + ∑ si computations of the N(Fm).
With the possible exception of 1, each of the corresponding m comprise of n di-
vided by the power of one of the primes pi in the prime decomposition of n, and
the value of N(Fm) for that m is the same pi raised to a certain power described
below. More complex periodic matrices (maps) are then computed inductively
starting with a single primitive and then adding one primitive at a time. Thus the
main body of the paper is divided into two parts, the first dealing with primitives,
the second with the just mentioned inductive procedure.

We illustrate the part dealing with primitives in the example below, and say
more about the second part afterwards. Our example is a kind of prototype for
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all primitives whose period n is not a power of a single prime. When n is a power
of a single prime we need a small modification. A primitive is a matrix F whose
characteristic equation (χF) is a cyclotomic polynomial Φn(x) for some n.

Rather than trying to write out the entries of very large matrices (but see
Example 3.1), we point the reader to Lemma 2.6 which gives a standard method
of building the “companion matrix” C(p(x)), associated with a monic polynomial
p(x). As already stated this gives rise to a map whose linearization is C(p(x)).
Furthermore the characteristic equation of C(p(x)) is p(x).

Example 1.1. Prototypical primitive example. Let n = 23 · 32 · 5 · 7 = 2520, and
let F = C(Φn) be the companion matrix (map) associated with the nth cyclotomic
polynomial Φn. So F has as eigenvalues the 2520th primitive roots of unity, with
multiplicity 1.

Computing the N(Fm): Using a Maple worksheet to give approximations to the
formula N(Fm) = χFm(1) (and then rounding) we discovered, for m in the range
1 ≤ m ≤ 1, 260, that N(Fm) = 1 except for m in the set

{280, 315, 360, 504, 560, 630, 720, 840, 945, 1008, 1080, 1120, 1260}.

We organize the data in the following table which we explain below.

F (F) m 1 280 315 360 504 630 840 1260

F (F) m 1 3̂2 2̂3 7̂ 5̂ 2̂2 3̂ 2̂

N(Fm) 1 396 2144 796 5144 2288 3288 2576

. (1)

Using the set F (F) indicated in the table and defined below, we can prove
(Corollary 4.8 where (m, n) denotes the GCD of m and n) that

N(Fm) =





N(F(m,n)) if (m, n) ∈ F (F)
0 if (m, n) = n
1 if (m, n) /∈ F (F) ∪ {n}.

Note we are claiming, for example, that N(F280) = N(F560) = N(F1120). In fact

this follows from the general principle that N(Fm) = N(F(m,n)) for all m for all
periodic matrices (Proposition 3.2). Note also that of the 1,260 numbers between 1
and 1, 260 that for 1, 247 of them the N(Fm) take the value 1. These include many
numbers that divide n. So for example N(F15) = 1, since (15, n) = 15 /∈ F (F).

The set F (F) := {1, 280, 315, 360, 504, 630, 840, 1260} is the set of m for which
the values of the N(Fm) first occur, where we interpret first with respect to divi-
sion (Definition 3.3). The F in the notation F (F) is meant to remind the reader
that the elements of F (F) are “firsts.”

In order to make the second line of the table clear, we introduce a “hat” nota-
tion which we will use throughout the paper. This notation will only be used in
the context that F is a primitive of period often denoted n, and where m|n. In this
context we use m̂ to denote the number

m̂ := n
m .
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Thus for example 504 = 5̂. In fact, as shown in the second line of the table we

have, except for m = 1, that each m ∈ F (F) can be written as p̂u for some prime
dividing n. Note that the “hatted” primes that appear in the first row, also appear

immediately underneath in the second. Thus for m = 2̂2 we have that N(Fm) is a

power of 2, and for m = 7̂ we have that N(Fm) is a power of 7. The corresponding
powers of these primes are described below.

All this, including the “hatted” composition of the sets F (F), generalizes to
give analogous patterns for arbitrary primitives, with a small modification when
n is a power of a single prime. In fact it all follows from two key results for
primitive matrices of period n. The first (see Proposition 4.5) is that

N(F) =

{
p if n is a power of the single prime p,
1 otherwise.

The second is Theorem 4.6 which states, for F := C(Φn), that

χFq(x) = det(xI − Fm) =
(

Φ n
m
(x)
) φ(n)

φ( n
m ) and N(Fm) =

(
Φ n

m
(1)
) φ(n)

φ( n
m ) ,

where φ is the Euler φ function. By way of illustration for m = 360 = 7̂ = n
7 we

have that n
360 = 7, so Φ n

360
(1) = Φ7(1) = 7 from above. Moreover φ(n)/φ(n/360)

= 96, and so N(F360) = 796 as shown in the table.

Computing the NPm(F): In general (not just for primitives) we will show that

NPm(F) = 0 if m /∈ F (F) and NP1(F) = N(F)

(Theorem 3.6, Theorem 2.2). Computation of the rest of the NPm(F) are very
simple for primitives, and are given by the following formula (Corollary 4.12

rewritten). Let m = p̂u 6= 1, then

NPm(F) =

{
N(Fm)− N(F) if p ∤ m

N(Fm)− N(F
m
p ) if p | m.

Thus in this same example NPm(F) = N(Fm) − 1 for m = 3̂2, 2̂3, 7̂ and 5̂ (divi-
sion of n by the maximum powers in the prime decomposition) and NPm(F) =

N(Fm) − N(F
m
p ) for m = 2̂2, 3̂ and 2̂. In particular, for example, NP1260(F) =

2576 − 2288.

Computing the NΦm(F): In fact for tori and nilmanifolds there are formulas for
the NΦm(F) that involve the N(Fq) and the NPq(F) for various q|m. For exam-
ple NΦm(F) = N(Fm) when N(Fm) 6= 0 and is always given by ∑q|m NPq(F)

(Theorem 2.3). Thus NΦ560(F) = N(F560) = N(F280) = 396 since 396 6= 0. But
N(F2520) = 0, so NΦ560(F) = 796 + 5144 + 3288 + 2576 − 3 by the sum formula. We
also have in general, for periodic matrices, that NΦm(F) = NΦ(m,n)(F) for all m
(Corollary 3.9).

We come now to indicate something of the second main thrust of the paper,
where we use an inductive procedure to work out the general case. We need a
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definition. Let A and B be respectively s × s and q × q matrices respectively then
we use the symbol A ⊕ B to denote the (s + q)× (s + q) block diagonal matrix

A ⊕ B :=

(
A 0
0 B

)
,

which we will call the sum of A and B. In fact an arbitrary matrix of finite order
is, up to conjugation, a direct sum of primitives (Theorem 2.7). Our idea is to
build up the three Nielsen theories primitive by primitive in an inductive type
procedure. In this scenario we are thinking of B as the kth stage, and the addition
of a primitive A as the k + 1st stage.

In order to do this, we need to regard A ⊕ B as a fibre preserving map of a
trivial fibration. Of course we are thinking of A as a self map of nilmanifold or
torus. In the nilmanifold case we work with the torus model and torus model
map ([6]). So without loss we can think of A as a map of the φ(n) torus, and B as
a self map of the φ(q) torus and A⊕ B as a fibre preserving map of the φ(n)×φ(q)
torus. That is we have a commutative diagram

Tφ(n) −→ Tφ(n) × Tφ(q) −→ Tφ(q)

A ↓ ↓ A ⊕ B ↓ B

Tφ(n) −→ Tφ(n) × Tφ(q) −→ Tφ(q)

The advantage of looking at A ⊕ B in this way is that we can use the philoso-
phy and results of Nielsen fibre space theory which is to determine the various
Nielsen theories of the map on the total space in terms or those on the base and
fibre. Perhaps the most obvious of these is the so called naı̈ve product Theorem
which says that N((A ⊕ B)m) = N(Am)N(Bm). But of course this also follows
from properties of determinants. Of more importance is the sum product for-
mula of the author and Ed Keppelmann (see Theorem 5.1) which states in this
context that

NPm(A ⊕ B) = ∑q|m NPq(B)NPm
q
(Aq).

To gain some insight into the sum product formula, consider a periodic point x of
B of minimum period 2. Then x 6= B(x) (recall we are thinking of B both as a map

and a matrix). In particular the fibre T
φ(n)
B(x)

over B(x) is not the same as the fibre

T
φ(n)
x over x, but it is the same over B2(x) = x. The restriction of (A⊕ B)2 to T

φ(n)
x

will then be a self map. Similarly the restriction of (A ⊕ B)2s to T
φ(n)
x will then

be the sth iterate of the same self map. Thus we need to look at NP2s
2
(A2) in the

fibre, and the corresponding classes, by the so called naı̈ve addition conditions
(see for example [3]) inject into the classes of period s in the total space.

The sum product formula then, allows us to perform an inductive procedure
to determine the NPm(F) inductively from previous computations adding one
primitive at a time. The sum product formula may, at first sight appear cum-
bersome, however many times many of the products NPq(B)NPm

q
(Aq) are equal

to zero,. We illustrate this with an example whose details are given later (see
Example 5.12 and following in section 5.2).
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Example 1.2. Let A := C(Φ20), B := C(Φ30), then F (A) = {1, 4, 5, 10},
F (B = {1, 6, 10, 15} and F (A ⊕ B) = {1, 4, 5, 6, 10, 12, 15} (section 5.1). Also
NPm(A ⊕ B) = 0 if m /∈ F (A ⊕ B) otherwise the sum products simplify as
follows:-

NP1(C) N(B)N(A)

NP4(C) N(B)NP4(A)

NP5(C) N(B)NP5(A)

NP6(C) NP6(B)N(A)

NP10C) N(B)NP10(A) + NP10(B)N(A10)

NP12(C) NP6(B)NP2(A2)

NP15(C) NP15(B)N(A15)

.

Though there is a corresponding formula in [4] that we could use for
NΦm(A ⊕ B) it is more convenient and more efficient to wait until the end of
the induction process to calculate these numbers where we also indicate the com-
plete identification of the N(Fm) in the more complex situations.

The paper is divided as follows:- Following this introduction we give a sec-
tion where we remind the reader of the linearization process and, for fixed m,
the formulas for N(Fm), NPm(F) and the NΦm(F) on tori and nilmanifolds. We
quote a very specific form of known results on the structure of matrices of finite
order that seems to be tailor made for our considerations. In section 3 we give
results about the N(Fm), NPm(F) and NΦm(F) that can be deduced without the
main techniques of this paper. We also give the formal definition of the set F (F)
and look at some of its properties. Section 4 brings us to one of the two main
parts of the paper where we study N(Fm), NPm(F) and NΦm(F) for all m on
primitives. We show that the patterns exhibited in Example 1.1 are easily gener-
alizable, and that the computations of the NPm(F) for all m can be read off from
the values of the N(Fm) for m ∈ F (F). Section 5 is devoted to the inductive step
mentioned above. An outline is given at the beginning of the section where it can
be more easily comprehended. In the last subsection we work the example of pe-
riod 3, 354, 120 mentioned earlier. This 4 stage example uses all of the techniques
developed here in the paper.

I want to acknowledge the help and influence of Ed Keppelman and Chris
Staecker. Ed was present at the conception of the paper which flowed out of
a joint project, started way back in 1994/5, to study the Nielsen periodic point
numbers on solvmanifolds. What was left over from the project was the study
of these numbers on the special class of periodic maps on these spaces. In this
regard, Proposition 3.2 is joint work with Ed. As can be seen from the paper, it
turns out the study of these maps is already rich on tori and nilmanifolds, the
building blocks for solvmanifolds. I also want to thank Chris Staecker for a lot of
help during the early stages of the manuscript (see in particular Proposition 4.5
and Remark 4.7). I would also like to thank the referee for his or her comments,
his careful reading of the text, his helpful suggestions and for catching a number
of errors and omissions in the proofs.
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2 Preliminaries

In this section we sketch the necessary preliminaries. Our sketch includes com-
putational results for the numbers N(Fm), NPm(F) or NΦm(F) rather than the
definitions. The point is that for tori and nilmanifolds there is no advantage in
giving the usual definitions which use orbits and sets of m-representatives. In
other words the computational results allow us to bypass these concepts. We re-
fer the reader to [7, 8, 3] for justification for this, and to [1] for the formula for
N(Fm).

