Fixed point sets of equivariant fiber-preserving maps

Rafael Souza Pet

Peter Wong

Abstract

Given a selfmap $f : X \to X$ on a compact connected polyhedron X, H. Schirmer gave necessary and sufficient conditions for a nonempty closed subset A to be the fixed point set of a map in the homotopy class of f. R. Brown and C. Soderlund extended Schirmer's result to the category of fiber bundles and fiber-preserving maps. The objective of this paper is to prove an equivariant analogue of Brown-Soderlund theorem result in the category of *G*-spaces and *G*-maps where *G* is a finite group.

1 Introduction and statement of results

A well-known and important question in classical topology is the *fixed point property*. Recall that a topological space *X* is said to have the fixed point property if every (continuous) map $f : X \to X$ must have a fixed point $x_0 \in X$ such that $f(x_0) = x_0$. A related question is the so-called *complete invariance property for deformation* (CIPD). We say that *X* has the CIPD if for any nonempty closed subset $A \subset X$, there exists a selfmap $f : X \to X$ homotopic to the identity 1_X such that $A = \text{Fix}(f) = \{x \in X \mid f(x) = x\}$. In [9], H. Schirmer generalized the concept of CIPD and gave necessary and sufficient conditions for a nonempty closed subset *A* to be the fixed point set of a map *g* in the homotopy class of a given selfmap *f*. That is, given a map $f : X \to X$, Schirmer determined when a closed nonempty subset *A* can be realized as A = Fix(g) for some *g* homotopic to *f*. Upon relaxing the conditions given by Schirmer, C. Soderlund together with R. Brown [3] generalized Schirmer's result to fiber-preserving maps of fiber bundles.

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 641-655

Received by the editors in October 2016 - In revised form in February 2017. Communicated by K. Dekimpe, D.L. Gonçalves.

²⁰¹⁰ *Mathematics Subject Classification* : Primary: 55M20; Secondary: 57S99. *Key words and phrases* : fixed points, equivariant maps.

Suppose that *X* is a compact connected polyhedron without local cutpoints and *A* is a closed subset imbedded inside a subpolyhedron *K* that can be *by-passed in X*, that is, every path *C* in *X* with $C(0), C(1) \in X - K$, is homotopic to a path *C'* in X - K relative to the endpoints. H. Schirmer [9] introduced the following two conditions to realize *A* as the fixed point set of a selfmap in the homotopy class [f].

- (C1) if there exists a homotopy $H_A : A \times [0,1] \to X$ from $f|_A$ to the inclusion $i : A \hookrightarrow X$;
- (C2) if for every essential fixed point class \mathbb{F} of f, there exists a path $\alpha : [0,1] \to X$ with $\alpha(0) \in \mathbb{F}, \alpha(1) \in A$ and $\{\alpha(t)\} \sim \{f \circ \alpha(t)\} * \{H_A(\alpha(1), t)\}$ relative to the endpoints.

Soderlund [10, Theorem 3.5] showed, by relaxing the assumption on *A* given by Schirmer, the following result.

Theorem 1.1. Let *X* be a compact, connected polyhedron with no local cut points and *A* be a closed locally contractible subspace of *X* such that X - A is not a 2-manifold and *A* can be by-passed in *X*. Then A = Fix(g) for some $g \sim f$ if and only if (C1) and (C2) are satisfied.

Subsequently, R. Brown and C. Soderlund [3] introduced analogous conditions in the fiber-preserving setting. Let $\mathfrak{F} = (E, p, B; Y)$ be a (locally trivial) fiber bundle and $f : E \to E$ a fiber preserving map.

- (C1₃) if there exists a fiber preserving homotopy $H_A : A \times [0,1] \to E$ from $f|_A$ to the inclusion $i : A \hookrightarrow E$;
- (C2₃) if for every essential fixed point class \mathbb{F} of f, there exists a path $\alpha : [0,1] \to E$ with $\alpha(0) \in \mathbb{F}, \alpha(1) \in A$ and $\{\alpha(t)\} \sim \{f \circ \alpha(t)\} * \{H_A(\alpha(1), t)\}$ relative to the endpoints.

Following the terminology of [3], we call (X, A) a *suitable pair* if X is a finite polyhedron with no local cut points and A is a closed locally contractible subspace of X such that X - A is not a 2-manifold and A can be by-passed in X.

In [3], it was shown that conditions $(C1_{\mathfrak{F}})$ and $(C2_{\mathfrak{F}})$ are also sufficient. The following is their main result.

Theorem 1.2. Let $\mathfrak{F} = (E, p, B; Y)$ be a fiber bundle where E, B and Y are connected finite polyhedra, $f : E \to E$ a fiber preserving map and A a closed locally contractible sub-bundle of E such that each component $p(A)_j$ of p(A) is contractible and $(B, p(A)), (Y, Y_j)$ for all sub-bundle fibers Y_j of A, are suitable pairs. Suppose $(C1_{\mathfrak{F}})$ and $(C2_{\mathfrak{F}})$ are satisfied and A intersects every essential fixed point class of $f_{b_j} : p^{-1}(b_j) \to p^{-1}(b_j)$ for at least one b_j in each component $p(A)_j$. If Z is a closed bundle subset of A that intersects every component of A, then there exists a map $g : E \to E$ that is fiber preserving and fiberwise homotopic to f $(g \sim_{\mathfrak{F}} f)$ such that $\operatorname{Fix}(g) = Z$.

In particular, when Z = A, this theorem shows that $(C1_{\mathfrak{F}})$ and $(C2_{\mathfrak{F}})$ are necessary and sufficient for A = Fix(g) for some $g \sim_{\mathfrak{F}} f$.

Many applications involve symmetries in the presence of a group action. As a result, equivariant topology has been proven to be useful in the study of nonlinear problems. In the equivariant setting, we are concerned with a group *G* acting on a space *X* together with a *G*-map $f : X \to X$ which respects the group action, that is, for all $\alpha \in G$, $f(\alpha x) = \alpha f(x)$ for all $x \in X$. In this case, the fixed point set Fix(*f*) is *a priori* a *G*-invariant subset of *X*.

In [9], Schirmer observed that for a given selfmap $f : \mathbb{S}^n \to \mathbb{S}^n$ of an *n*-sphere, $n \ge 2$, *any* closed nonempty proper subset A of \mathbb{S}^n can be realized as the fixed point set of a map $g \in [f]$ with Fix(g) = A. However, such phenomenon does not hold if we impose a group action as we show in the following example, which gives the underlying motivation for this paper.

Example 1.3. Let $G = \mathbb{Z}_2$, $X = \mathbb{S}^2$ and the action is given by $\xi(x, y, z) \mapsto (-x, -y, z)$. If $A = \{(x, y, 0) \in \mathbb{S}^2\}$ then A is \mathbb{Z}_2 -invariant, but there is no \mathbb{Z}_2 -map $h : \mathbb{S}^2 \to \mathbb{S}^2$ that is \mathbb{Z}_2 -homotopic to the identity map $Id : \mathbb{S}^2 \to \mathbb{S}^2$ such that Fix(h) = A.

