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Abstract

Consider the real, complex and quaternionic n-dimensional projective
spaces, RPn, CPn and HPn; to unify notation, write KdPn for the real (d = 1),
complex (d = 2) and quaternionic (d = 4) n-dimensional projective space.
Consider a pair (M, Φ), where M is a closed smooth manifold and Φ is a
smooth action of the group Zk

2 on M; here, Zk
2 is considered as the group

generated by k commuting smooth involutions T1, T2, ..., Tk. Write F for the
fixed-point set of Φ. In this paper we prove the following two results: i) If F is
a disjoint union F = RPn1 ⊔RPn2 ⊔ ...⊔RPnj, where j ≥ 2, each ni is odd and
ni 6= nt if i 6= t, then (M, Φ) bounds equivariantly. ii) If F = KdPn ⊔ KdPm,
where d = 1, 2 and 4 and n and m are odd, then (M, Φ) bounds equivariantly.
These results are found in the literature for k = 1.

1 Introduction

Consider a pair (M, Φ), where M is a closed smooth manifold and Φ is a smooth
action of the group Zk

2 on M. Here, Zk
2 is considered as the group generated

by k commuting smooth involutions T1, T2, ..., Tk. Then it is well known that the
fixed-point set of Φ, F, is a finite and disjoint union of closed submanifolds of
M. If η → F is the normal bundle of F in M, then η decomposes under Φ into
the Whitney sum of the subbundles on which Zk

2 acts as one of the irreducible
(nontrivial) real representations, which are all one-dimensional over R and can
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be described by homomorphisms ρ : Z
k
2 → Z2 = {+1,−1} which are onto: Z

k
2

acts on the reals so that g ∈ Zk
2 acts as multiplication by ρ(g). In other words,

η =
⊕

ρ

ερ ,

where ερ is the subbundle of η on which Zk
2 acts in the fibers as ρ; that is, where

each Tj acts as multiplication by ρ(Tj), and where the sum excludes the trivial

homomorphism 1 ∈ Hom(Zk
2, Z2). Alternatively, ερ is the normal bundle of F in

the fixed-point set Fρ of the subgroup kernel(ρ). Setting P = Hom(Zk
2, Z2)−{1},

we define the fixed data of (M; Φ) as the object (F; {ερ}ρ∈P ), the fixed-point set F

and a list of 2k − 1 vector bundles over it indexed by P . In this setting, a natural
question is the classification, up to equivariant cobordism, of the pairs (M, Φ)
with a given condition on the fixed data of Φ; in particular, for a given F, such a
question is the classification of the pairs (M, Φ) for which the fixed-point set is
F. This is a well-established problem in the literature, and started in 1964 with
the results of Conner and Floyd [3], with F = Sn ⊔ {point} and k = 1, F= an
n-dimensional real projective space, RPn, with k = 1 and n odd, and F = a finite
set of isolated points and every k. These results were applications of the equivari-
ant cobordism theory, introduced in [3], which extended the famous cobordism
theory of 1954 of René Thom. Taking into account this theory, to be plausible,
this problem demands the knowledge of the real K-theory of F or, more specifi-
cally, the knowledge of all possible characteristic classes of vector bundles over
F. This is the case of the projective spaces KdPn, d = 1, 2 and 4. So the case F
= a disjoint union of projective spaces has an intense and still unfinished history
in the literature, started, as mentioned above, with the case F = RPn, where
k = 1 and n is odd, of [3]. In this case, Conner and Floyd proved that (M, Φ)
bounds equivariantly, and with the same arguments it is possible to prove this
k = 1 result for F = KdPn, d = 2 and 4 (n odd). Later, in [18], Stong solved
the case F = RPn with n even and k = 1, showing that in this case (M, Φ) is
equivariantly cobordant to the involution (RPn × RPn, twist), where twist maps
(x, y) into (y, x). The same is valid for F = KdPn, d = 2 and 4, and proofs (sim-
ilar to the real case) can be found in [6]. In [2], F. Capobianco solved the case
F = RPn and k > 1 for every n ≥ 1, and cited the fact that the same arguments
work for d = 2 and 4. This closes the one component case. The two compo-
nents case was started with the Royster paper [16], where a partial classification
was obtained for the case F = RPn ⊔ RPm and k = 1, leaving open only the
case in which m and n are even and nonzero (that is, Royster solved also the case
F = RPn ⊔ RP0 = RPn ⊔ {point} for any n ≥ 1). Among their results, Royster
proved that if n and m are odd, then (M, Φ) bounds equivariantly; the same is
valid for complex and quaternionic projective spaces, and proofs can be found
in [5]. Continuing with the two components case and k = 1, in [12] and [11],
P. L. Q. Pergher, A. Ramos and R. de Oliveira obtained the complex and quater-
nionic versions of the results of Royster not covered by [5] (m and n odd). Specifi-
cally, they solved the cases F = KdPn ⊔KdPm for d = 2 and 4, where m ≥ 0 is even
and n ≥ 1 is odd, and where m = 0 and n ≥ 2 is even. In addition, they solved
the particular case of the problem left open by Royster, given by F = RPn ⊔RPm,
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where m = 2s, n is even and n ≥ 2s+1, which includes the case F = RP2 ⊔ RPm,
m ≥ 4 even, which had been proved in [11]. Also the complex and quaternionic
versions of these cases were obtained in [12]. Still concerning the case k = 1, if the
number of components of F is greater than 2, then the only known result is due
to Torrence and Huo [4; Section 3]: if F is an arbitrary union of odd-dimensional
real projective spaces, then (M, Φ) bounds equivariantly.