This preliminary section is divided into two. In the first part we remind the
reader of the concept of linearization and then use it to state the results that
for fixed m give formulas for the Nielsen number N(Fm), and for the Nielsen
type numbers NPm(F) and NΦm(F) for arbitrary maps on tori and nilmanifolds
([1, 7, 8]) together with a couple of results from [7, 3] (Proposition 2.4) that we will
also need. In the second part of the section we look at the structure of matrices
of finite order. The structure for arbitrary matrices is well known, however we
quote a version for matrices of finite order presented by Koo ([11]) that particu-
larly suits our purposes.

2.1 Linearization and formulas for N( f m), NPn(F) and NΦm(F) for fixed m

on arbitrary maps of tori and nilmanifolds.

In the first part of this subsection we remind the reader of the concept of lin-
earization, of a self map of a torus or nilmanifold, details can be found in [3, 10].
If f : Tq → Tq is a map of a torus Tq (a q fold product of S1s), then up to homo-
topy, f can be covered by a linear map F : R

q → R
q. By abuse we identify

F with the matrix with respect to the standard basis, and call F the lineariza-
tion of f . Another way to find F of course is to look at the homomorphism
f∗ : Π1(T

p) ∼= Z
p → Z

p ∼= Π1(T
p) of of Abelian groups, and take its matrix

with respect to the standard basis of Z
p. A more usual definition of linearization

does not specify the bases for Z
p. In this case the matrix is only defined up to con-

jugation. However it should be clear from the formulas for the various Nielsen
numbers, that they are independent of the choice among conjugate matrices.

Linearization is functorial in that the linearization of the identity map is the
identity matrix, and the linearization of the composition of maps is the matrix
product of the linearizations. In particular the linearization of an iterate of a map
f is the iterate of the linearization. In other words, if F is the linearization of
f , then Fq is the linearization of f q. So then the linearization of f completely
determines the (ordinary) Nielsen numbers N( f m) of f . In fact it also completely
determines both NPm( f ) and NΦm( f ).

The paper [6] exhibited for each solvmanifold (and a fortiori for nilmanifolds)
a model solvmanifold that had exactly the same Nielsen theory (N( f m), NPm( f )
and NΦm( f )) as any map f on the original solvmanifold. Part of the process
was to replace the nilmanifold in the minimal Mostow fibration by a torus. We
can think of the linearization of the the map on the replaced nilmanifold as the
linearization of the nilmanifold. So in fact the paper ([6]) also showed how to
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make a torus model for a nilmanifold (even if it was not explicitly stated). So
then from now on we deal only with periodic matrices. In particular with respect
to a map on a nilmanifold, we deal with the linearization on its model. Also, as
mentioned in the introduction, we shall not distinguish between a map f : X → X
of a torus or a nilmanifold, and its linearization F.

Starting with N(Fm), we now give the formulas for the computation of N(Fm),
NPm(F) and NΦm(F) for fixed m. We include a couple of useful facts that will be
helpful in what follows.

Theorem 2.1. [1, 2] Let F be the linearization of a self map of a torus or nilmanifold.
Then for any positive integer m we have that

N(Fm) = |det(I − Fm)| = ∏
s
k=1(1 − λm

k ) = χFm(1),

where I denotes the identity matrix, the λk are the eigenvalues and χFm is the character-
istic equation of Fm.

Theorem 2.2. ([7, 8, 3]) Let F be the linearization of a self map of a torus or a nilmanifold.
Then NP1(F) = N(F). If N(Fm) = 0, then NPm(F) = 0 and if N(Fm) 6= 0, then

NPm(F) = ∑
τ⊆P(m)

(−1)|τ|N(Fm:τ),

where P(m) is the set of prime divisors of m and m : τ = m ∏p∈τ p−1.

To illustrate the Theorem we note, for example, if in a particular situation we
had that N(F36) 6= 0 then NP36(F) = N(F36)− N(F18)− N(F12) + N(F6).

Theorem 2.3. ([3, Theorems 5.1; 5.8]) Let F be the linearization of a self map of a torus
or a nilmanifold. Then

NΦm(F) =

{
N(Fm) if N(Fm) 6= 0

∑q|m NPq(F) always.

Alternatively NΦn(F) = ∑∅ 6=µ⊆M(F,n)(−1)|µ|−1N(Fgcd(µ)) where M(F, n) denotes

the set of maximal divisors q of n for which N(Fq) 6= 0.

The following equalities may not, perhaps, be immediately obvious from the
above formulas.

N(F) = NP1(F) = NΦ1(F).

We shall also need the following which, rather than following from the for-
mulas, is used as part of their proof:-

Proposition 2.4. ([7, 3]) Let F be the linearization of a self map of a torus or nilmanifold,
and let q|m, then N(Fq) ≤ N(Fm) and N(Fn) 6= 0. If in addition q 6= m and N(Fq) =
N(Fm), then NPm(F) = 0.

By way of explanation, for the reader familiar with the definitions as found in
[7, 8, 3], we know that tori and nilmanifolds are n-toral and essentially reducible.
Part of what that means is that NPm(F) is the number of irreducible essential
classes (we don’t need to use orbits). Since tori are Jiang spaces, and tori and nil-
manifolds are n-toral then when N(Fm) 6= 0 all classes at both levels are essential,
and the boosting functions are injective. This gives N(Fq) ≤ N(Fm). Next, when
N(Fq) = N(Fm) 6= 0 with q|m but q 6= m, then the boosting functions are bijective
so there are no irreducible essential classes, giving that NPm(F) = 0.
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2.2 The structure of matrices of finite order

Definition 2.5. A map (matrix) F is said to be periodic of period n if Fn = I (the
identity matrix) for some positive integer n, and n is the smallest such positive
integer. A matrix is said to be primitive if it has eigenvalues the primitive nth roots
of unity of multiplicity 1, for some n. In other words the characteristic polynomial
χF is equal to Φn the nth cyclotomic polynomial.

The following well known lemma is useful for generating examples.

Lemma 2.6. Let p(x) = xk + ak−1xk−1 + · · ·+ a1x + a0 be a monic polynomial, then
p(x) is the characteristic polynomial of the matrix C(p(x)) given by:

C(p(x)) =




0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −ak−1




.

The matrix C(p(x)) in Lemma 2.6 is called the companion matrix of p(x). This
together with the characterization of periodic matrices, given below, gives a model
for constructing periodic matrices.

The rational canonical form of a matrix is well known. For a periodic matrix
this takes a special form, and the Theorem below represents a small tweaking of
an explicit version of it that appears in [11]. The direct sum notation (⊕) was
introduced in the introduction.

Theorem 2.7. If A is an integer matrix with An = I for some n, then the characteristic
polynomial of A is a product of cyclotomic polynomials:

χA = Φ
d1
m1

. . . Φdr
mr

,

where each mi | n and n = lcm(m1, . . . , mr).
Furthermore, A is similar to a block diagonal matrix as follows:

A ∼ C(Φm1
)[d1] ⊕ · · · ⊕ C(Φmr )

[dr ],

where each exponent [di] indicates a di-fold direct sum of C(Φmi
),

Since the Nielsen number of F is equal to the characteristic polynomial evalu-
ated at 1, we obtain immediately:

Corollary 2.8. If F is an integer matrix with An = I for some n, then there are integers
mi | n and di such that lcm(m1, . . . , mr) = n and

N(F) = Φm1
(1)d1 . . . Φmr(1)

dr .
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3 Preliminary relationships among N(Fm), NPm(F) and NΦm(F)

on general periodic matrices

In this section we exhibit a number of results that can be proved directly (without
the inductive procedure) for arbitrary periodic maps F on tori and nilmanifolds.
In addition we introduce the sets F (F) for arbitrary F, and give some simple
results. We do not assume in this subsection that F is a primitive matrix.

We start with an illustrative example.

Example 3.1. Let F be the matrix below, then F determines a periodic map of R
4,

and F induces a self map f on T4 (which by abuse of notation we also call F) of
period 10.

F =




0 0 0 −1
1 0 0 1
0 1 0 −1
0 0 1 1


 .

As already mentioned we identify f with F its linearization. Now the eigen-
values of F are the primitive 10 roots of unity with multiplicity 1. In particular
F10 = I the identity matrix. Consider the following table obtained using the for-
mula N(Fn) = |det(Fn − I)|.

m 1 2 3 4 5 6 7 8 9 10

N(Fm) 1 5 1 5 16 5 1 5 1 0
.

Proposition 3.2. (Heath Keppelmann.) Let F : N → N be the linearization of a periodic
self map of a Torus or nilmanifold of period n > 1, with linearization matrix F. If
(t, n) = 1 then N(F) = N(Ft). Moreover

(a) N(Fm) = N(F(m,n)), and (b) N(Fk) = N(Fn−k) for 0 < k < n,

where m is arbitrary, and (m, n) is the gcd of m and n. Moreover

(c) NPm(F(m,n)) = NPm(F) and NΦm(F(m,n)) = NΦm(F) for all m.

The equalities N(F2) = N(F4) = N(F6) = N(F8) illustrate part (a), while the
symmetry around N(F5) (i.e. N( f 3) = N( f 7)), is explained by part (b).

Proof. We show that F and Ft have the same eigenvalues for any t with (t, n) = 1.
It follows that Fq and Fqt also have the same eigenvalues for any q (applying the
result to Fq). For (a) we let t = m

(m,n)
and q = (m, n). For (b) we let t = n − 1

and q = r, and then use the fact that Frn−r = F(r−1)n+n−r = Fn−r (since F(r−1)n =

I). Part (c) also follows, since Fm and F(m,n) are similar matrices for all m, and
the result now follows from the formulas for these numbers (Theorems 2.1, 2.2
and 2.3) which are easily seen to be independent of the linearization within its
congujacy class.
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So let E = {λ1, . . . , λs} be the eigenvalues of F listed with multiplicities. Thus
N(F) = |det(I − F)| = ∏

s
i=1(1 − λi). By Theorem 2.7, each λi is a primitive kth

root of unity for some k | n. Further, again by Theorem 2.7, all kth roots of unity
appear as eigenvalues of F with the same multiplicity. Suppose that (t, n) = 1,
then there exist a and b such that at + bn = 1. Since k | n, we have that t is
relatively prime to k, and so λt

i is also a primitive k-th root of unity.
This means that the function that takes E to Et = {λt

1, ..., λt
s} takes the various

primitive roots to primitive roots of the same order. In fact this function is a
bijection since it has as inverse the function Et → E, that takes λt to λat+bn. Thus
Fq and Fqt have the same eigenvalues as claimed.

As it turns out, in order to to specify N(Fm), NPm(F) and NΦm(F) for all m in
Example 3.1, we need only the following table of values (we define F (F) below):-

F (F) ∪ {10} m 1 2 5 10

N(Fm) 1 5 16 0

NPm(F) 1 4 15 0

NΦm(F) 1 5 16 20

.

The values for NPm(F) come from Theorem 2.2, while NΦ20 = 1 + 4 + 15 from
Theorem 2.3. The values for all other m can be read off from the equations

N(Fm) = N(F(m,n)) and NΦm(F) = NΦ(m,n)(F) (Corollary 3.9).

We now make the formal definition of F (F).

Definition 3.3. We define the set F (F), for an arbitrary square matrix F, by

F (F) := {m 6= 0 | N(Fm) 6= 0 and N(Fq) 6= N(Fm) ∀q|m, q 6= m}.

So again the F in the notation F (F) is meant to indicate the “first” occurrence
of the indicated value. Here first has to do with division, and should not be
confused with the regular order of the natural numbers.

We do however have:-

Proposition 3.4. Let F be an arbitrary periodic matrix of period n, and let N(Fn) 6= 0.
If m has the property that N(Fq) 6= N(Fm) for all q < m then m ∈ F (F).