In fact, suppose there is a \mathbb{Z}_2 -homotopy H from Id to $h : \mathbb{S}^2 \to \mathbb{S}^2$ such that Fix(h) = A. Then, h preserves $X^G = \{N, S\}$, where N = (0, 0, 1) and S = (0, 0, -1). Hence, h(N) = S and h(S) = N and the path $p : I \to X^G$ defined by $p(t) = H^G(N, t)$ is such that p(0) = Id(N) = N and p(1) = h(N) = S. But, this is impossible.

In this situation, the location of *A* in *X* is more important than its topology, because if we replace *A* by $A' = \{(x, 0, z) \in \mathbb{S}^2\}$ then:

 $H(t,\cos\theta\sin\psi,\sin\theta\sin\psi,\cos\psi) =$ $(\cos(\theta + t\epsilon\sin\theta)\sin\psi,\sin(\theta + t\epsilon\sin\theta)\sin\psi,\cos\psi),$

is a \mathbb{Z}_2 -homotopy (with polar coordinates) between the identity and the \mathbb{Z}_2 -map h such that Fix(h) = A'.

Example 1.4. It is easy to see, by modifying the last example, that the equivariant analogue of Schirmer's result does not hold in general. Let $G = \mathbb{Z}_2$, $X = \mathbb{S}^2 \times \mathbb{S}^2$ and the action is given by $\xi((x, y, z), (x', y', z')) \mapsto ((-x, -y, z), (1, 0, 0))$. The set $A = \{((x, y, 0), (1, 0, 0)) \in X\}$ is \mathbb{Z}_2 -invariant and $X^G = \{N, S\} \times \{(1, 0, 0)\}$ consists of two points. The same argument as in Example 1.3 shows that A cannot be the fixed point set of any map \mathbb{Z}_2 -homotopic to the identity map while (X, A) satisfies the conditions of Schirmer's result for A can be by-passed since A has codimension 3 in X.

The main objective of this paper is to give an equivariant analogue of Schirmer's result and of Brown-Soderlund's result. This paper is organized as follows. In the first section, we briefly recall the non-equivariant results of [9] and [3] and review some basic background on *G*-maps and *G*-spaces where *G* denotes a compact Lie group. Then we review the necessary equivariant Nielsen fixed point theory from [13]. In section 2, we prove our first main result, an equivariant analogue of [9]:

Theorem 1.5. Let *G* be a compact Lie group, *X* be a compact and smooth *G*-manifold and *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that for each finite *WK* we assume that $\dim(X^K) \ge 3$, $\dim(X^K) - \dim(X^K - X_K) \ge 2$ and A^K is by-passed in X^K , for all $(K) \in \operatorname{Iso}(X)$. Suppose that the following conditions holds for a *G*-map $f : X \to X$:

- (*C*_{*G*}1) there exists a *G*-homotopy $H_A : A \times I \to X$ from $f|_A$ to the inclusion $i : A \hookrightarrow X$;
- (*C*_{*G*}2) for each finite *WK*, for every *WK*-essential fixed point class *F* of $f^K : X^K \to X^K$ there exists a path $\alpha : I \to X^K$ with $\alpha(0) \in F$, $\alpha(1) \in A^K$, and $\{\alpha(t)\} \sim \{f^K \circ \alpha(t)\} * \{H^K_A(\alpha(1), t)\}$.

Then for every closed *G*-subset Φ of *A* that has nonempty intersection with every component of *A* there exists a *G*-map $h : X \to X$, *G*-homotopic to *f* with $Fix(h) = \Phi$.

In the last section, we apply Theorem 1.5 to prove an equivariant analogue of [3] when *G* is finite:

Theorem 1.6. Let *G* be a finite group, $\mathfrak{F} = (X, p, B, Y)$ be a *G*-fiber bundle where *X*, *B* and *Y* are compact and smooth *G*-manifolds, dim $(B^K) \ge 3$, dim $(B^K) - \dim(B^K - B_K) \ge 2$, for all $(K) \in \operatorname{Iso}(B)$, dim $(Y^K) \ge 3$, dim $(Y^K) - \dim(Y^K - Y_K) \ge 2$, for all $(K) \in \operatorname{Iso}(Y)$.

Let *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that (X, A) is *G*-fiber bundle pair with respect to the fiber bundle \mathfrak{F} , p(A) be a closed *G*-subset of *B* such that each component $p(A)_j$ of p(A) is equivariantly contractible and $p^K(A^K)$ is by-passed in B^K , for all $(K) \in \text{Iso}(B)$. Let Y_j be a subbundle fiber of *A* such that Y_j is a closed and locally contractible *G*-subset of *Y* and Y_j^K is by-passed in Y^K , for all $(K) \in \text{Iso}(Y)$, and $f : X \to X$ be a *G*-fiber-preserving map such that A^K intersects every essential *WK*-fixed point class of $f_{b_j}^K : WK(p^K)^{-1}(\{b_j\}) \to WK(p^K)^{-1}(\{b_j\})$ for at least one b_j in each component $p^K(A^K)_j$, for all $(K) \in \text{Iso}(X)$. Suppose that the following conditions hold for f and A:

- $(C_G1)_{\mathfrak{F}}$ there exists a *G*-fiberwise-homotopy $H_A : A \times I \to X$ from $f|_A$ to the inclusion $i : A \hookrightarrow X$;
- $(C_G 2)_{\mathfrak{F}}$ for every *WK*-essential fixed point class *F* of $f^K : X^K \to X^K$ there exists a path $\alpha : I \to X^K$ with $\alpha(0) \in F$, $\alpha(1) \in A^K$, and $\{\alpha(t)\} \sim \{f^K \circ \alpha(t)\} * \{H^K_A(\alpha(1), t)\}$.

Then for every nonempty closed *G*-bundle subset Φ of *A* that intersects every component of *A* there exists a *G*-fiber-preserving map *h*, *G*-fiberwise homotopic to *f* with Fix(*h*) = Φ .

In order to establish the notations, let *G* be a topological group and *X* be a (left) *G*-space. Given a subgroup *K* of *G* we denote by *NK* the normalizer of *K* in *G*,

 $WK = \frac{NK}{K}$ is the Weyl group of *K* in *G*. The orbit type of *K* is the conjugacy class of *K* in *G* denoted by (*K*). If (*K*₁) is subconjugate to (*K*₂), we write (*K*₁) \leq (*K*₂).

If $x \in X$, then $G_x = \{g \in G; gx = x\}$ denotes the isotropy subgroup of $x \in X$, and (G_x) is called an isotropy type of X. We denote by Iso(X) the set of isotropy types of X. Moreover, $X^K = \{x \in X; K \leq G_x\}$, $X^{(K)} = \{x \in X; (K) \leq (G_x)\}$, $X_K = \{x \in X; G_x = K\}$ and $X_{(K)} = \{x \in X; G_x \subset (K)\}$.