Summarizing, one has the one component case completely solved and, with
exception of (m, n) = (even, even), m, n > 0 and m 6= 2s, n 6= 2s, the two com-
ponents case solved for k = 1. Then there is the project of considering the two
components case for k > 1. In this direction, we cite the results of P. Pergher
of [13] (F = RPn ⊔ {point}, n odd and k > 1), [7] (F = RPn ⊔ {point}, n even
and k = 2) and [15] (F = RPn ⊔ {point}, n even and k > 1). Also one has the
results of P. Pergher, A. Ramos and R. Oliveira, obtained by joining [11], [12] and
[8] (F = KdPn ⊔ KdPm, d = 1, 2 and 4, n > 0 even and m = 2s, and k > 1). We
emphasize that the methods used in these papers ([13], [7], [15], [12], [11] and
[8]) are not suitable for the case where m > 0, n > 0 and (m, n) 6= (even, even).
Therefore, our contribution to this case will be to introduce a new technique and
to prove the following two correlated theorems:

Theorem 1. Let (M, Φ) be a Zk
2-action, k > 1, with fixed-point set F = RPn1 ⊔

RPn2 ⊔ ...⊔RPnj , where j ≥ 2, each ni is odd and ni 6= nt if i 6= t. Then (M, Φ) bounds
equivariantly.

Theorem 2. Let (M, Φ) be a Z
k
2-action, k > 1, with fixed-point set F = KdPn ⊔

KdPm, where d = 1, 2 and 4 and n and m are odd. Then (M, Φ) bounds equivariantly.
Theorem 1 extends partially, for k > 1, the result of Torrence and Huo [4;

Section 3], and Theorem 2 extends, for k > 1, the similar k = 1 result of [16] and
[5]. The paper is organized as follows: Section 2 is devoted to some preliminary
technical stuff. In Section 2, we prove Theorem 1 and the k = 2 case of Theorem 2.
In Section 3 we prove Theorem 2, by joining its previous k = 2 case with a result
of P. Pergher and R. Oliveira of [9] (which is the subtle point of the proof; in fact,
this technique is a novelty in the related literature, as mentioned above).

2 Preliminaries

Keeping the notation of the previous section, let (M; Φ), Φ = (T1, ..., Tk), a smooth
Z

k
2-action with fixed data (F; {ερ}ρ∈P ). Each s-dimensional component of

(F; {ερ}ρ∈P) can be considered as an element of Ns( ∏
ρ∈P

BO(nρ)), the bordism of

s-dimensional manifolds with a map into a product of classifying spaces BO(nρ)
for nρ-dimensional vector bundles, where nρ denotes the dimension of ερ over
the component (this is the simultaneous cobordism between lists of vector bundles:
if P is any finite set, two lists (indexed by P) of vector bundles over closed n-
dimensional manifolds, (Fn; {ερ}ρ∈P) and (Vn; {µρ}ρ∈P ), are simultaneously cobor-