Proof. If n = 1, or if m = 1, then there are no q satisfying the condition. If n = 1,
then F (F) = ∅. If n 6= 1 and m = 1, then there is nothing to prove, since
1 ∈ F (F). Let m have the given property, and let q|m with q 6= m. Then N(Fq) 6=
N(Fm) by hypotheses. But N(Fq) ≤ N(Fm) by Proposition 2.4. Thus N(Fq) <

N(Fm) for all q|m with q 6= m and so m ∈ F (F) as required.

The converse of Proposition 3.4 is false as the following example shows.
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Example 3.5. Let F = C(Φ20Φ30) then the table for F (F) is given below.

F (F) m 1 4 5 6 10 12 15

N(Fm) 1 52 24 52 3428 54 27
.

Note that both 4 and 6 satisfy Definition 3.3 and so belong to F (F). This makes
sense geometrically, since N(F4) is detecting 24 (=25 -1) periodic points of least
period 4, and N(F6) is detecting 24 periodic points of least period 6. Clearly these
cannot be the same points. What we are exhibiting here is that

F (F) 6= {m|n | N(Fm) 6= 0 and N(Fq) 6= N(Fm) ∀q < m}

So again we are stressing that F refers to “first” with respect to division, not with
respect to the usual order on the natural numbers.

Theorem 3.6. Let F be an arbitrary periodic matrix of order n. Then F (F) is finite, and

NPm(F) = 0 if m /∈ F (F).

In particular NPm(F) = 0 if m ∤ n, or if mpi > n where pi is the smallest prime dividing
n.

In all our examples we have that NPm(F) 6= 0 if m ∈ F (F), but a proof of
this for general periodic maps on tori and nilmanifolds is elusive. It is not true in
general as the example f = −1 ∨ 1 : S1 ∨ S1 → S1 ∨ S1 indicates. Here F ( f ) =
{1, 2} but NP2( f ) = 0, since the unique class at level 2, though essential, is in
fact reducible. As an illustration of the last part of the Theorem, if n = 32 · 5 then
pi = 3, and NPm(F) = 0 for m > 15.

Proof. To see that F (F) is finite, recall that N(Fm) = N(F(m,n)) for all m, so that
there cannot be more firsts than the number of divisors of n. To see that NPm(F) =
0 if m /∈ F (F), let m be such that m /∈ F (F). If N(Fm) = 0, then NPm(F) = 0 by
definition. If N(Fm) 6= 0 then m is not a first. In particular there is a q | m with
q 6= m and N(Fm) = N(Fq). But then NPm(F) = 0 from Proposition 2.4.

For the “In particular” part, in either case m ∤ n. But then N(Fm) = N(F(m,n))
and clearly (m, n) < m, so m cannot be a first and so cannot belong to F (F).

The next result is a small refinement of Theorem 2.3 and a small tweaking of
Theorem 2.2. We need some notation. Let m be a positive integer, we define

m!F (F) := {q|m | q ∈ F (F)}.

Theorem 3.7. Let F be an arbitrary periodic matrix. Then

NΦm(F) =

{
N(Fm) if N(Fm) 6= 0

∑q∈m!F (F) NPq(F) always.

Moreover if N(Fm) 6= 0, then N(Fm) = ∑q∈m!F (F) NPq(F), and

NPm(F) = N(Fm)− ∑
q∈m!F (F)−{m}

NPq(F).
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Proof. That NΦm(F) = N(Fm) if N(Fm) 6= 0 is not new, but is included for
completeness. The sum formula in the first part is a restatement of the sum
formula in Theorem 2.3 which simply omits those q for which NPq(F) = 0.
This of course occurs if q /∈ F (F). For the second formula, if N(Fm) 6= 0 then
N(Fm) = NΦm(F) = ∑q∈m!F (F) NPq(F), and the given formula is just a rear-
rangement of the sum formula in the first part.

Example 3.8. Let F = C(Φ20Φ30) be as in Example 3.5. We compute NΦ40(F).
Now N(F40) = 0 since any multiple of either 20 or 30 has Nielsen number 0. So
we must use the addition formula. Now 40!F (F) = {1, 4, 5, 10} and NP1(F) = 1,
NP4(F) = 52 − 1, NP5(F) = 24 − 1 while NP10(F) = 3428 − 24 + 1 by Theorem
2.2. So NΦ40(F) = 3428 − 24 + 1 + 24 − 1 + 52 − 1 + 1 = 3428 + 52.

We compute NP12(F) by the second formula in Theorem 3.7. Note that
12!F (F) − {12} = {1, 4, 6}. So NP12(F) − ∑q∈{1,4,6} NPq(F) =54 − (1 + 52 − 1 +

52 − 1) =54 − 2 · 52 + 1.

Corollary 3.9. Let F be an arbitrary periodic matrix of order n. Then for any positive
integer m we have that

NΦm(F) = NΦ(m,n)(F).

Proof. By Theorem 3.7 we need only show that (m, n)!F (F) = m!F (F). So let
q ∈ (m, n)!F (F) then q|(m, n) and q is a first. That is N(Fq) 6= 0 and there is no
t|q with t 6= q and with N(Ft) = N(Fq). But q|(m, n) implies that q|m and as
already seen q is a first and so belongs to m!F (F). That is (m, n)!F (F) ⊆ m!F (F).
On the other hand if q|m but q ∤ (m, n), then q ∤ n, and NPq(F) = 0. So q does
not belong to F (F) and hence cannot belong to either m!F (F) or (m, n)!F (F). So
any q ∈ m!F (F) must divide (m, n) and is, of course a first, so q ∈ (m, n)!F (F)
by definition.

Remark 3.10. So Theorem 3.7 gives us a way of computing NΦm(F) at every stage
of what will be our inductive procedure. It is however more efficient to wait until
the end of the process to perform the computations, since it is possible that the
size of F (F) can actually be smaller than those of the various stages along the
way (see step 4 of the final Example 5.28).

4 Patterns among N(Fm), NPm(F) and NΦm(F) for primitives

In this section we study the numbers N(Fm), NPm(F) and NΦm(F) for all m on
primitives. It is convenient to give the formal definitions here.

Definition 4.1. We call a square matrix F a primitive matrix or map of order n, if it
has only primitive nth roots of unity as eigenvalues with multiplicity 1.

Proposition 4.2. A primitive matrix F, of period n, is a φ(n) × φ(n) square matrix,
where φ is the Euler φ function. Any other primitive matrix of period n, is similar over
the complex numbers to F.
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Proposition 4.3. If F is a primitive matrix of order n, then the characteristic equation
det(xI − F) of F is equal to Φn(x) the nth cyclotomic polynomial. Conversely if the
characteristic equation of F is equal to Φn(x) then F is a primitive n matrix. In particular

N(F) = Φn(1).

In all the examples in the introduction we had N(F) = Φn(1) = 1, but this is
not always the case as the next example shows.

Example 4.4. Let n = 24 = 16, and let F be a primitive period 16 matrix. We
deviate slightly from pattern of the example in the introduction. The values of
N(Fm) were originally found using a Maple worksheet.

F (F) ∪ {16} m 1 (=2̂4) 2̂3 2̂2 2̂ 2̂0 (= 16)

N(Fm) 2 22 24 28 0

NPm(F) 2 22 − 2 24 − 22 28 − 24 0

NΦm(F) 2 22 24 28 28

.

Of course N(Fm) = N(F(m,16)) for all m, NPm(F) = 0 if m /∈ F (F) and
NΦm(F) = NΦ(m,n)(F) for all m.

So here is our first example where N(F) 6= 1. The following Proposition gives
the general situation for N(F) for primitives.

Proposition 4.5. (Heath Staecker) Let F = C(Φn) where n = ps1
1 · · · psr

r , with r ≥ 1,
then

N(F) =

{
p1 if r = 1
1 if r > 1.

Proof. We use the following two well known fundamental relations

Φpk(x) =
p−1

∑
i=0

xipk−1
and xn − 1 = ∏

d|n

Φd(x).

The result that N(F) = p1 when r = 1 comes from Proposition 4.3 by simply
putting x = 1 in the first equation.

It is convenient to abbreviate Φn(1) by Cn for our proof that N(F) = 1 when
r > 1. By dividing both sides of the second equation above by x − 1 we see
that 1 + x + x2 + · · · + xn−1 = ∏d|n:d 6=1 Φd(x), so by putting x = 1, we have
that n = ∏d|n:d 6=1 Cd. Using this and strong induction on n we prove that for n a
product of prime powers of more than one prime, we have that Cn = 1.

Since Φ6(x) = x2 − x + 1 then C6 = 1 and we can start the induction here. Let
n = ps1

1 · · · psr
r with r > 1 and p1, . . . , pr distinct primes, and suppose we have

proved the result for all cases less than n. Now

n = ∏
d|n;d 6=1

Cd = Cn ∏
d|n;1<d<n

Cd.
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In the right hand product, if d is not a power of a prime then we have Cd = 1 by
the induction hypotheses. Thus we may remove all factors in the product which
are not prime powers, and the above reads

n = Cn · (Cp1
Cp2

1
. . . C

p
s1
1
) . . . (CprCp2

r
. . . Cpsr

r
).

By the first part Cpk
i
= pi for each prime pi, so that the last equation gives

n = Cn · (ps1
1 . . . psr

r ) = Cn · n,

and so Cn = Φn(1) = N(F) = 1 as desired.

Proposition 4.5 together with the results of section 3.1 and the Theorem below
will give us all we need to compute the Nielsen numbers of iterates of primitive
periodic matrices.

Theorem 4.6. Let F be primitive of period n. If q|n then

χFq(x) = det(xI − Fq) =
(

Φ n
q
(x)
) φ(n)

φ( n
q ) , and so N(Fq) =

(
Φ n

q
(1)
) φ(n)

φ( n
q ) .

Proof. Let E1 := {λ1, · · · λφ(n)} denote eigenvalues of F, which are in fact the

primitive nth roots of unity. Then the eigenvalues of Fq are Eq := {λ
q
1, · · · λ

q

φ(n)
}.

Clearly, if (k, n) = 1 then (k, n/q) = 1 for any q | n. So if λ = exp(2kπi/n) is a
primitive nth root of unity and q | n, then λq = exp(2kπi/(n/q)) is a primitive
(n/q)th root of unity. Thus the eigenvalues of Fq are all primitive (n/q)th roots
of unity.

Since F is a matrix of order n and q | n, then Fq is a matrix of order n/q and
so Theorem 2.7 applies to Fq. In particular the characteristic polynomial of Fq is a
product of cyclotomic polynomials. Since all eigenvalues of Fq are primitive n/q
roots of unity, it must be the case that the characteristic polynomial is (Φn/q)

t for
some positive integer t. It remains only to show that t = φ(n)/φ(n/q).

Because F is a square matrix of size φ(n), so too is Fq, and thus φ(n) is the
degree of its characteristic polynomial (Φn/q)

t. Since deg(Φn/q) = φ(n/q), we
have φ(n) = tφ(n/q), and so t = φ(n)/φ(n/q) as desired.

Remark 4.7. Theorem 4.6 was conjectured after running a number of Maple work-
sheets looking for patterns. For the longest time a proof was elusive. Of course it
was obvious that the λq were primitive (n/q)th roots of unity, but it was how to
get the distribution right that was elusive. In fact, as the proof shows, it follows
from a small tweaking of a special case (for matrices of finite order) of the ratio-
nal canonical form. Chris Staecker found this by typing ”matrices of finite order”
into Google, something that continues to amaze me. The second entry in Chris’
search ([11]) puts the rational canonical form in the precise form that we need,
and it also turns out to be a convenient reference for section 2.2. I would like
to thank Chris for his help here, and in many other places. In addition I would
like to thank Tom Baird, Mikhail Kotchetov and Mike Parmenter for interesting
prior conversations aimed at proving the Theorem directly, including a proposed
Galois theory proof. In fact the correct distribution also follows from the fact that
q∗ : Z

∗
n → Z

∗
n
q

is a homomorphism, but not with respect to multiplication of

eigenvalues.
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When dealing with primitives of order n = ps1
1 ps2

2 · · · psr
r , it is convenient to

separate the cases r > 1 (Corollary 4.8) and r = 1 (Corollary 4.11). Part of this is
that we can be more specific when n = ps is a power of a single prime.