If Iso(X) is finite (in particular when *G* is finite), we can choose an admissible ordering on Iso(X) such that $(K_i) \le (K_j)$ implies $i \le j$. Then we have a filtration of *G*-subspaces $X_1 \subset \cdots \subset X_n = X$ where $X_i = \{x \in X; (G_x) = (H_j) \text{ for some } j \le i\}$

If $f : X \to X$ is a *G*-map, then $f^K = f|_{X^K} : X^K \to X^K$ is a *WK*-map. Let $\mathcal{F} = \{(K) \in \text{Iso}(X) \mid |WK| < \infty\}$ and $(K) \in \mathcal{F}$. If $x, y \in \text{Fix}(f^K)$ then $x \sim_K y$ if either $y = \alpha x$ for some $\alpha \in WK$ or $\exists \sigma : [0,1] \to X^K$ such that $\sigma \sim f^K \circ \sigma$ relative to endpoints. Then \sim_K is an equivalence relation on $\text{Fix}(f^K)$ and the equivalence classes are called the *WK*-*fixed point classes* of f^K . Evidently, a *WK*-fixed point class \mathcal{W} is a disjoint union of a finite number of ordinary fixed point classes $W_1, ..., W_r$ of f^K and thus the fixed point index $ind(\mathcal{W})$ is defined as $ind(\mathcal{W}) = \sum_i ind(W_i)$. A *WK*-fpc (fixed point class) \mathcal{W} is essential if $ind(\mathcal{W}) \neq 0$. For further information on equivariant Nielsen fixed point theory, see [13]. Throughout, by a smooth *G*-manifold *X*, we assume that the fixed point set X^H is a smooth connected submanifold for each isotropy subgroup $H \leq G$.

2 Proof of Theorem 1.5 - An equivariant analogue of a result of Soderlund-Schirmer

If *X* is a smooth *G*-manifold and *A* is a closed smooth *G*-submanifold of *X*, *G* being a finite group, then there exists a smooth equivariant triangulation $f_1 : (K, K_0) \to (X, A)$ as proved in [8]. If *B* is another closed smooth *G*-submanifold of *X* then there is a smooth equivariant triangulation $f_2 : (L, L_0) \to (X, B)$ and *G*-subdivisions *K'* of *K* and *L'* of *L* such that $f_1'^{-1} \circ f_2' : |L'| \to |K'|$ is a simplicial *G*-homeomorphism, where f_1' and f_2' are smooth *G*-triangulations (see [8]).

By Corollary 3.3.5 of [11] and *G* being finite, we can find unique *G*-subcomplexes L'_0 of *L* and K'_0 of *K* such that L'_0 is a refinement of L_0 and K'_0 is a refinement of K_0 . Then, $f'_1^{-1} \circ f'_2(L'_0) = K_1$ is a *G*-subcomplex of *K'* and a *G*-triangulation of *B*. In fact, $f'_1(K_1) = f'_1 \circ f'_1^{-1} \circ f'_2(L'_0) = f'_2(L'_0) = B$. Hence, by induction if $\{A_i\}_{i=1}^n$ is a finite collection of closed smooth *G*-submanifolds of *X* then there exists a smooth equivariant triangulation $f : K \to X$ and a finite collection of *G*-subcomplexes $\{L_i\}_{i=1}^n$ of *K* such that L_i is a *G*-triangulation of A_i , for $i = 1, \ldots, n$.

To realize *A* as the fixed point set of some $h : X \to X$, it is necessary to remove every fixed point $x \in X$ of $f : X \to X$ outside of *A*. Hence, we need to extend the notion of *neighborhood by-passed* for a closed subset *A* as in [10, Definition 2.1] in order to handle these undesired fixed points.. Thus, a *G*-invariant subset *A* is said to be *G*-*neighborhood by-passed* if there exists an invariant open subset $U \subset X$ such that $A \subset U$ and U can be by-passed in *X*. We observe that if (X, A) is a *G*-ENR pair then *A* is an invariant neighborhood retract in *X* and if $\{Y_i\}_{i=1}^n$ is a finite collection of closed smooth *G*-submanifolds such that dim $(Y_i) + 1 < \dim(X)$, then $A \cup Y$ ($Y = \bigcup_{i=1}^n Y_i$) remains a by-passed *G*-subset of *X* provided *A* is by-passed in *X*. Furthermore, a close inspection of the proof of Theorem 2.2 of [10] indicates that the same argument works for the same result in the equivariant setting. That is, if *A* is a by-passed locally contractible *G*-subset of *X* then *A* is *G*-neighborhood by-passed, for *X* a compact smooth *G*-manifold with dim $(X) \ge 3$. To see that, we note that if *K* is the *G*-triangulation of *X* then there is a by-passed neighborhood (may not be equivariant) *U* of *A* in |K|. We obtain the open *G*-subpolyhedron:

$$St(A,K) = \bigcup_{\substack{|t| \cap A \neq \emptyset \\ t \in K}} |t|,$$

such that St(A, K) is a subset of U by taking a G-refinement K' of K if necessary, where t is a simplex of K. Therefore, if $p : I \to X$ is a path with endpoints in $U - \overline{St(A, X)}$ and outside $\overline{St(A, X')}$ then using Corollary 3.3.11 of [11] we deform p out of $\overline{St(A, X')}$.

Thus, if $\{Y_i\}_{i=1}^n$ is a finite collection of closed smooth *G*-submanifolds such that dim $(Y_i) + 1 < \dim(X)$ (thus each Y_i has codimension at least 2 in *X* so that Y_i can be by-passed in *X*), then $A \cup Y$ ($Y = \bigcup_{i=1}^n Y_i$) remains a by-passed *G*-subset of *X* using a finite collection of *G*-subcomplex $\{L_i\}_{i=1}^n$ of *K* such that L_i is a *G*-triangulation of Y_i , for i = 1, ..., n.

The next lemma shows how the fixed points outside *A* may be removed (see also [7]).

Lemma 2.1. Let $\{Y_i\}_{i=1}^n$ be a finite collection of closed *G*-submanifolds of the *G*-manifold *X* such that $\dim(Y_i) + 1 < \dim(X)$ and the action of *G* outside $Y = \bigcup_{i=1}^n Y_i$ is free, where *G* is a finite group. Let $f : X \to X$ be a *G*-selfmap, *A* be a non-empty closed locally contractible and by-passed *G*-subset of *X* such that $A \subset \operatorname{Fix}(f)$, there are no fixed points of *f* in Y - A, and *f* has a finite number of fixed points in $X - (A \cup Y)$. Let x_0 and x_1 be two fixed points of *f* that are *G*-Nielsen equivalent from different orbits such that $x_0 \in X - (A \cup Y)$ and $x_1 \in X - (A \cup Y)$ or $x_1 \in \partial(A)$, where $\partial(A)$ is the boundary of *A* in *X* and $q : I \to X$ a path with end points $q(0) = x_0$ and $q(1) = x_1$ such that $f \circ q$ is homotopic to *q* relative to the endpoints.

Then, *f* is *G*-homotopic, relative to $(A \cup Y)$, to a *G*-selfmap $h : X \to X$ such that $Fix(h) = Fix(f) - G\{x_0\}$.