dant if there exists a (n + 1)-dimensional manifold Wn+1 with boundary
∂(Wn+1) = Fn ⊔ Vn (disjoint union) and a list of vector bundles over Wn+1,
(Wn+1; {ηρ}ρ∈P), so that each ηρ restricted to Fn ⊔ Vn is equivalent to ερ ⊔ µρ).
According to [17], the equivariant cobordism class of (M; Φ) is determined by
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the simultaneous cobordism class of (F; {ερ}ρ∈P ). On the other hand, the simul-
taneous cobordism class of (F; {ερ}ρ∈P ) is determined by its characteristic numbers

: write W(F) = 1 + w1 + w2 + ... and, for each ρ ∈ P , W(ερ) = 1 + v
ρ
1 + v

ρ
2 + ....,

for the Stiefel-Whitney classes of the tangent bundle of F and of the bundle ερ,
respectively. Then a characteristic number of (F; {ερ}ρ∈P) is an evaluation of the

form K[F], where K is a product of wi’s and v
ρ
j ’s, ρ ∈ P , and [F] is the fundamental

Z2-homology class of F. K[F] must be understood as a sum ∑s Ks[Fs], where Fs

is the union of the s − dimensional components of F, and Ks is the part of K with
degree s. A class X ∈ H∗(F) is called a characteristic term if it is a sum of prod-
ucts of characteristic classes of F and of the ερ, ρ ∈ P ; that is, each homogeneous
part of X can participate as a term of a product of classes yielding a characteristic
number of (F; {ερ}ρ∈P ).

3 Proofs

As announced in Section 1, we first prove Theorem 1. Let αd ∈ Hd(KdPn, Z2) be
the generator, d = 1, 2 and 4. It is well known that, if η → KdPn is a vector bundle,
from the structure of the Grothendieck ring of vector bundles over projectives
spaces, there exists a natural number p ≥ 0 so that the Stiefel-Whitney class W(η)
has the form (1+ αd)

p. The number p is unique modulo 2s, where s is the smallest
number with n < 2s. For example, if η is the tangent bundle, then W(η) =
W(KdPn) = (1 + αd)

n+1.

Lemma 3.1. Suppose η → KdPn a vector bundle, where n is odd. Then η bounds if, and
only if, W(η) = (1 + αd)

p with p even.
Proof. One has W(KdPn) = (1+ αd)

n+1, with n + 1 even. So, if p is even, wdi(η) =
0 and wdi(KdPn) = 0 if i is odd. Since dim(KdPn) = dn, every characteristic
number of η comes from a cohomology class which necessarily contains a term
wdi(η) (or wdi(KdPn)) with i odd. Hence η bounds. If p is odd, wd(η) = αd and
the characteristic number (wd(η))

n [KdPn] = (αd)
n[KdPn] is nonzero.

Corollary 3.1. Consider a list of vector bundles over KdPn, (KdPn; η1, η2, ..., ηt), where
n is odd and each ηi bounds. Then this list bounds simultaneously.
Proof. The characteristic number argument is the same of Lemma 3.1.

Now we prove Theorem 1. Let (F; {ερ}ρ∈P ) be the fixed data of (M, Φ), and
take ρ ∈ P and a component RPni of F. As in Section 1, set Fρ for the fixed-

point set of the subgroup kernel(ρ) ⊂ Zk
2, and (Fρ)i for the component of Fρ that

contains RPni . Choosing T ∈ Zk
2 with T /∈ kernel(ρ), the involution ((Fρ)i, T)

fixes RPni and possibly some other components of F. By Torrence and Huo
, ((Fρ)i, T) bounds equivariantly, and so its fixed data bounds. Since nl 6= ns

if l 6= s, the normal bundle of RPni in (Fρ)i, which is ερ → RPni , bounds. By
Corollary 3.1, the list (RPni ; {ερ}ρ∈P ) bounds simultaneously. It follows that
(F; {ερ}ρ∈P ) bounds simultaneously, which proves Theorem 1.