Corollary 4.8. Let F = C(Φn) be a primitive matrix with n = ps1
1 ps2

2 · · · psr
r , where

p1, . . . , pr are distinct primes, and r > 1. Then

F (F) = {1} ∪ {p̂u
i | where i = 1, · · · , r and 1 ≤ u ≤ si}.

If (m, n) = n, then N(Fm) = 0. If (m, n) 6∈ F (F) ∪ {n}, then N(Fm) = 1.

Finally if (m, n) = p̂u
i for 1 ≤ u ≤ si, then N(Fm) = p

(
φ(n)

pu
i
−pu−1

i

)

i .

Note for r > 1 we have that #(F (F)) = 1 + ∑
r
i=1 si.

Proof. Since N(Fm) = N(F(m,n)) we can, without loss, replace (m, n) by m | n in
the Corollary. Also since N(Fn) = 0 from Theorem 2.1 we need consider only
m|n and m < n.

We prove first that if m = p̂u
i for 1 ≤ u ≤ si, then N(Fm) is as shown. So let

m = p̂u
i , then n

m = pu
i and Φ n

m
(1) = pi by Proposition 4.5. So N(Fm) is equal to

pi to the power
φ(n)
φ( n

m )
by Theorem 4.6. But φ( n

m ) = φ(pu
i ) = pu

i − pu−1
i and the

description of N(Fm) as given is proved. In particular N(Fm) 6= 1 for such m.

We next show that {1} ∪ {p̂u
i | where i = 1, · · · r and 1 ≤ u ≤ si} ⊆ F (F).

Now clearly 1 is a first and so belongs to F (F). To see that 1 6= m = p̂u
i is a first,

we must show that N(Fq) 6= N(Fm) for any q|m with q 6= m. If q = 1 then, as
we have already seen N(Fm) 6= N(F) = 1. Next, if q = pv

i with u < v ≤ si then

φ(n
v ) = pv − pv−1 > pu − pu−1 so N(Fq) < N(Fm), by the description of N(Fq)

and N(Fm) already seen. If q|m and q 6= p̂v
i for any v with u < v ≤ si then qℓ = m

for some ℓ with pj|ℓ for some pj 6= pi (this can only happen if r > 1). In this case
n
q = ℓpu is a composite so N(Fq) = 1 6= N(Fm). So in each case if q|m and q 6= m,

then N(Fq) 6= N(Fm), and m is indeed a first.

Next if m 6= n and m|n and 1 6= m 6= p̂u
i for 1 ≤ u ≤ si for any i, then m must

divide at least one of the p̂u
i but not be equal any of them. But we have already

proved for such an integer that N(Fm) = 1 and so is not a first. We have actually

shown, if m 6= n and m|n and m /∈ {1}∪{p̂u
i | where i = 1, · · · r and 1 ≤ u ≤ si},

then both N(Fm) = 1 and m /∈ F (F), and we are done.

Before giving the Corollary for the case r = 1, we give a couple of exam-

ples that pertain to Corollary 4.8. Recall first, that if q = pk1
1 pk2

2 · · · pks
s then the

Euler φ function is given by φ(q) = φ(pk1
1 )φ(pk2

2 ) · · · φ(pks
s ), where for φ(pki

i ) =

p
ki
i − p

ki−1
i .

Example 4.9. Let C(n), where n = 2520 = 3223(5)(7) be as in Example 1.1.
Then F (F)= {1, 280, 840, 315, 630, 1260, 504, 360}. Now φ(2520) = φ(2332(5)(7))
= (23 − 22)(32 − 3)(5 − 1)(7 − 1) = 576. So for example to compute N(F840), we
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recall that 840 = 3̂, so p = 3 and u = 1 so pu − pu−1 = 2. From Corollary 4.8,

N(F840) = 3
576
2 = 3288 as shown in that example. Similarly N(F280) = 3

576
32−31 =

3
576
6 = 396.

The next example shows that we cannot remove the condition that F is primi-
tive from the conclusion that N(Fm) = N(F) if (m, n) 6∈ F (F) ∪ {n}.

Example 4.10. Let F = C(Φ10Φ35), then F (F) = {1, 2, 3, 5, 6, 7, 14, 15}, and F has
period 210. Now (30, 210) = 30 /∈ F (F) ∪ {n}, but N(F30) = 0 6= N(F).

The difference in cardinality of F (F) (from Corollary 4.8) in the Corollary be-
low comes because 1 is already present as p̂s. Note also that N(F) = p rather
than 1 in Corollary 4.8. These points will also make a difference when it comes to
discussing the NPm(F).

Corollary 4.11. Let F = C(Φn) with n = ps, then

F (F) = {1, p, p2, · · · , ps−1}, and #(F (F)) = s,

and if (m, n) ∈ F (F), then N(Fm) = p(m,n).

If (m, n) 6∈ F (F) ∪ {n}, then N(Fm) = p, and N(Fm) = 0 if (m, n) = n.

Proof. Note first that we can write {1, p, p2, · · · , ps−1} as {p̂s, p̂s−1, · · · , p̂}, so the
proof that F (F) is as shown, is similar to the proof in Corollary 4.8. Recall that

N(Fm) = N(F(m,n)), so (putting (m, n) = q), we show that N(Fq) = pq for q =

p̂u ∈ F (F). So as in Corollary 4.8 N(Fq) is p to the power
φ(n)

pu−pu−1 . But
φ(n)

pu−pu−1 =

ps−ps−1

pu−pu−1 = ps

pu = p̂u = q as required.

The rest is trivial.

Having dealt with the F (F) and the N(Fm), we now come to the NPm(F).

Corollary 4.12. Let F = C(Φn) where n = ps1
1 · · · psr

r with r ≥ 1, then NPm(F) = 0 if
and only if m 6∈ F (F).

Let r > 1. If m = 1, then NPm(F) = 1. Let m = p̂u
i ∈ F (F) where 1 ≤ u ≤ si.

Then

NPm(F) =

{
N(Fm)− 1 if u = si

N(Fm)− N(F
m
pi ) if u < si,

where the N(Fq) are given in Corollary 4.8.

Let r = 1 and m = p̂u
i ∈ F (F), where 1 ≤ u ≤ si. Then

NPm(F) =

{
p1 if u = si,

pm
1 − p

m
p

1 if u < si.

In particular if n = ps, then NPp(F) = pp − p independent of s.
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Proof. We deal first with the case that r > 1. Now for m = 1 we have that

NP1(F) = N(F) = 1 by Theorem 2.2 and Proposition 4.5. For m = p̂u
i ∈ F (F)

with 1 ≤ u ≤ si we use Möbius inversion (Theorem 2.2). Suppose first that

m = p̂
si
i . Now if q is a proper divisor of m, then q /∈ F (F) and so N(Fq) = 1

(Corollary 4.8). In particular for all subsets τ of P(m) except for the empty set
we have that N(Fm:τ) = 1, and of course the empty set gives us N(Fm). Now
#(P(m)) = r, so there are (r

1) subsets of P(m) with just one element, and there are
(r

2) two element subsets etc. So by Möbius inversion

NPm(F) =

(
r

0

)
N(Fm) +

(
−

(
r

1

)
+

(
r

2

)
−

(
r

3

)
· · ·+ (−1)r

(
r

r

))
,

which is equal to N(Fm)− 1 + ((+1) + (−1))r = N(Fm)− 1 as required.
For u < si we have that N(Fm:τ) = 1 except for τ = ∅ and τ = {pi}, and the

above argument is easily modified1 to give NPm(F) = N(Fm)− N(Fm/pi ).

For the case r = 1 we note again that p̂s1
1 = 1, and NP1(F) = N(F) = p1

from Theorem 2.2 and Proposition 4.5. Also P(m) = {p1} and p1 | m for all other

m ∈ F (F) = {p̂s1
1 , p̂s1−1, · · · , p}. Thus NPm(F) = N(Fm)− N(Fm/p1 ) as required,

using Theorem 2.2 again.

Corollary 4.13. Let F be a primitive matrix of period n where n = ps1
1 · · · psr

r with r ≥ 1,
then

NΦm(F) =





N(F) if (m, n) /∈ F (F) ∪ {n}

N(F(m,n)) = p
φ(n)

φ(n/(m,n)) if (m, n) = p̂u ∈ F (F)

∑p∈P(m) N(F
n
p )− r + 1 if (m, n) = n.

Proof. That NΦm(F) = N(F) for the indicated m follows from Theorem 2.3 and

Corollaries 4.8 and 4.11, as does the equation N(F(m,n)) = p
φ(n)

φ(n/(m,n)) for (m, n) =

p̂u ∈ F (F).

When (m, n) = n, then N(F(m,n)) = 0, and we need to use the sum formula in
Theorem 2.3. When r = 1 we have that M(F, n) = {ps−1}, and the sum formula

gives NΦn(F) = N(F
n
p ) directly. Next when r > 1 the maximal divisors of n

are simply the p̂i, and there are r of them. Now GCD(µi) = pi for the r one
element subsets µi := {pi}. When #(µ) ≥ 2, on the other hand, we have that

GCD(µi) = 1 and of course for such µ we have that N(FGCD(µ)) = 1. We
are now in a very similar situation to Corollary 4.12, but with one less term and

the signs reversed. Thus NΦn(F) = ∑p∈P(m) N(F
n
p )− (r

2) + (r
3) · · ·+ (−1)r−1(r

r),

which is equal to ∑p∈P(m) N(F
n
p )− r + 1− (r

0) + (r
1)− (r

2) + (r
3) · · ·+ (−1)r+1(r

r) =

∑p∈P(m) N(F
n
p )− r+ 1− ((+1)+ (−1))r = ∑p∈P(m) N(F

n
p )− r+ 1 as required.

1NPm(F) = (ℓ0)N(Fm)− N(Fm/pi)− ((ℓ1)− 1) + (ℓ2)− (ℓ3) · · ·+ (−1)ℓ(ℓ
ℓ
).
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5 Computing N(Fm), NPm(F) and NΦm(F) inductively

In this section we use the natural eigenspace structure of the maps on the univer-
sal covering space to split our map on the torus (the torus model in the nilmani-
fold case) into a series of product maps on trivial fibrations. The aim is to build
up the numbers N(Fm) and NPm(F) inductively adding (direct sum) one primi-
tive at a time. As mentioned earlier we reserve the computation of the NΦm(F)
until the end of the finite induction process.

More precisely let A be a primitive of period nA, and B an arbitrary periodic
matrix of period nB. Then as seen in the introduction, we can think of A ⊕ B as

a product map A ⊕ B : Tφ(nA) × Tφ(nB) → Tφ(nA) × Tφ(nB). This map is moreover

fibre preserving with respect to the trivial fibration Tφ(nA)× Tφ(nB) → Tφ(nB) with

A being the restriction of A ⊕ B to the fibre Tφ(nA). In the inductive step we are
assuming we already know the N(Bq), NPq(B) for all q and we wish to use this,
the information from the primitive A and the sum product (Theorem 5.1 below)
to compute N((A ⊕ B)q), NPq(A ⊕ B) for all q. So the inductive step is to add
(direct sum) a primitive A using the results of section 4 to compute N(Aq) and
NPq(A) for all q. In order to use the sum product, however we will also need to
study the numbers NPm

q
(Fq) for various m and q|m.

The first formula below follows from properties of determinants (or the naı̈ve
product Theorem). The second formula is an easy adaption of [4, Corollary 4.6]
using the trivial fibration described in the introduction.

Theorem 5.1. Let A and B be periodic matrices with N(Bm) 6= 0. Then

N((A ⊕ B)m) = N(Am)N(Bm) and

NPm(A ⊕ B) = ∑
q|m

NPq(B)NPm
q
(Aq).

We call the second formula in Theorem 5.1 the sum product formula, or simply
the sum product.