Proof of Lemma 2.1: Since *A* is locally contractible and can be by-passed in *X*, the discussion above shows that *A* is *G*-neighborhood by-passed in *X*. Furthermore, $A \cup Y$ can be by-passed in *X*. Thus, the path *q* is homotopic, relative to endpoints, to a path q'(t) such that for $0 \le t < 1$, $q'(t) \in X - (A \cup Y)$ with $q'(0) = x_0, q'(1) = x_1$. Since *G* acts freely on X - Y and hence on $X - (A \cup Y)$, taking the *G*-translates of q' yields |G| paths from the orbit $G\{x_0\}$ to the orbit $G\{x_1\}$. Note that the segments $G\{q'([0,1))\}$ are disjoint while $\{G\{q'(1)\}\}$ consists of $[G : G_{x_1}]$ distinct endpoints. Here, the isotropy subgroup G_{x_1} at x_1 is

trivial if $x_1 \in X - (A \cup Y)$. Now we coalesce these two fixed orbits in the same fashion as in [14, Lemma 3.1]. (For slightly more general spaces in which normal arcs are used, see [7, Theorem 2].)

We will prove Theorem 2.2 before Theorem 1.5 and for the same reason we prove Theorem 2.2 by first establishing Lemma 2.3 and Lemma 2.5.

Theorem 2.2. Let *G* be a compact Lie group, *X* be a compact smooth *G*-manifold and *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that for each finite *WK* we assume that $\dim(X^K) \ge 3$, $\dim(X^K) - \dim(X^K - X_K) \ge 2$ and A^K is by-passed in X^K , for all $(K) \in \text{Iso}(X)$. Then, given a *G*-map $f : X \to X$ there exists a *G*-map $h : X \to X$ *G*-homotopic to *f* with Fix(h) = A if, and only if, the conditions $(C_G 1)$ and $(C_G 2)$, given in Theorem 1.5, hold for *f* relative to *A*.

Lemma 2.3. Let *G* be a compact Lie group, *X* be a *G*-space *G*-ANR and *A* be a nonempty closed *G*-subset of *X*. If $f : X \to X$ is a *G*-map *G*-homotopic to $h : X \to X$ such that Fix(h) = A then the conditions (C_G1) and (C_G2) given by Theorem 1.5 hold for *f* relative to *A*.

Proof of Lemma 2.3: Let $H : X \times I \to X$ be a *G*-homotopy which starts at *f* and ends at *h*. Then $\overline{H} = H|_{(X \times \{0\}) \cup (A \times I)} : (X \times \{0\}) \cup (A \times I) \to X$ satisfies $(C_G 1)$. If *F* is a *WK*-essential fixed point class of f^K , then, there exists a path $p : I \to X^K$ such that $p(0) \in F$ and $p(1) \in J$, where $J \subset A^K$ is a *WK*-essential fixed point class of h^K , H^K -related to *F* and $\{p(t)\} \sim \{\overline{H}^K(p(t), t)\}$. In fact,

$$\{\overline{H}^{K}(p(t),t)\} \sim \underbrace{\{\overline{H}^{K}(p(t),0)\}}_{=\{f \circ p(t)\}} * \{\overline{H}^{K}(p(1),t)\}.$$

So, $(C_G 2)$ is satisfied.

Lemma 2.3 shows that the conditions $(C_G 1)$ and $(C_G 2)$ are necessary for A = Fix(h). The example below shows that these two conditions are independent of each other.

Example 2.4. Let $G = \mathbb{Z}_2$, $X = \mathbb{S}^2$ and the action given by $\xi(x, y, z) \mapsto (-x, -y, z)$. Then, there is no \mathbb{Z}_2 -homotopy H from the identity Id to h such that $Fix(h) = \{(x, y, 0) \in \mathbb{S}^2\}$. Note that $(C_G 1)$ occurs, because the map is the identity, but $(C_G 2)$ does not. On the other hand, let $G = \mathbb{Z}_2$, $X = \mathbb{S}^3$ and the action given by $\xi(x, y, z, w) \mapsto (x, y, z, -w)$. Then, there is no \mathbb{Z}_2 -homotopy H from the antipodal map -Id to h such that $Fix(h) = \{(x, y, z, 0) \in \mathbb{S}^3\}$. This time $(C_G 2)$ holds because the map is fixed point free but $(C_G 1)$ does not hold.

Lemma 2.5. Let *G* be a compact Lie group, *X* be a compact smooth *G*-manifold and *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that for each finite *WK* we assume that $\dim(X^K) \ge 3$, $\dim(X^K) - \dim(X^K - X_K) \ge 2$ and A^K is by-passed in X^K , for all $(K) \in \text{Iso}(X)$. If the conditions $(C_G 1)$ and $(C_G 2)$, given in Theorem 1.5, hold for a *G*-map $f : X \to X$ relative to *A*, then there exists a *G*-map $h : X \to X$, *G*-homotopic to *f* with Fix(h) = A.

Proof of Lemma 2.5: This proof follows the steps of the proof of Theorem 3.2 of [9]. Consider a *G*-map \overline{H} : $(X \times \{0\}) \cup (A \times I) \to X$ given by $(C_G 1)$. It is possible to extend \overline{H} to a *G*-homotopy $_1\overline{H}_1$: $(X \times \{0\}) \cup ((A \cup X_1) \times I) \to X$. As commented above, there is a closed *G*-invariant neighborhood *V* of A_1 inside X_1 and *V* retracts onto A_1 equivariantly. Note that WK_1 acts freely on $X_1^{K_1} = X_{K_1}$ and $_1h_1^{K_1}$ is a WK_1 -map. Hence, if WK_1 has positive dimension we apply Lemma 3.3 of [12] and Lemma 2.1 of [6] to extend $_1\overline{H}_1$ to a *G*-homotopy \overline{H}_1 : $(X \times \{0\}) \cup ((A \cup X_1) \times I) \to X$, relative to *V*. Moreover, h_1 has no fixed points in $X_1 - A_1$ and $\operatorname{Fix}(h_1) = A$, where $h_1 = \overline{H}_1(\bullet, 1) : A \cup X_1 \to X$.

On the other hand, if WK_1 is a finite group then X^{K_1} is a WK_1 -polyhedron such that $A_1^{K_1}$ is a WK_1 -subpolyhedron and $St(A_1, X^{K_1})$ is neighborhood by-passed in X^{K_1} . We apply Lemma 3.1 of [12] and Lemma 2.1 to obtain a WK_1 -homotopy $H : (A_1 \cup X_1)^{K_1} \times I \to X^{K_1}$ which can be extended by Lemma 2.1 of [6] to a *G*-homotopy $\overline{H}_1 : (X \times \{0\}) \cup ((A \cup X_1) \times I) \to X$, relative to *V*, such that h_1 has no fixed points in $X_1 - A_1$ and $\operatorname{Fix}(h_1) = A$, where $h_1 = \overline{H}_1(\bullet, 1) : A \cup X_1 \to X$.

By induction, we may assume that we have a *G*-map \overline{H}_{i-1} : $(X \times \{0\}) \cup ((A \cup X_{i-1}) \times I) \rightarrow X$ such that $\operatorname{Fix}(h_{i-1}) = A$, where $h_{i-1} = \overline{H}_{i-1}(\bullet, 1) : A \cup X_{i-1} \rightarrow X$ and the proof follows the steps we did for WK_1 .

Now Theorem 2.2 follows easily from Lemma 2.3 and Lemma 2.5.

Proof of Theorem 1.5: First of all, by Theorem 2.2, there is a *G*-map $h_1 : X \to X$ *G*-homotopic to *f* such that $Fix(h_1) = A$. We may apply Proposition 2.5 of [12] and Theorem 4.3 of [13] to conclude that h_1 is *G*-homotopic to h_2 such that $h_2|_{X^K}$ has a finite number of fixed points, all of which inside $St(A^K)$ and lying in the interior of a maximal simplex of X^K and h_2 is a *G*-proximity map in St(A) (for some *G*-triangulation of *X*).

Since Φ has nonempty intersection with every component of A we can pull the fixed points of h_2 to Φ . Let α be the *G*-map of Lemma VIII.C.1 of [2] and \overline{d} the equivariant bounded distance in X then we define

$$\overline{H}_3: (X \times \{0\}) \cup (St(A) \times I) \to X$$

given by:

$$(x,t) \mapsto \begin{cases} \alpha(x,h_2(x),1-(1-\overline{d}(x,\Phi))t) & if(x,t) \in St(A) \times I; \\ h_2(x) & ift = 0. \end{cases}$$

Then, we extend \overline{H}_3 , relative to $\partial(St(A))$, to a *G*-map $\overline{H}_4 : X \times I \to X$. By Lemma 3.1 of [12], we eliminate the fixed points of $\overline{H}_4(\bullet, 1)$ inside $X - St(A) \times \{1\}$. This finite set of fixed points can be removed because these fixed points lie in some non essential fixed point classes of $\overline{H}_4(\bullet, 1)$ since $h_2|_{X-Int(A)}$ is fixed point free. Thus, the resulting *G*-map is a *G*-homotopy $H : X \times I \to X$ connecting *f* to a *G*-map *h* such that $Fix(h) = \Phi$.

3 Proof of Theorem 1.6 - An equivariant analogue of a theorem of Brown-Soderlund

Throughout this last section, *G* will denote a finite group. Given a *G*-fiber-preserving map $f : X \to X$ of the total space *X* of a *G*-fiber bundle $\mathfrak{F} = (X, p, B, Y)$, it is known that the fixed point set of *f* is related with the fixed point set of the induced map $\overline{f} : B \to B$. However, there are equivariant homotopies that are not fiber-preserving as in the example below:

Example 3.1. Let $G = \mathbb{Z}_2$ and $X = \mathbb{S}^2 \times \mathbb{S}^1$ and the action is given by $\xi((a, b, c), \cos x + i \sin x) \mapsto ((a, b, c), \cos x - i \sin x)$. The *G*-map *f*, defined on *X* by setting $f((a, b, c), \cos x + i \sin x) = ((-a, -b, -c), \cos x + i \sin x)$, is the start of the following equivariant homotopy:

$$H\Big(\big(\cos\theta\sin\psi,\sin\theta\sin\psi,\cos\psi\big),\cos x+i\sin x,t\Big) = \Big(\big(-\cos(\theta+t|\sin x|\pi)\sin\psi,-\sin(\theta+t|\sin x|\pi)\sin\psi,-\cos\psi\big),\cos x+i\sin x\Big)$$

Then, $A = \{(a, b, 0) \in \mathbb{S}^2\} \times \{-i, i\} = \mathbb{S}^1 \times \{i, -i\}$ is the fixed point set of $h \in [f]_G$ where $h = H(\bullet, 1)$. Let $p = \pi_1 : \mathbb{S}^2 \times \mathbb{S}^1 \to \mathbb{S}^2$ be the projection, then $(\mathbb{S}^2 \times \mathbb{S}^1, \pi_1, \mathbb{S}^2)$ is a \mathbb{Z}_2 -fiber bundle, f is a fiber-preserving map and the induced map $\overline{f} = a : \mathbb{S}^2 \to \mathbb{S}^2$ is the antipodal map. However, p((x, y, z), 1) = (x, y, z) = p((x, y, z), i) and $p \circ h((x, y, z), 1) = (-x, -y, -z)$ is different from $p \circ h((x, y, z), i) = (x, y, -z)$. So, h is not a fiber preserving map and H is not a fiber-preserving homotopy. In fact, A cannot be realized as the fixed point set of any map equivariantly fiberwise homotopic to f. To see that, we note that $X^G = \mathbb{S}^2 \times \{\pm 1\} = \mathbb{S}^2_1 \sqcup \mathbb{S}^2_{-1}$, where $(w, \pm 1) \in \mathbb{S}^2_{\pm 1}$, consists of two disjoint 2-spheres \mathbb{S}^2 . If F_t is a \mathbb{Z}_2 fiber-preserving homotopy such that $F_0 = f$ and $\operatorname{Fix}(F_1) = A$, then F_t^G is a homotopy on X^G . Now, $f^G = F_0^G$ maps \mathbb{S}^2_1 to \mathbb{S}^2_{-1} to \mathbb{S}^2_{-1} . On the other hand, F_1 is fiber-preserving and A is the fixed point of F_1 , it follows that the induced map $\overline{F_1}$ fixes the circle $\{(a, b, 0) \in \mathbb{S}^2\}$ pointwise. This implies that F_1 maps the (non-fixed) point ((a, b, 0), 1) to the point ((a, b, 0), -1) so that F_1 maps the equator of \mathbb{S}^2_1 to that of \mathbb{S}^2_{-1} , and vice versa. Thus F_1^G maps X^G to itself by interchanging the two disjoint spheres $\mathbb{S}^2_{\pm 1}$. The images of X^G under F_0^G and F_1^G contradict the continuity of F_t^G . Hence such an equivariant fiber-preserving homotopy F_t cannot exist.

The example above indicates the importance of modifying the conditions $(C_G 1)$ and $(C_G 2)$ and replacing them by $(C_G 1)_{\mathfrak{F}}$ and $(C_G 2)_{\mathfrak{F}}$ for the fiber-preserving map setting.

Lemma 3.2. Let $f : X \to X$ be a *G*-fiber preserving map in the total space of the *G*-fiber bundle $\mathfrak{F} = (X, p, B, Y)$, where *X*, *B* and *Y* are *G*-*ANR* spaces. Suppose that there is a *G*-fiber preserving homotopy connecting a *G*-fiber preserving map $h : X \to X$ to *f* such that Fix(h) = A for a nonempty and closed *G*-subset *A* of *X*. Then the conditions $(C_G 1)_{\mathfrak{F}}$ and $(C_G 2)_{\mathfrak{F}}$ given in Theorem 1.6 hold for *f* and *A*.

The proof of Lemma 3.2 follows the steps of Lemma 2.3. Since $\mathfrak{F} = (X, p, B, Y)$ is a *G*-fiber bundle where *X*, *B* and *Y* are compact smooth *G*-manifolds, we observe that (X, p, B) is a *G*-fibration and there is a *G*-lift map $\Lambda : \Omega_p \to E^I$ such that $\Lambda(e, \alpha)(0) = e, p \circ \Lambda(e, \alpha)(t) = \alpha(t)$ and $\Lambda(e, p(e))(t) = e$, for all $t \in I$, where $E^I = \{\alpha : I \to E; \alpha \text{ is a path}\}$ and $\Omega_p = \{(e, \alpha) \in X \times B^I; p(e) = \alpha(0)\}.$

Remark 3.3. We should point out that Lemma 3.2 holds for any compact Lie group *G* if we modify condition $(C_G 2)_{\mathfrak{F}}$ by only considering those (K)'s with $|WK| < \infty$.