The section is divided into four subsections. In section 5.1 we seek to deter-
mine for which m we automatically have that NPm(A ⊕ B) = 0 without having
to compute the sum product. In fact we make an approximation F (A) ⊗ F (B)
to F (A ⊕ B), and show NPm(A ⊕ B) = 0 if m /∈ F (A) ⊗ F (B). Some clarify-
ing results about F (A) ⊗ F (B) are also given here. In section 5.2, having de-
termined for which m we have NPm(A ⊕ B) = 0, we turn our attention to de-
termining which of the terms in the sum product are zero. As part of this we
study the sets F (Aq) and compare them with F (A). This enables us, for each
m ∈ F (A) ⊗ F (B), to define a set mF which has the property that the product
NPq(B)NPm

q
(Aq) = 0 if q /∈ mF . In section 5.3 we study the numbers NPm

q
(Aq),

determine when they are equal to NPm(A), and what they are when they are not.
Finally in section 5.4 we work a specific example of the inductive procedure with
four stages.
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5.1 Inductive approximations to the F (A ⊕ B)

We use an example to help motivate our definitions. The example was initially
worked using a maple worksheet.

Example 5.2. Let A := C(ΦnA
) where nA = 22 × 3 × 5 = 60, and B = C(ΦnB)

where nB = 2 × 32 × 5 = 90. Then A ⊕ B has order 180, and the tables for F (A),
F (B) and F (A ⊕ B) are given as follows:-

F (A) q 1 12 15 20 30

N(Aq) 1 54 28 38 216

F (B) q 1 10 18 30 45

N(Bq) 1 34 56 312 224 .

F (A ⊕ B) q 1 10 12 15 18 20 30 36 45

N((A ⊕ B)q) 1 34 54 28 56 3438 216312 5456 28224 .

Note that 36 ∈ F (A ⊕ B) because N((A ⊕ B)36) = N(A36)N(B36) =
N(A12)N(B18) = 54 · 56 = 510. So 36 is a first that belongs to neither F (A) nor
F (B). Note however that new values occur not only at m = 36 = lcm(12, 18), but
also at m = 20 = lcm(10, 20).

It should therefore be obvious that the lcm of pairs taken from F (A) and F (B)
have the potential to give new firsts. In fact we define the set

LCM(A, B) := {lcm(a, b) | a ∈ F (A), b ∈ F (B)}.

Note however, that not every lcm of pairs of elements of F (A) and F (B) appear
in F (A ⊕ B). In particular 60 = lcm(15, 12), but N((A ⊕ B)60) = 0 and of course
we exclude zeros from F (F). Accordingly we set

Z(A, B) := {q ∈ LCM(A, B) | N(Aq) · N(Bq) = 0},

and make the following formal definition.

Definition 5.3. Suppose that A and B are periodic matrices with F (A) and F (B)
already defined, we define F (A)⊗F (B) to be the set

F (A)⊗F (B) := LCM(A, B))−Z(A, B).

In the example we have that LCM(A, B) = F (A) ∪ F (B) ∪ {36, 60, 90}, and
Z(A, B) = {60, 90}. Note that we are not considering all zeros here, only those
that occur in LCM(A, B). So for this example we have F (A) ⊗ F (B) =
F (A ⊕ B) = F (A) ∪ F (B) ∪ {36}.

Proposition 5.4. Let A and B be periodic matrices, then

F (A ⊕ B) ⊆ F (A)⊗F (B), and F (A)⊗F (B) = F (B)⊗F (A).

Moreover if m /∈ F (A)⊗F (B), then NPm(A ⊕ B) = 0.
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Proof. Commutativity is trivial. To prove the inclusion, let m ∈ F (A ⊕ B), then
N((A ⊕ B)m) = N(Am)N(Bm) 6= 0 by definition. Thus we need only show that
m ∈ LCM(A, B). If m ∈ F (A) or m ∈ F (B), then m = lcm(m, 1) ∈ LCM(A, B).
In any case, there are integers a ∈ F (A) and b ∈ F (B) with a|m and b|m and
such that N(Aa) = N(Am) and N(Bb) = N(Bm). Let c = lcm(a, b) then using
Proposition 2.4 we have that N(Aa) ≤ N(Ac) and N(Bb) ≤ N(Bc). Moreover
a|m and b|m, so c|m. Thus N(Aa)N(Bb) ≤ N(Ac)N(Bc) ≤ N(Am)N(Bm) and
therefore N(Ac)N(Bc) = N(Am)N(Bm). So m = c since if not, m would not be a
first. Thus m ∈ F (A)⊗F (B) as required.

For the last part if m /∈ F (A)⊗F (B), then m /∈ F (A ⊕ B) by the first part. So
m is not a first. Thus there is a q|m with q < m and N((A ⊕ B)q) = N((A ⊕ B)m).
By Proposition 2.4 again we have that NPm(A ⊕ B) = 0.

Remark 5.5. Though we have no counter example for the reverse of the inclusion
in Proposition 5.4 a proof that it holds is elusive.

In spite of the remark we do have

Proposition 5.6. If for all m1, m2 ∈ F (A) ⊗ F (B) with m1 6= m2 we have that
N((A ⊕ b)m1) 6= N((A ⊕ B)m2) then

F (A)⊗F (B) = F (A ⊕ B).

Proof. Let m ∈ F (A)⊗F (B), then N((A ⊕ b)q) 6= N((A ⊕ B)m)for all q < m by
the hypothesis. So m ∈ F (A ⊕ B) by Proposition 3.4 .

The following example shows it is not always true that F (A) ∪ F (B) ⊆
F (A ⊕ B).

Example 5.7. Example where F (A) ∪ F (B) 6⊆ F (A ⊕ B). Let A := C(Φ30) and
B = C(Φ6), then F (A) = {1, 6, 10, 15} and F (B) = {1, 2, 3} while F (A ⊕ B) =
{1, 2, 3, 10, 12, 15}. The number 6 ∈ F (A) is not in F (A ⊕ B), because N(B6) = 0
so N((A ⊕ B)6) = N(A6)N(B6) = 0 too.

We saw in Example 5.7 that F (A) may not be contained in F (A)⊗F (B). On
the other hand if A = B we have no problem determining F (A ⊕ B)

Proposition 5.8. Let A be an arbitrary periodic matrix, then

F (A ⊕ A) = F (A).

Proof. The result essentially follows from the fact that N((A⊕ A)m) = (N(Am))2.
So for example if m ∈ F (A ⊕ A) then (N(Am))2 6= 0, and for all proper divisors
q of m we have that (N(Aq))2 < (N(Am))2. Clearly by taking square roots we
have that N(Am) 6= 0 and N(Aq) < N(Am) for all proper divisors of m so m is a
first. The converse is similar.

The following Corollary will allow us, in our inductive procedure, to add a
kth power of a primitive in one fell swoop, rather than having to do it k times. Its
proof essentially boils down to the fact that for each q we have that N(⊕k

i=1A)q) =

(N(Aq))k, and is omitted.
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Corollary 5.9. Powers of a primitive Let F = ⊕k
i=1A, where A = C(Φn)) with

n = ps1
1 · · · psr

r and r ≥ 1. Then For all m we have that N(Fm) = (N(Am))k, where the
N(Am) are given in Corollary 4.8. Furthermore NPm(F) = 0 if and only if m 6∈ F (A).

Let r > 1. If m = 1, then NPm(F) = 1 otherwise let m = p̂u
i ∈ F (A). Then

NPm(F) =

{
(N(Am))k − 1 if u = si

(N(Am))k − N((A
m
pi )k if u < s1.

Let r = 1 and m = p̂u
1 ∈ F (A). Then

NPm(F) =

{
pk

1 if u = si,

pkm
1 − p

k m
p

1 if u < s1.

In particular if n = ps, then NPp(F) = pkp − pk independent of s.

There is of course a similar result for NΦm(C(Φn)[k]) which we omit.
The proof of the following Proposition is left to the reader.

Proposition 5.10. (F (A) ⊗F (B))⊗F (C) = F (A)⊗ (F (B)⊗F (C)).

The final result of this subsection, whose proof combines the first parts of
Propositions 3.2 and 5.1, and can obviously be extended to more than two factors.

Proposition 5.11. Let A and B be arbitrary periodic matrices of periods nA and nB

respectively, then

N((A ⊕ B)m) = N(A(m,nA))N(B(m,nB)).

In Corollaries 4.8 and 4.12 we saw for primitives that if (m, n) 6∈ F (F) ∪ {n},
then N(Fm) = N(F). Proposition 5.11 helps us to see why this is not true for arbi-
trary periodic matrices. To give a concrete example consider m = 40 in Example
3.5 where F = C(Φ20Φ30) with period 60. Now (40, 60) = 20, (40, 20) = 20,
(40, 30) = 10, and 20 /∈ F (F) ∪ {60} = {1, 4, 5, 6, 10, 12, 15, 60} but N(F20) =
N((C(Φ20)

20)N((C(Φ30)
10) = 0 6= 1 = N(C(Φ20))N(C(Φ30)).

5.2 The sets F (Aq) and mF for q | m ∈ F (A)⊗F (B)

In this subsection B will be an arbitrary periodic matrix, and A a primitive. We are
thinking of B as the kth stage of our induction procedure and A ⊕ B as the k + 1st
stage. In this subsection we are looking to simplify the sum product formula (the
second part of Theorem 5.1). In particular we want to know when the various
NPq(B)NPm

q
(Aq) are zero. We show for a fixed m, rather than having to take

the sum of the products over all q | m, that we need only take the sum over a
subset of such q which we denote by mF (Notation 5.17). The point is if q /∈ mF

then the product NPq(B)NPm
q
(Aq) = 0. We verify the simplification advertised

in Example 1.2 given in the introduction, which we restate below. In the next
subsection we will need to figure out the numbers NPm

q
(Aq). After reminding

the reader of Example 1.2 we start by looking at F (Aq) and its comparison with
F (A) for various q. We continue with the definition and the study of the sets mF .
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Example 5.12. Example 1.2 revisited. In the introduction we gave (without proof)
the table below of values of NPm(A ⊕ B) for A := C(Φ20) and B := C(Φ30).
From Example 3.5 we have that F (A) = {1, 4, 5, 10}, F (B) = {1, 6, 10, 15} and
F (A ⊕ B) = {1, 4, 5, 6, 10, 12, 15}. We verify the table below in this subsection. In
particular we will see, for m = 1, m = 4 and m = 5 that mF = {1} (Notation 5.17,
Example 5.22).

NP1(A ⊕ B) N(B)N(A)

NP4(A ⊕ B) N(B)NP4(A)

NP5(A ⊕ B) N(B)NP5(A)

NP6(A ⊕ B) NP6(B)N(A)

NP10(A ⊕ B) N(B)NP10(A) + NP10(B)N(A10)

NP12(A ⊕ B) NP6(B)NP2(A4)

NP15(A ⊕ B) NP15(B)N(A15)

Proposition 5.13. Let F = (C(Φn)), then F (Fq) = F (C(Φ n
(n,q)

)).

Proof. By Proposition 3.2 we can work with F(n,q) rather than Fq. By Theorem 2.7

we have that F(n,q) = C(Φ n
(n,q)

)
[

φ(n)

φ( n
(n,q)

)
]

. Thus F(n,q) is a sum of
φ(n)

φ( n
(n,q)

)
copies of the

matrix C(Φ n
(n,q)

). So by Proposition 5.8 we have that F (F(n,q)) = F (C(Φ n
(n,q)

)) as

stated.

The next example not only illustrates Proposition 5.13, but compares various
F (Fq) with F (F).

Example 5.14. Let F = C(Φ2520) be as in Example 1.1. The table below compares
F (F) with F (F42) = F (C(Φ60)), F (F105) = F (C(Φ12))), F (F955) = FC(Φ8))
and F (F630) = C(Φ4)).

From Proposition 5.13 we have that F (F42) = F (C(Φ60)) = {1, 12, 15, 20, 30},

and from Proposition 3.2 that N(F945) = N(F(945,n)) = N(F315) so as above
F (F945)) = {1, 2, 4}. From the table we can see also see that this last set is equal
to

{1} ∪ {v ∈ N | v(945, n) ∈ F (F)}.

This illustrates the following alternative way of describing the F (Fq).