The next proposition is an equivariant analogue of Theorem 2.1 of [1].

Proposition 3.4. Let \overline{H} : $(X \times \{0\}) \cup (A \times I) \rightarrow E$ be a *G*-map in the *G*-fibration $\mathfrak{F} = (E, p, B)$, where *E* is a *G*-ANR, *A* is a closed *G*-subset of *X*, (X, A) is a *G*-metric pair and $p \circ \overline{H}(x, 0) = p \circ \overline{H}(x, t)$ for all $(x, t) \in A \times I$. Then \overline{H} can be extended to a *G*-homotopy $H : X \times I \rightarrow E$ such that $p \circ H(x, 0) = p \circ H(x, t)$ for all $(x, t) \in X \times I$.

Proof of Proposition 3.4: Let $H' : X \times I \rightarrow E$ a *G*-extension of *H*. Then H' is given by:

$$\begin{array}{rccccc} H': & X & \to & E^{I} \\ & x & \mapsto & H'(x, \bullet): & I & \to & E \\ & & t & \mapsto & H'(x, t). \end{array}$$

Then define $H(x,t) = \Lambda(H'(x,t), p(H'(x,\bullet))_t)(1)$, where $p(H'(x,\bullet))_t(s) = p(H'(x,(1-s)t))$ and Λ is a *G*-lift map.

Lemma 3.5. Let $\mathfrak{F} = (X, p, B, Y)$ be a *G*-fiber bundle where *X*, *B* and *Y* are compact and smooth *G*-manifolds, dim $(B^K) \ge 3$, dim $(B^K) - \dim(B^K - B_K) \ge 2$, for all $(K) \in \operatorname{Iso}(B)$, *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that p(A) be a closed *G*-subset of *B* and $p^K(A^K)$ is by-passed in B^K , for all $(K) \in \operatorname{Iso}(B)$, and $f : X \to X$ a *G*- fiber preserving map such that conditions $(C_G1)_{\mathfrak{F}}$ and $(C_G2)_{\mathfrak{F}}$ given in Theorem 1.6 hold for *f* and *A*.

Then there exists a *G*-fiber-preserving map *h*, *G*-fiberwise homotopic to *f* with $A \subset Fix(h) \subset p^{-1}(p(A))$ and $Fix(\overline{h}) \cap (B - p(A))$ is a finite set.

Proof of Lemma 3.5: p(A) is a closed *G*-subset of *B* then the *G*-fiber-preserving map $H_A : A \times I \to X$ given by $(C_G 1)_{\mathfrak{F}}$ induces a *G*-map $\overline{H}_A : p(A) \times I \to B$ such that $\overline{H}_A(\bullet, 0) = \overline{f}$ and $\overline{H}_A(\bullet, 1) = i_{p(A)} : p(A) \hookrightarrow B$ the inclusion map.

Observe that we have almost the same conditions that we had in Theorem 1.5 except for $(C_G 2)$. In this situation, suppose we have a *G*-map $\overline{H}_{i-1,A}$: $(p(A) \cup B_{i-1}) \times I \to B$. As commented in Lemma 2.5, it is possible to extend $\overline{H}_{i-1,A}$ to a *G*-map $\overline{H}_{i,1}$: $(B_i \cup p(A)) \times I \to B$ relative to $p(A) \cup B_{i-1}$.

Since WK_i is a finite group, $B_i^{K_i}$ is a WK_i - polyhedron such that $B_{i-1}^{K_i}$ is a WK_i -subpolyhedron of $B_i^{K_i}$ and $St(p(A_i^{K_i}))$ is neighborhood by-passed in $B_i^{K_i}$. Let V be a G-invariant neighborhood retract of $St(p(A_i)) \cup B_{i-1}$. It follows from Lemma 3.1 of [12] and Lemma 2.1 that there exists of a WK_i -homotopy $\overline{H}_i : B_i^{K_i} \times I \to B_i^{K_i}$ from $\overline{H}_{i,1}^{K_i}(\bullet, 1)$ to $\overline{h} = \overline{H}_i(\bullet, 1)$ such that:

- 1. $p(A)_i^{K_i} \subset \operatorname{Fix}(\overline{h});$
- 2. \overline{h} has a finite number of fixed points in $B_i^{K_i} V^{K_i}$;
- 3. given a WK_i -fixed point class F of \overline{h} such that $F \cap p(A)_i^{K_i} = \emptyset$ then $F = WK_i\{x\}$, where $x \in B_i^{K_i} V^{K_i}$ and F is an essential WK_i -fixed point class of \overline{h} .

Then, the *G*-map given by:

$$\overline{h}_t(x) = \begin{cases} \underline{g}\overline{H}_i(g^{-1}x,t), & \text{for } x \in X - A, \text{ where } G_x = gWK_ig^{-1}; \\ \overline{h}(x), & \text{for } x \in V. \end{cases}$$

extends a WK_i -homotopy to a *G*-homotopy $\overline{H}_i : (B_i \cup p(A)) \times I \to B$ relative to *V* and such that

$$\operatorname{Fix}(\overline{H}_i(\bullet,1)) = p(A) \cup \left(\bigcup_{j \in T, \ j \leq i} (G\{b_{j,1}\} \cup \cdots \cup G\{b_{j,m_j}\})\right)$$

and $WK_i\{b_{i,l}\}$ is a essential WK_i -fixed point class of $\overline{H}_i^{K_i}(\bullet, 1)$, for $1 \le l \le m_i$.

Observe that if $p^{K}(F) = WK\{b_{i,l}\}$ for an essential WK-fixed point class *F* of f^{K} where $(K) \in Iso(X)$, then we have a path $\overline{\alpha}$ such that:

$$\{\overline{\alpha}\} \sim \{\overline{f}^K \circ \overline{\alpha}\} * \{\overline{H}^K_A(\overline{\alpha}(1), t)\} \sim \{\overline{H}^K(\overline{\alpha}(t), t)\}$$

Hence, $\overline{\alpha}(1) = gb_{i,l}$, for some $g \in WK$ and $\overline{\alpha}(1) \in p^{K}(A)$. However, this cannot occur because $b_{i,l} \notin p^{K}(A)$ and $p^{K}(A)$ is *WK*-invariant. By induction we extend the *G*-map $\overline{H}_{A} : p(A) \times I \to B$ to a *G*-homotopy $\overline{H} : B \times I \to B$ with the properties above.

Note that $H' : X \times I \to B$ defined by $H'(x, t) = \overline{H}(p(x), t)$ is such that

$$H'(x,0) = \overline{H}(p(x),0) = \overline{f} \circ p(x) = p \circ f(x).$$

Therefore, the lift of H' is a fiber-preserving *G*-homotopy $H_1 : X \times I \to X$ such that $f(x) = H_1(x, 0)$ and $h_1(x) = H_1(x, 1)$. Thus,

$$\operatorname{Fix}(h_1) \subset p^{-1}(\operatorname{Fix}(\overline{h})) = p^{-1}(p(A) \cup G\{b_1\} \cup \cdots \cup G\{b_l\}).$$

For each *G*-orbit $G\{b_j\}$ take the restriction h_{1,b_j} of h_1 for $Gp^{-1}(b_j) = p^{-1}(G\{b_j\})$, so $h_{1,b_j}: Gp^{-1}(b_j) \to Gp^{-1}(b_j)$ has no essential fixed point classes. In fact, suppose that h_{1,b_j}^K has an essential *WK*-fixed point class *F*. Then, given $x \in F$ we have *WK*{*x*} lying inside an essential *WK*-fixed point class of h_1^K . Thus, there exists a *WK*-fixed point class *Q* of h_1^K which contains *WK*{*x*}. But, h_1^K is fiber-preserving *WK*-homotopic to f^K , so, there exists an essential *WK*-fixed point class *D* of $f^K H_1^K$ -related to *Q*. Note that $p^K(D)$ cannot be \overline{H}^K -related to *WK*{*b_j*}. Consequently, h_{1,b_j} is fiber-preserving *G*-homotopic to $h_{2,b_j}: Gp^{-1}(b_j) \to Gp^{-1}(b_j)$ fixed point free.

Consider the *G*-map

$$\widetilde{H}_2: (X \times \{0\}) \cup (p^{-1}(\operatorname{Fix}(\overline{h})) \times I) \to X$$

defined by:

$$\widetilde{H}_{2}(x,t) = \begin{cases} h_{1}(x) & \text{if } t = 0 \text{ or if } x \in p^{-1}(p(A)); \\ H_{2,b_{j}}(x,t) & \text{if } x \in p^{-1}(G\{b_{j}\}). \end{cases}$$

With Proposition 3.4 we extend \tilde{H}_2 to a fiber-preserving *G*-homotopy $H_2 : X \times I \to X$ and $h_2 = H_2(\bullet, 1)$ is such that $\overline{H}_2(\bullet, 1) = \overline{h}$. By $(C_G 1)_{\mathfrak{F}}$, $h|_2$ is fiber-preserving *G*-homotopic to i_A . Let \tilde{H}_A such that $h_2|_A = \tilde{H}_A(\bullet, 0)$ and $i_A = \tilde{H}_A(\bullet, 1)$. Define $\tilde{H} : (X \times \{0\}) \cup ((A \cup p^{-1}(G\{b_1, \dots, b_r\})) \times I) \to X$ given by:

$$\widetilde{H}(x,t) = \begin{cases} h_2(x), & \text{if } t = 0; \\ h_{2,b_j}(x), & \text{if } x \in Gp^{-1}(b_j); \\ \widetilde{H}_A(x,t), & \text{if } x \in A. \end{cases}$$

Applying Proposition 3.4 again we extend \widetilde{H} to a fiber-preserving *G*-homotopy $H : X \times I \to X$ such that $A \subset Fix(h) \subset p^{-1}(p(A))$ and $Fix(\overline{h}) \cap (B - p(A))$ is a finite set.

Lemma 3.6. Let $(\mathfrak{F}, \mathfrak{F}_0) = ((X, A), p, B, (Y, Y_0))$ be a *G*-fiber bundle pair, where *X*, *B* and *Y* are compact and smooth *G*-manifolds, *B* retracts equivariantly to a point $b_0 \in B$ and $\dim(Y^K) \geq 3$ and $\dim(Y^K) - \dim(Y^K - Y_K) \geq 2$, for all $(K) \in \operatorname{Iso}(Y)$. Let Y_0 be a closed and locally contractible *G*-subset of *Y* such that Y_0^K is by-passed in Y^K , for all $(K) \in \operatorname{Iso}(Y)$, *A* be a nonempty, closed, locally contractible *G*-subset of *X* and $f : X \to X$ be a *G*-map such that $p \circ f = p$, $A \subset \operatorname{Fix}(f)$, A^K intersects every essential *WK*-fixed point class of $f_{b_0}^K : WK(p^K)^{-1}(\{b_0\}) \to WK(p^K)^{-1}(\{b_0\})$, for all $(K) \in \operatorname{Iso}(X)$.

Then for every closed *G*-invariant subset *Z* of *A* that intersects every component of *A* and (A, Z) is *G*-fiber bundle pair of \mathfrak{F}_0 there exists a fiber-preserving *G*-map *h*, *G*-fiberwise homotopic to *f* with Fix(h) = Z.

Proof of Lemma 3.6: (X, p, B) is *G*-equivalent to a trivial *G*-fibration $(B \times Y, \pi, B)$, where π is a projection in *B*. So, there exists a *G*-homeomorphism $\Phi : B \times Y \to X$ such that $\Phi(B \times Y_0) = A$ and $p \circ \Phi = \pi$. Define $f^* = \Phi^{-1} \circ f \circ \Phi : B \times Y \to B \times Y$ and note that:

$$\pi \circ f^* = \underbrace{(p \circ \Phi) \circ (\Phi^{-1})}_{=p} \circ f \circ \Phi = \underbrace{p \circ f}_{=p} \circ \Phi = p \circ \Phi = \pi.$$

Therefore, $f^*(b, y) = (b, f^*_b(y))$ and $gf^*(b, y) = (gb, f^*_{gb}(gy))$, for all $g \in G$.

B retracts equivariantly to b_0 , so, there exists a *G*-homotopy $D : B \times I \rightarrow B$ such that for each $b \in B$ we have D(b,0) = b and $D(b,1) = b_0$. Then, define $U^* : B \times Y \times I \rightarrow B \times Y$ given by:

$$U^*(b, y, t) = \begin{cases} (b, f^*_{D(b, 2t)}(y)), & \text{if } 0 \le t \le \frac{1}{2} \\ (b, f^*_{D(b_0, 2-2t)}(y)), & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Note that $U^*(b, y, 0) = (b, f_b^*(y)) = f^*(b, y)$ and $U^*(b, y, 1) = (b, f_{b_0}^*(y))$. Then, f^* is *G*-homotopic to $id \times f_{b_0}^*$. Since $\Phi(B \times Y_0) = A \subset Fix(f)$ we have, for each $(b, y) \in B \times Y_0$:

$$f^*(b,y) = \Phi^{-1} \circ f \circ \underbrace{\Phi(b,y)}_{\in A} = \Phi^{-1} \circ \Phi(b,y) = (b,y).$$

Then, $B \times Y_0 \subset \text{Fix}(f^*)$ and $Y_0 \subset \text{Fix}(f_b^*)$ because $(b, f_b^*(y)) = f^*(b, y) = (b, y)$.