Proposition 5.15. Let F = C(Φn), and let q be arbitrary. If (q, n) = n then F (Fq) =
∅, otherwise

F (Fq) = {1} ∪ {v ∈ N | v(q, n) ∈ F (F)},

and of course if v ∈ F (Fq), then N((Fq)v) = N(Fqv) = N(Fv(q,n)).
Moreover if m

q ∈ N, then m
q ∈ F (Fq) ⇔ q = m or m

q (n, q) ∈ F (F). If q|n with

q 6= n then
F (Fq) = {1} ∪ {v ∈ N | qv ∈ F (F)},

and if m|n and m
q ∈ N, then m

q ∈ F (Fq) ⇔ q = m or m ∈ F (F).
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F (F) m 1 280 315 360 504 630 840 1260

1 3̂2 2̂3 7̂ 5̂ 2̂2 3̂ 2̂

N(Fm) 1 396 2144 796 5144 2288 3288 2576

F (F42) t 1 12 15 20 30

N((F42)t) 1 5144 2288 3288 2576

F (F105) t 1 3 6 8 12

N((F105)t) 1 2144 2288 3288 2576

F (F945) = F (F315) t 1 2 4

(945, n) = 315 N((F315)t) 2144 2288 2576

F (F630) t 1 2

N((F630)t) 2288 2576

.

Note that if (q, n) 6= 1, then #(F (Fq) < #(F (F))
Proof of 5.15. If (q, n) = n then N(Fqm) = 0 for all m and so F (Fq) = ∅ as

stated. Otherwise let h = (q, n), then h|n, and by the proof of Proposition 3.2, Fq

and Fh have the same eigenvalues, so F (Fq) = F (Fh). Next, let B = C(Φ n
h
), then

B is primitive, and by Theorem 4.6 we can think of Fh as a finite direct sum of
copies of B. By Proposition 5.8 we have that F (Fh) = F (B). We show F (B) =
{1} ∪ {v ∈ N | hv ∈ F (F)}.

Let n = ps1
1 · · · psr

r with r ≥ 1. Then n
h = pt1

1 · · · ptr
r for some ti, with

0 ≤ ti ≤ si for all i. Now F (B) = {1} ∪ {(n/h)/pℓi | 1 ≤ ℓ ≤ ti} by Corol-
lary 4.8. We show that F (B) ⊆ {1} ∪ {v | hv ∈ F (F)} and vice versa. Clearly
1 ∈ {1} ∪ {v ∈ N | hv ∈ F (F)}, so let w = (n/h)/pℓi ∈ F (B), then hw =

h(n/h)/pℓi = n/pℓi = p̂ℓi ∈ F (F), so w ∈ {1} ∪ {v ∈ N | hv ∈ F (F)}, and
F (B) ⊆ {1} ∪ {v ∈ N | hv ∈ F (F)}.

Conversely let w ∈ {1} ∪ {v ∈ N | hv ∈ F (F)}. If w = 1 then w ∈ {1} ∪

{v ∈ N | hv ∈ F (F)}, otherwise hw = p̂ℓi for some i with 1 ≤ ℓ ≤ si. Clearly

w = (n/h)/pℓi . We must show that 1 ≤ ℓ ≤ ti. Now w ∈ N and this would not

be the case if ℓ > ti, so 1 ≤ ℓ ≤ ti, and w = (n/h)/pℓi ∈ F (B) as required.
The rest is trivial.

Corollary 5.16. Let B be periodic, A primitive of period n, and m ∈ F (A) ⊗ F (B).
Then

NPq(B)NPm
q
(Aq) = 0

if either q /∈ F (B), or m
q /∈ F (Aq). In particular if m|n then NPq(B)NPm

q
(Aq) = 0 if

either q /∈ F (B), or (q 6= m and m /∈ F (A)).

Proof. The first part is trivial, since if q /∈ F (B) then NPq(B) = 0. Similarly if
m
q /∈ F (Fq) then NPm

q
(Aq) = 0. The rest follows from Proposition 5.15.
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We use the following notation for the complement of the set described in
Corollary 5.16.

Notation 5.17. Let B be periodic, A primitive of period n, and m ∈ F (A)⊗F (B).
We use the notation mF to denote the set

mF := {q|m | q ∈ F (B) and (q = m or m
q (n, q) ∈ F (A))}.

This gives immediately the following Corollary of Theorem 5.1:-

Corollary 5.18. Let B be periodic and A be primitive. If m /∈ F (A) ⊗ F (B), then
NPm(A ⊕ B) = 0. If m ∈ F (A)⊗F (B) then

NPm(A ⊕ B) = ∑q∈mF NPq(B)NPm
q
(A(q,n)).

Example 5.19. Example 5.12 continued. We explain the cases m = 6 and
m = 12 in Example 5.12. We remind the reader that F (A) = {1, 4, 5, 10}, F (B) =
{1, 6, 10, 15} and F (A ⊕ B) = {1, 4, 5, 6, 10, 12, 15}. For m = 6 we have that
{q|6} = {1, 2, 3, 6}. Now neither 2 nor 3 belong to F (B), and so are eliminated.
For q = 1 we have that 6

q (n, q) = 6 /∈ F (A), so 1 /∈ 6!q. On the other hand

6 ∈ F (B) and q = 6 so 6F = {6}. Thus NP6(A ⊕ B) = NP6(B)N(A2) =
NP6(B)N(A) (since 2 /∈ F (A) - see Corollary 4.8.

For m = 12 we have {q|12} = {1, 2, 3, 4, 6, 12}, but 2, 3, 4, 12 /∈ F (B) so do
not belong to 12F . Also 1 /∈ 12F since 12

1 1 = 12 /∈ F (A). Now 12
6 (20, 6) = 4 ∈

F (A) and 6 ∈ F (B), so 12F = {6}, and we thus confirm that NP12(A ⊕ B) =
NP6(B)NP2(A2). At this point we do not know how to compute NP2(A2). We
look into this sort of computation in 5.17 in the next subsection.

We now establish some criteria that give shortcuts to determine the mF . Since
if m|n we have that (m, n) = m, then the Lemma below simply restates the defi-
nition in Notation 5.17.

Lemma 5.20. Let B be periodic and A primitive of period n, and m ∈ F (A)⊗F (B). If
m|n, then

mF := {q|m | q ∈ F (B) and (q = m or m ∈ F (A)) }.

Corollary 5.21. Let B be periodic, A primitive, and let m ∈ F (A)⊗F (B) with m|n.

If m ∈ F (A), then

mF := {q|m | q ∈ F (B)}.

In particular, if no q|m lies in F (B)− {1}, then mF = {1} and so

NPm(A ⊕ B) = N(B)NPm(A).

If m ∈ F (B) but m /∈ F (A) then mF = {m} and so

NPm(A ⊕ B) = NPm(B)N(A).
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Proof. For the first part, if m ∈ F (A) the right hand condition in Lemma 5.20
is fulfilled and the statement that mF = {q|m | q ∈ F (B)} is simply the left
hand condition of the Corollary. The “In particular” part is now obvious. For the
second part, since m|n but m /∈ F (A), then the only way that the right hand
condition in Lemma 5.20 can be fulfilled is if q = m. Since m ∈ F (B) then
mF = {m}, and the formula for NPm(A ⊕ B) follows from Corollary 5.18.

Example 5.22. We explain first the cases m = 4, 5 and 10 in Example 5.12. Since
m ∈ F (A) for m = 4, 5 and 10, the first part of Corollary 5.21 allows us to explain
these cases. In particular 4F = {q|4 | q ∈ F (B)} = {1}, similarly 5F = {q|5 | q ∈
F (B)} = {1}, while 10F = {q|10 | q ∈ F (B)} = {1, 10}. Now we cannot use
Corollary 5.21 for the case m = 6, because 6 ∤ n. However since both A and B are
primitives we can reverse their roles in the first part of the Corollary to deduce
that NP6(A ⊕ B) = NP6(B)N(A).

In order to illustrate the part of Corollary 5.21 with m /∈ F (A), we go back to
Example 5.2, where A := C(Φ60) and B = C(Φ90). We saw there that F (A) =
{1, 12, 15, 20, 30} and F (B) = {1, 10, 18, 30, 45}. So 10 ∈ F (B) and 10|60, but 10 /∈
F (A). So 10F = {10} so NP10(A ⊕ B) = NP10(B)N(A) = (34 − 1) · 1 = 34 − 1
which can also easily be seen from the table for F (A ⊕ B) in that example.

There are in fact three more cases we investigate where NPm(A ⊕ B) can be
computed as a simple product. We give the first two here, but wait until the
next subsection for the third. The first two results come into their own in our
concluding example (5.28) and we wait until then to illustrate them. Proposition
5.23 below differs from Corollary 5.21 in that the hypotheses here do not include
that m|n. The following Proposition is used in step 2 of Example 5.28, where F1

plays the role of B and F2 the role of A.

Proposition 5.23. Let A and B be periodic matrices with A primitive of period n. If

m ∈ F (B) ∩ (F (A) ⊗ F (B)) is such that m < p̂u
i for all p̂u

i ∈ F (A) − {1}, then

mF = {m} and
NPm(A ⊕ B) = NPm(B)N(A).

Proof. Clearly 1F = {1}, so the Proposition is true for m = 1. So we can assume,
for the rest of the proof, that m 6= 1. In particular from the hypotheses we have
that m /∈ F (A) − {1}. Moreover no q with 1 < q ≤ m lies in F (A). Recall that
mF = {q|m | q ∈ F (B) and (q = m or m

q (n, q) ∈ F (A) }. Now m ∈ F (B) so for

q = m we certainly have that m ∈ mF . So we must show that if m 6= 1, q|m and

q 6= m, then q /∈ mF . We show for all such q that m
q (n, q) /∈ F (A). Now

(n,q)
q ≤ 1,

so m
q (n, q) ≤ m. So unless m

q (n, q) = 1 it does not belong to F (A). But q 6= m, so
m
q > 1 and so m

q (n, q) > 1 as needed.

Now NPm(A ⊕ B) = NPm(B)NPm
m
(A(m,n)) from Corollary 5.18. We need to

see that N(A(m,n)) = N(A). If (m, n) = 1 there is nothing to prove. On the other
hand if (m, n) 6= 1, since (m, n) ≤ m then (m, n) /∈ F (A) by hypotheses, and so

N(A(m,n)) = N(A) by Corollaries 4.8 and 4.11, and we are done.

Proposition 5.24. (Used in step 4 of Example 5.28) Let B be an arbitrary periodic matrix
of period nB and let A = C(Φps) where p is a prime that does not divide nB. Then
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F (A) ⊗ F (B) = F (A)F (B) as a set. Moreover for each mAmB ∈ F (A)F (B) we
have that (mAmB)

F = {mB} and so

NPmAmB(A ⊕ B) = NPmB(B)NPmA
(A).

Proof. We note first that (nA, nB) = 1 implies that (mA, t) = 1 for any mA ∈ F (A)
and any t|nB. In particular, for any mA ∈ F (A), and mB ∈ F (B) we have that
lcm(mA, mB) = mAmB. Recall next that F (A)⊗F (B) = LCM(A, B))−Z(A, B).
So if lcm(mA, mB) ∈ F (A) ⊗ F (B), then since 0 6= lcm(mA, mB) = mAmB, we
must have mA 6= 0 and mB 6= 0 thus lcm(mA, mB) = mAmB ∈ F (A)F (B).

Next let mAmB ∈ F (A)F (B). Since mAmB = lcm(mA, mB) we need only show
that N((A ⊕ B)mA ,mB) 6= 0. So let n1, · · · nℓ be all the zeros of B which divide the
order of B. Since A = C(Φps) we know the only zero that divides the order of A
is ps. It is easy to see that m is a zero of B if and only if (m, ni) = ni for some i, and
that the zeros of A ⊕ B are multiples of either some ni or of ps. But if mB ∈ F (B)
then N(FmB ) 6= 0 so (mB, ni) 6= ni for any i. Also (mA, ni) = 1 for all i (t = ni

above) so (mAmB, ni) 6= ni for any i, and neither is it a multiple of ps. So mAmB is
not a zero of A ⊕ B.