By hypothesis, A intersects each essential WK-fixed point class of $f_{b_0}^K : WK(p^K)^{-1}(b_0) \to WK(p^K)^{-1}(b_0)$. So, $A \cap WK(p^K)^{-1}(b_0)$ intersects each essential WK-fixed point class of $f_{b_0}^K$. So, Y_0 intersects each essential WK-fixed point class of $(f_{b_0}^*)^K$ because:

$$(\Phi^{-1})^{K}(A^{K} \cap WK(p^{K})^{-1}(b_{0})) = WK\{b_{0}\} \times Y_{0}^{K}.$$

The *G*-fiber bundle pair $((A, Z), p, B, (Y_0, \Omega))$ is such that Ω intersects every component of Y_0 because *Z* intersects every component of *A*. Therefore, $(C_G1)_{\mathfrak{F}}$ and $(C_G2)_{\mathfrak{F}}$ hold for Y_0 and $f_{b_0}^*$. By Theorem 2.2 there exists a homotopy $V^* : Y \times I \to Y$ such that $f_{b_0}^* = V^*(\bullet, 0), V^*(\bullet, 1) = g_{b_0}^* : Y \to Y$ and $\operatorname{Fix}(g_{b_0}^*) =$ Ω . Define a fiber-preserving *G*-homotopy $H^* : B \times Y \times I \to B \times Y$ given by:

$$H^*(b, y, t) = \begin{cases} U^*(b, y, 2t), & \text{if } 0 \le t \le \frac{1}{2} \\ (b, V^*(y, 2t - 1)), & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Therefore, f^* is *G*-homotopic to $id \times g_{b_0}^*$ and $\operatorname{Fix}(id \times g_{b_0}^*) = B \times \Omega$. Then, $H : X \times I \to X$ given by $H(e,t) = \Phi \circ H^*(\Phi^{-1}(e),t)$ is a *G*-homotopy such that H(x,0) = f(x) and $\operatorname{Fix}(H(\bullet,1)) = \Phi(B \times \Omega) = Z$.

Proof of Theorem 1.6: With Lemma 3.5 we assume that:

- 1. $A \subset Fix(f) \subset p^{-1}(p(A));$
- 2. $F = Fix(\overline{f}) \cap (B p(A))$ is a finite set.

Let $f_j = f|_{p^{-1}(p(A)_j)}$: $p^{-1}(p(A)_j) \rightarrow p^{-1}(p(A)_j)$ a restriction of f, so $p \circ f_j = p$. Using $X = p^{-1}(p(A)_j)$, $A = A \cap p^{-1}(p(A)_j)$, $B = p(A)_j$, $b_0 = b_j$, $Y_0 = Y_j$ and $f = f_j$ the hypotheses of Lemma 3.6 are satisfied and there exists a fiber-preserving *G*-homotopy H_j : $p^{-1}(p(A)_j) \times I \rightarrow p^{-1}(p(A)_j)$ from f_j to $h_j = H_j(\bullet, 1)$ such that $Fix(h_j) = Z_j$.

Define \widetilde{H}_2 : $(X \times \{0\}) \cup (p^{-1}(F \cup p(A)) \times I) \to X$ by:

$$\widetilde{H}_2(x,t) = \begin{cases} f(x), & \text{if } t = 0 \text{ or } p(x) \in F \\ H_j(x,t), & \text{if } p(x) \in p(A)_j. \end{cases}$$

With Proposition 3.4 there is a fiber-preserving *G*-homotopy $H : X \times I \to X$ such that $p(H(x,t)) = \overline{f} \circ p(x)$. Therefore, $h = H(\bullet,1) : X \to X$ is such that Fix(h) = Z and *h* is fiber-preserving *G*-homotopic to *f*.

Corollary 3.7. Let $\mathfrak{F} = (X, p, B, Y)$ be a *G*-fiber bundle where *X*, *B* and *Y* are compact and smooth *G*-manifolds, dim $(B^K) \ge 3$, dim $(B^K) - \text{dim}(B^K - B_K) \ge 2$, for all $(K) \in \text{Iso}(B)$, dim $(Y^K) \ge 3$, dim $(Y^K) - \text{dim}(Y^K - Y_K) \ge 2$, for all $(K) \in \text{Iso}(Y)$.

Let *A* be a nonempty, closed, locally contractible *G*-subset of *X* such that (X, A) is a *G*-fiber bundle pair with respect to the fiber bundle \mathfrak{F} , p(A) be a closed *G*-subset of *B* such that each component $p(A)_j$ of p(A) is equivariantly contractible and $p^K(A^K)$ is by-passed in B^K , for all $(K) \in \text{Iso}(B)$. Let Y_j be a subbundle fiber of *A* such that Y_j is a closed and locally contractible *G*-subset of *Y* and Y_j^K is by-passed in Y^K , for all $(K) \in \text{Iso}(Y)$, and $f : X \to X$ be a *G*-fiber-preserving map such that A^K intersects every essential *WK*-fixed point class of $f_{b_j}^K : WK(p^K)^{-1}(\{b_j\}) \to WK(p^K)^{-1}(\{b_j\})$ for at least one b_j in each component $p^K(A^K)_j$, for all $(K) \in \text{Iso}(X)$.

Then there exists a *G*-fiber-preserving map h, *G*-fiberwise homotopic to f with Fix(h) = A if, and only if, the following conditions holds for f and A:

- $(C_G1)_{\mathfrak{F}}$ there exists a *G*-fiber-homotopy $H_A : A \times I \to X$ from $f|_A$ to the inclusion $i : A \hookrightarrow X$;
- $(C_G 2)_{\mathfrak{F}}$ for every *WK*-essential fixed point class *F* of $f^K : X^K \to X^K$ there exists a path $\alpha : I \to X^K$ with $\alpha(0) \in F$, $\alpha(1) \in A^K$, and $\{\alpha(t)\} \sim \{f^K \circ \alpha(t)\} * \{H^K_A(\alpha(1), t)\}$.

Proof of Corollary 3.7: If the conditions hold then we apply Theorem 1.6 for Z = A. If there exists *h* then by Lemma 3.2 $(C_G 1)_{\mathfrak{F}}$ and $(C_G 2)_{\mathfrak{F}}$ hold.

References

- G. Allaud and E. Fadell A Fiber Homotopy Extension Theorem. Trans. Amer. Math. Soc. 104 (1962), 239-251.
- [2] R. F. Brown. *The Lefschetz Fixed Point Theorem.* Scott, Foresman and Co., Glenview, I11., 1971.
- [3] R. Brown and C. Soderlund. *Fixed point sets of fiber-preserving maps*. J. Fixed Point Theory Appl. 2 (2007), 41-53.

- [4] T. tom Dieck. *Transformation Groups*. de Gruyter, Berlin, 1987.
- [5] J. Dugundji. Topology. Boston, Allyn and Bacon, 1965.
- [6] E. Fadell and P. Wong. *On deforming G-maps to be fixed point free*. Pacific J. Math. 132 (1988), 277-281.
- [7] T. N. Fomenko *On The Least Number Of Fixed Points Of An Equivariant Map.* Math. Notes 69, vol 1 (2001), 88-98.
- [8] S. Illman. *Smooth equivariant triangulations of G-manifolds for G a finite group*. Math. Ann. 233 (1978), 199-220.
- [9] H. Schirmer. *Fixed point sets in a prescribed homotopy class.* Topology Appl. 37 (1990), 153-162.
- [10] C. Soderlund. *Fixed points sets of maps homotopic to a given map.* Fixed Point Theory Appl. 2006, Article ID 46052, 20pp.
- [11] E. H. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966.
- [12] D. Wilczyński. Fixed point free equivariant homotopy classes. Fund. Math. 123 (1984), 47-59.
- [13] P. Wong. Equivariant Nielsen fixed point theory of G-maps. Pacific J. Math. 150 (1991), 179-200.
- [14] P. Wong. Equivariant Nielsen numbers. Pacific J. Math. 159 (1993), 153-175.

Universidade Estadual de Mato Grosso do Sul Dourados, Mato Grosso do Sul, Brasil email :moreira@uems.br

Bates College Lewiston, Maine 04240, USA email :pwong@bates.edu