To show that (mAmB)
F = {mB}, note that (mAmB)

F := {q|mAmB | q ∈ F (B)
and (q = mAmB or mAmB

q (nA, q) ∈ F (A))} by definition. We show first that if

either mA = 1 or mB = 1 then the result holds. If mA = mB = 1 then clearly
(1 · 1)F = {1}. If mA = 1 and mB 6= 1, then NPmB

q
(Aq) = 0 for all q 6= mB,

since for any such q we have that Aq = A and 1mB
q (nA, q) = mB

q · 1 /∈ F (A). Thus

(1 · mB)
F = {mB}. If mB = 1 and mA 6= 1, then the only q|1 · mA that belonging

to F (B) is q = mB so again (mA · 1)F = {1}. So without loss we may assume that
mA 6= 1 and mB 6= 1.

Let q ∈ (mAmB)
F , then q ∈ F (B), so (mA, q) = 1 since (mA, mB) = 1. In

particular q 6= mA, and we must have that mAmB
q (nA, q) = mAmB

q ∈ F (A). So q

must cancel mB and be equal to it, and we have shown that q = mB as required.

5.3 Computing NPm
q
(A(q,n)) for q ∈ mF

The main thrust of this subsection is the determination of the NPm
q
(Aq) for

m ∈ F (A) ⊗ F (B) and for q ∈ mF . We will use our results to continue to give

simplifications of the sum product. Since N((Fq)
m
q ) = N(Fm), we can expect

some connection between the NPm
q
(Fq) and the NPm(F).

Example 5.25. We use two primitives F1 := C(Φ26) and F := C(Φ2520) together
with Corollary 5.9 to illustrate the fact that NPm

q
(Fq) may or may not be equal to

NPm(F). These computations also illustrate Proposition 5.26 below. The cases, in
that Proposition, are indicated in brackets following the computations.

The determination of F (F1), F (F2
1 ) and F (F24

1 ) are shown in the table below.
So NP2

2
(F2

1 ) = N(F2
1 ) = 22 6= NP2(F1) = 22 − 2. Similarly NP24

24
(F8

1 ) 6=

NP8(F1) (both illustrate r = 1 and m = q in Proposition 5.26). On the other
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F (F1) m 1 2 4 8 16 32 64

N(Fm
1 ) 2 22 24 28 216 232 0

F (F2
1 ) t 1 2 4 8 16 32

N((F2
1 )

t) 22 24 28 216 232 0

F (F24
1 ) t 1 2 4 8

(24, 26) = 8 N((F8
1 )

t) 28 216 232 0

.

hand NP16
2
(F2

1 ) = NP8(F
2
1 ) = 216 − 28 = NP16(F1) and NP32

8
(F24

1 ) = NP4(F
8
1 ) =

232 − 216 = NP32(F1) (r = 1 and q 6= m in Proposition 5.26).
We now use F := C(Φ2520), and the table in Example 5.14, to illustrate the

indicated parts (in brackets) of Proposition 5.26. So

NP504
42
(F42) = NP12(F

42) = 5144 − 1 = NP504(F) (r > 1 and u = si)

NP1260
42
(F42) = NP30(F

42) = 2576 − 2288 = NP1260(F) (r > 1, u < si and pi |
m
q )

NP630
42
(F42) = NP15(F

42) = 2288 − 1 6= NP630(F) = 2288 − 2144 (u < si and pi ∤
m
q )

Similarly NP840
105
(F105) = NP8(F

105) = 3288 − 1 6= NP840(F) = 3288 − 396.

The Proposition below gives conditions under which NPm
q
(Fq) = NPm(q,n)

q

(F),

and under which NPm
q
(Fq) = NPm(F).

Proposition 5.26. Let F = C(Φn) where n = ps1
1 · · · psr

r and r ≥ 1. Suppose that m is
an arbitrary positive integer and q | m.

If q = m (and 6= n) then NPm
q
(Fq) = N(F(m,n)) ( 6= NPm(F) if m 6= 1).

If q 6= m and
m(q,n)

q = p̂u
i ∈ F (F), then

NPm
q
(Fq) = NPm(q,n)

q

(F) if





r > 1 and u = si, or
r > 1, 0 < u < si and pi |

m
q ,

or r = 1.

In particular, if in addition to any of the above conditions we have that q | n, then

NPm
q
(Fq) = NPm(F).

Finally if r > 1, u < si and pi ∤
m
q then

NPm
q
(Fq) = N(Fm)− 1 6= NPm(F) = N(Fm)− N(F

m
pi ).
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Proof. Let q and q|m be given. From Proposition 3.2 we have N(Fm) = N(F
m
q q
) =

N(F
m(q,n)

q ). Now if q = m, then NPm
q
(Fq) = NP1(F

m) = N(Fm) = N(F(m,n)), and

the first part is shown.

Next suppose that q 6= m and
m(q,n)

q = p̂u
i ∈ F (F). Since Fq has period

nq := n
(q,n)

then nq | n, and we must have that nq = pt1
1 · · · ptr

r for some ti with

0 ≤ u ≤ ti ≤ si for i = 1, · · · r. By Proposition 5.15 we have that
m(q,n)

q = p̂si
i =

n
pu

i
∈ F (F) if and only if m

q =
nq

pu
i
∈ F (Fq). Armed with this, we consider the

various cases separately.

So firstly then let r > 1 and
m(q,n)

q = p̂si
i = n

p
si
i

∈ F (F). By Corollary 4.12 we

have that NPm(q,n)
q

(F) = N(F
m(q,n)

q ) − 1 = N(Fm) − 1. On the other hand from

above we have that m
q =

nq

p
si
i

∈ F (Fq). Clearly ti = si for this i, so again from

Corollary 4.12, we have that NPm
q
(Fq) = N((Fq)

m
q ) − 1 = N(Fm) − 1, and the

first case follows.

Next let
m(q,n)

q = p̂u
i = n

pu
i
∈ F (F) with r > 1, u < si and pi |

m
q . Again from

above we have that m
q =

nq

pu
i
∈ F (Fq). But pi |

m
q so pi |

m(q,n)
q , that is p̂u+1

i ∈ F (F).

From Corollary 4.12 again we have that N(Fm) − N(F
m
pi ). But also pi |

nq

pu
i
∈

F (Fq). In other words
nq

pu+1
i

∈ F (Fq) so again NPm
q
(Fq) = N(Fm)− N(F

m
pi ), and

the second case is proved.

Finally let r = 1 with
m(q,n)

q = p̂u
i ∈ F (F) and of course, q 6= m. Clearly neither

m
q nor

m(q,n)
q is equal to 1, and since F (F) = {1, p1, · · · , ps1−1

1 } and (q, n) | n, we

must have that m
q = pt

1 for some t ≥ 1. In particular p1 | m
q and the proof follows

exactly as in the case r > 1 with u < si and pi |
m
q .

If, in the previous part we also have that q|n, then (q, n) = q and
m(q,n)

q = m.

The next part now follows from the previous one. The last part follows from a
careful examination of both sides and Corollary 4.12.

The Corollary below is useful, since many times F (A) ⊂ F (A)⊗F (B).

Corollary 5.27. (Used in steps 2 and 3 of Example 5.28) Let A = C(Φn) with

n = ps1
1 · · · psr

r and r ≥ 1. Let B be arbitrary periodic and m = p̂u
i ∈ F (A). If

r > 1 and u = si, or r > 1, 0 < u < si and p | p̂u+1
i , or if r = 1 with u 6= s1 then

NPm
q
(Aq) = NPm(A) for all q 6= m.

Moreover in these cases if m /∈ F (B) then

NPm(A ⊕ B) = NPm(A)N(Bm).
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Proof. If m = p̂u
i ∈ F (A), then any q|m must divide n. In these cases (q, n) = q

and of course
m(q,n)

q = m. So for q 6= m the first part can now be read off the

formula in Proposition 5.26.
Under these same conditions if m /∈ F (B), then q = m is excluded from

mF . It follows from Lemma 5.20 that mF := {q|m | q ∈ F (B)} for this m.
Since NPq(B) = 0 if q /∈ F (B) we have that ∑q∈mF NPq(B) = ∑q|m NPq(B)

= NΦm(B) = N(Bm), with the last two steps from Theorem 2.3. Using this we
have that

NPm(A ⊕ B) = ∑q∈mF NPq(B)NPm
q
(Aq)

= NPm(A)∑q∈mF NPq(B)

= NPm(A)N(Bm).

5.4 Computing a four stage example

In this final subsection we demonstrate the induction process by working a four
stage example. In doing this we will indicate at each step, which matrix plays the
role of A (the primitive) in our earlier results, and which plays the role of B the
matrix to which we are “adding” A.

Example 5.28. Four stage induction example. Let F be as given below, we deter-
mine N(Fm) for all m, and indicate shortcuts to determine N(Fm) and NΦm(F)
for all m for this F.

F = C(Φ63)⊕ C(Φ210)
[3] ⊕ C(Φ2520)⊕ C(Φ1331)

[2]

has period lcm(63, 210, 2520, 1331) = 3, 354, 120. For convenience we assign the
following names to each of the primitives (or powers thereof):- F1 := C(Φ63),

F2 := C(Φ210)
[3], F3 := C(Φ2520) and F4 := C(Φ1331)

[2]. The primitive F3 is of
course familiar from Example 1.1.

Step 1 F1 = C(Φ63). We use the methods of section 4 to compute the table for F1.
The “hat” notation here is of course, with respect to the period n1 = 63 = 32 · 7,
of F1.

F (F1) m 1 7 9 21

m 1 3̂2 7̂ 3̂

N(Fm
1 ) 1 36 76 318

NPm(F1) 1 36 − 1 76 − 1 318 − 36

. (2)

As mentioned earlier, we defer the computation of the NΦm(F) until the end.

Step 2 Adding F2 := C(Φ210)
[3] to obtain ⊕2

i=1Fi . Note that the period of ⊕2
i=1Fi is

lcm(63, 210) = 630. Now F (F2) = F (C(Φ210)) by Proposition 5.8, but note that

N(Fm
2 ) 6= N((C(Φ210)

m) since F2 = C(Φ210)
[3] (not C(Φ210)). We use Corollary 5.9

to construct the following table. Here of course the “hat” notation is with respect
to F2.
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F (F2) m 1 30 42 70 105

m 1 7̂ 5̂ 3̂ 2̂

N(Fm) 1 (78)3 (512)3 (324)3 (248)3

NPm(F) 1 724 − 1 536 − 1 372 − 1 2144 − 1

. (3)

In this step F1 plays the role of B and F2 the role of A in our earlier results.
So we need to find F (F2) ⊗ F (F1) (Definition 5.3), from F (F1) = {1, 7, 9, 21}
and F (F2) = {1, 30, 42, 70, 105}. Obviously, since we exclude any lcm that is a
zero, we must exclude any multiple of either 63 or 210. In fact F (F2)⊗F (F1) =
F (F2 ⊕ F1) = F (F2) ∪ F (F1) ∪ {90}. The values of N((⊕2

i=1Fi)
m) in the table

come from the fact that N((⊕2
i=1Fi)

m) = N(Fm
1 )N(Fm

2 ) = N(F
(63,m)
1 )N(F

(210,m)
2 )

from Proposition 5.11.

F (⊕2
i=1Fi) m 1 7 9 21 30 42 70 90 105

N((⊕2
i=1Fi)

m) 1 36 76 318 724 318536 378 730 2144318
.

To find the NPm(⊕2
i=1Fi) note that for each m in F (F1) = {1, 7, 9, 21} ⊂

F (⊕2
i=1Fi) that m < p̂u

i for all p̂u
i ∈ F (F2) − {1}, so NPm(⊕2

i=1Fi) =
NPm(F1)N(F2) = NPm(F1) for each such m, by Proposition 5.23. This gives ta-
ble (4) below (we show later that NPm(⊕2

i=1Fi) = NPm(⊕3
i=1Fi) for these m).

m 1 7 9 21

NPm(⊕2
i=1Fi) = NPm(⊕3

i=1Fi) 1 36 − 1 76 − 1 318 − 36
. (4)

Table (5) below continues table (4) (including the claim that NPm(⊕2
i=1Fi) =

NPm(⊕3
i=1Fi)).

30 42 70 90 105

724 − 1 (536 − 1)318 (372 − 1)36 730 − 724 − 76 + 1 (2144 − 1)318
. (5)

To see this note firstly that for m = 30, 42, 70, and 105 we have that m = p̂si
1 ∈

F (F) and NPm(⊕2
i=1Fi) = NPm(F2)N(Fm

1 ) by Corollary 5.27. The values of the

N(Fm
1 ) for these m, come from Corollary 4.8. So NP30(⊕

2
i=1Fi) = NP30(F2) · 1 =

724 − 1 while NP42(⊕
2
i=1Fi) = NP42(F2)N(F21

1 ) = (536 − 1)318. Next NP70(F2 ⊕

F1) = NP70(F2)N(F7
1 ) = (372 − 1)36, and NP105(F2 ⊕ F1) = NP105(F2)N(F21

1 ) =

(2144 − 1)318. Lastly for m = 90, since N((F2 ⊕ F1)
90) 6= 0, and 90!F (F2 ⊕ F1)−

{90} ={1, 9, 30}, then from Theorem 3.7 we have that NP90(F2 ⊕ F1) = 730 − 724 +
1 − 76 + 1 − 1 = 730 − 724 − 76 + 1.
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The justification that F (F2)⊗F (F1) = F (F2 ⊕ F1) comes from Proposition 3.4
because N((F2 ⊕ F1)

q) 6= N((F2 ⊕ F1)
90) = 730 for any q < 90.

Step 3 Adding F3 := C(Φ2520) (Example 1.1) to obtain ⊕3
i=1Fi . Note that the pe-

riod of ⊕3
i=1Fi is lcm(630, 2520) = 2, 520. In this step ⊕2

i=1Fi plays the role of B

and F3 the role of A. So we need to find F (F1 ⊕ F2) ⊗ F (F3) from F (⊕2
i=1Fi)

= {1, 7, 9, 21, 30, 42, 70, 90, 105} and F (F3) = {1, 280, 315, 360, 504, 630, 840, 1260}.
Obviously we still exclude any lcm that is a multiple of either 63 or 210 since they
are zeros. This automatically excludes 315, 504, 630, 840 and 1260 from
F (F1 ⊕ F2)⊗F (F3). In fact we can compute this as {280, 360}⊗ {1, 7, 9, 21, 30, 42,
70, 90, 105}. So

F (F1 ⊕ F2)⊗F (F3) = {1, 7, 9, 21, 30, 42, 70, 90, 105, 280, 360}= F (⊕3
i=1Fi).

We confirm first the equation NPm(⊕3
i=1Fi) = NPm(⊕2

i=1Fi) claimed for each
m in tables (4) and (5). To see this note, for each m ∈ {7, 9, 21, 30, 42, 70, 90, 105},
that m|2520, the period of F3, and that m ∈ F (⊕2

i=1Fi), but m /∈ F (F3). So then

NPm(⊕3
i=1Fi) = NPm(⊕2

i=1Fi)N(F3) by Corollary 5.21. But N(F3) = 1, and since
the formula also holds for m = 1 trivially, the claim is established.

It remains to compute NPm(F3) and NPm(⊕
3
i=1Fi) for m ∈ {280, 360}. We

combine the results in the table below with the explanation to follow.

m 1 280 360

N(Fm
3 ) 1 396 796

NPm(F3) 1 396 − 1 796 − 1

NPm(⊕
3
i=1Fi) 1 (396 − 1)384 (796 − 1)730

. (6)

The computations for N(Fm
3 ) and NPm(F3) are familiar from table (1) in Example

1.1 in the introduction. Note for m = 280, and 360 we have that m ∈ F (F3),
but m /∈ F (⊕2

i=1Fi). So for m = 280, 360 we have, from Corollary 5.27, that

NPm(⊕3
i=1Fi)) = NPm(F3)N((⊕2

i=1Fi)
m). From Proposition 5.11 we have that

N((⊕2
i=1Fi)

280) =N(F7
1 )(N(F70

2 ) = 36378 = 384 and similarly N((⊕2
i=1Fi)

360) =

730. Thus NP280(⊕
3
i=1Fi) and NP360(⊕

3
i=1Fi) are as shown in table (6).

Step 4 Adding F4 := C(Φ1331)
[2] to obtain F = ⊕4

i=1Fi (= F). In this step ⊕3
i=1Fi

plays the role of B and F4 the role of A. Now the table for F4 is

F (F4) m 1 11 121

N(Fm
4 )) (11)2 (1111)2 (11121)2

NPm(F4) 112 1122 − 112 11242 − 1122

. (7)

The period of ⊕4
i=1Fi is lcm(2520, 1331) = 3, 354, 120, and since (2520, 1331) = 1,

then by Proposition 5.24 we have that F (F4) ⊗ F (⊕3
i=1Fi) = F (F4)F (⊕3

i=1Fi)

with elements which we write as 11um for u = 0, 1, 2 and m ∈ F (⊕3
i=1Fi). Using

this formulation, we record the 33 elements of the set F (F4)F (⊕3
i=1Fi) in the table

below.
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110m 1 7 9 21 30 42 70 90 105 280 360

111m 11 77 99 231 330 462 770 990 1155 3080 3960

112m 121 847 1099 2541 3630 5082 8470 10890 12705 33880 43560

.

By Proposition 5.24 we have that NP11um(⊕
4
i=1Fi) = NPm(⊕3

i=1Fi)NP11u (F4).

Thus for each m ∈ F (⊕3
i=1Fi) we have from table (7) that

NPm(⊕
4
i=1Fi) = 112NPm(⊕

3
i=1Fi)

NP11m(⊕
4
i=1Fi) = (1122 − 112)NPm(⊕3

i=1Fi)
NP121m(⊕

4
i=1Fi) = (11242 − 1122)NPm(⊕3

i=1Fi).
(8)

We now construct the table for the NPm(F). We do this using this and tables (4),
(5), (6), (7) and (8). The constructed table also allows us, by Proposition 5.6, to
deduce that F (F4)⊗F (⊕3

i=1Fi) = F (⊕4
i=1Fi) = F (F4)⊗F (⊕3

i=1Fi) = F (F).

m NPm(F) NP11m(F) NP121m(F)

1 112 1122 − 112 11242 − 1122

7 112(36 − 1) (1122 − 112)(36 − 1) (11242 − 1122)(36 − 1)

9 112(76 − 1) (1122 − 112)(76 − 1) (11242 − 1122)(76 − 1)

21 112(318 − 36) (1122 − 112)(318 − 36) (11242 − 1122)(318 − 36)

30 112(724 − 1) (1122 − 112)(724 − 1) (11242 − 1122)(724 − 1)

42 112(536 − 1)318 (1122 − 112)(536 − 1)318 (11242 − 1122)(536 − 1)318

70 112(372 − 1)36 (1122 − 112)(372 − 1)36 (11242 − 1122)(372 − 1)36

90 112(730 − 724 − 76 + 1) (1122 − 112)(730 − 724 − 76 + 1) (11242 − 1122)(730 − 724 − 76 + 1)

105 112(2144 − 1)318 (1122 − 112)(2144 − 1)318 (11242 − 1122)(2144 − 1)318

280 112(396 − 1)384 (1122 − 112)(396 − 1)384 (11242 − 1122)(396 − 1)384

360 112(796 − 1)730 (1122 − 112)(796 − 1)730 (11242 − 1122)(796 − 1)730

.

The numbers N(Fm) and NΦm(F) for all m.

So the big table gives the values of NP11um(F) for each 11um ∈ F (F). And of
course NPq(F) = 0 if q /∈ F (F). As mentioned in the introduction it is convenient
to wait until the end of the induction process to do the complete identification of
the N(Fm) and NΦm(F) for all m.

We start with the N(Fm). Perhaps the best way to proceed is to determine first
if N(Fm) = 0, and this occurs exactly when m is a multiple of 63, 210, 2520 or 1331.
For the rest, the reader will have noticed that we have not given the table for the
N(Fm) for m ∈ F (F). This is because these values are already present, slightly
hidden, in the big table for the NPm(F). The point is that for all such m we have
from Theorem 3.7 that NPm(F) = N(Fm) − ∑q∈m!F (F)−{m} NPq(F), and N(Fm)
can be identified as the largest term in this expression (see Proposition 2.4). So
for example N(F90) = 112730, and N(F3080) = 11223177 since these are respec-
tively the largest terms in the expressions 112(730 − 724 − 76 + 1) and (1122 − 112)
(396 − 1)384. Since the big table is the table of all firsts, then it contains all of the
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values of the N(Fm) in this way. The task then for any m, when N(Fm) 6= 0, is to
identify which of the q ∈ F (F) has N(Fm) = N(Fq).

We have several tools. The first uses the equation N(Fm) = N(F(m,n)) from

Proposition 3.2. So for example N(F1400) = N(F(1400,3354120)) = N(F280) =
1123177 since 280 ∈ F (F). On the other hand (140, 3354120) = 140 /∈ F (F), so we
need something else. Here we can use the equation N(Fm) = ∑q∈m!F (F) NPq(F)

in both directions (Theorem 3.7). So note, since 140 = 22 · 5 · 7, that 140!F (F) =
{1, 7, 70} = 70!F (F). So N(F140) = ∑q∈140!F (F) NPq(F) = ∑q∈70!F (F) NPq(F) =

N(F70) = 112372 (the last equality again from the table). Finally our last tool

iterating Proposition 5.11 gives that N(Fm) = N(F
(m,63)
1 )N(F

(m,210)
2 )N(F

(m,2520)
3 )

N(F
(m,1331)
4 ) for any m. In particular N(F1980) = N(F9

1 )N(F30
2 )N(F180

3 )N(F11
4 ) =

76724 · 1 · 1122 = 7301122. For N(F180
3 ) we needed to go back to table (1) in Example

1.1 and observe that 180 = (180, 2520) /∈ F (F3) (F3 is simply F in that example),
so N(F180

3 ) = 1 by Corollary 4.8.
For the NΦm(F), when N(Fm) 6= 0, we can use the equation NΦm(F) =

N(Fm) from Theorem 2.3. So in particular we have that NΦ1400(F) = 1123177,
NΦ140(F) = 112372 and NΦ1980(F) = 7301122.

When N(Fm) = 0, then we need to use the formula NΦm(F) =
∑q∈m!F (F) NPq(F) from Theorem 3.7, but we can also combine this with the equa-

tion NΦm(F) = NΦ(m,n)(F), from Corollary 3.9.

We look at 72, 072. Now (72072, 3354120) = 5544 which is divisible by 63 so
N(F72072) = N(F5544) = 0. Also 5544 = 2332 · 7 · 11 and we compute 5544!F (F) =
{1, 7, 9, 21, 42, 11, 77, 99, 231, 462} = {1, 7, 21, 42, 11, 77, 231, 462} ∪ {9, 99} =
462!F (F) ∪{9, 99}. So NΦ72072(F) = NΦ5544(F) = ∑q∈462!F (F) NPq(F) +NP9(F)

+NP99(F) =N(F462) + NP9(F) + NP99(F) By Theorem 3.7.
So NΦ72072(F) = 1122536318 +1122(76 − 1) = 1122(536318 + 76 − 1).

We can also do this in a slightly different way and I include both ways as in
some circumstances one way may be more efficient than the other. The differ-
ent way involves writing 5544!F (F) as {1, 7, 9, 21, 42} ∪ 11{1, 7, 9, 21, 42}. Now
writing elements of 5544!F (F) as 11um in the obvious way, we have from (8) and
Theorem 3.7 that NΦ5544(F)

= ∑m∈{1,7,9,21,42} 112NPm(⊕3
i=1Fi) + ∑m∈{1,7,9,21,42}(1122 − 112)NPm(⊕3

i=1Fi)

= 1122 ∑m∈{1,7,9,21,42} NPm(⊕3
i=1Fi)

= 1122(1 + 36 − 1 + 76 − 1 + 318 − 36 + (536 − 1)318) from tables (4) and (5)
= 1122(536318 + 76 − 1).

We leave it to the reader to deduce similarly that NΦ60984(F) = 11242(536318 +
76 − 1).
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