The next step is to prove the k = 2 case of Theorem 2. Let (M, Φ), Φ = (T1, T2),
be a Z

2
2-action. Set T3 = T1T2. The fixed data of (M, Φ) can be written, in this

case, as (F; ε1 , ε2, ε3), where εi → F is the normal bundle of F in FTi
= the fixed-

point set of Ti. Take P ⊂ FT1
any component of FT1

, and set B ⊂ P for the union of
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components of F contained in P. Consider RP(ε1) → F the real projective space
bundle associated to ε1 → F, and let λ → RP(ε1) be the usual Hopf line bundle
over RP(ε1).

Lemma 3.2. Over B, the list of two bundles (RP(ε1); λ, ε2 ⊕ (ε3 ⊗ λ)) bounds simul-
taneously (here we are suppressing bundle maps).
Proof. See [10] (or [14]).

Taking into account that any pair (S1, S2), where S1, S2 ∈ {T1, T2, T3} and
S1 6= S2, determines a Z2

2-action, that is, any {Ti, Tj, Tk}, i 6= j, j 6= k, i 6= k, plays
the role of {T1, T2, T3}, with same fixed data up to permutation, Lemma 3.2 can
be re-written as: over B, the list (RP(εi); λ, ε j ⊕ (εk ⊗ λ)) bounds simultaneously.

Take then a Z2
2-action (M, Φ) with fixed-point set F = KdPn ⊔ KdPm, where

d = 1, 2 and 4 and n and m are odd; we want to show that (M, Φ) bounds equiv-
ariantly. Suppose first n 6= m. Then the case d = 1 is covered by Theorem 1,
and if d = 2 or 4 the same approach of Theorem 1 together with the classifica-
tion for k = 1 of [5] works. Therefore we can suppose that F consists of two
copies of KdPn, which we call F = F1 ⊔ F2. Denote the fixed data of (M, Φ) by
(F1; ǫ1, ǫ2, ǫ3) ⊔ (F2; µ1, µ2, µ3), and by Pi and Qi, i = 1, 2, 3, the component of FTi

that contains F1 and F2, respectively. From [5], one has the following result.

Lemma 3.3. Let (M, T) be an involution fixing two odd dimensional copies of KdPn,
with normal bundles η and µ. Write W(η) = (1 + αd)

p, W(µ) = (1 + βd)
q. Then

either p and q are even, or p and q are odd and p = q.

Write W(ǫi) = (1 + αd)
pi , W(µi) = (1 + βd)

qi , ki = dim(ǫi) and li = dim(µi),
i = 1, 2, 3. One has that either Pi = Qi, or Pi ∩ Qi = ∅. Take Tj 6= Ti. If Pi = Qi,
(Pi, Tj) is an involution with fixed data (ǫi → F1) ⊔ (µi → F2), and if Pi ∩ Qi =
∅, (Pi, Tj) and (Qi, Tj) are involutions with fixed data ǫi → F1 and µi → F2,
respectively. Taking into account Lemma 3.3 and the one component case, we
conclude that, for i = 1, 2, 3, either pi and qi are even, or pi and qi are odd and
pi = qi. If p1, p2 and p3 (and so q1, q2 and q3) are even, then Corollary 3.1 says
that both the lists (F1; ǫ1, ǫ2, ǫ3) and (F2; µ1, µ2, µ3) bound simultaneously, which
implies that (M, Φ) bounds equivariantly. So, without loss of generality, we can
suppose that p1 is odd. We assure that ki = li, i = 1, 2, 3. Since p1 is odd, P1 = Q1

and thus k1 = l1. Then k2 + k3 = l2 + l3. So, if p2 or p3 are odd, k2 = l2 and k3 = l3,
and thus we can suppose p2 and p3 even. By contradiction, suppose k2 6= l2. Then
P2 ∩Q2 = ∅ and, by Lemma 3.2, over F1, the list (RP(ǫ2); λ, ǫ3 ⊕ (ǫ1 ⊗λ)) bounds
simultaneously, where λ → RP(ǫ2) is the Hopf line bundle. Write W(λ) = 1 + c.
Then it is known that

W(ǫ3 ⊕ (ǫ1 ⊗ λ)) = (1 + αd)
p3 .(

k1

∑
i=0

(

p1

i

)(

k1

i

)

ck1−iαi
d).

After some routine computations, we conclude that

W(ǫ3 ⊕ (ǫ1 ⊗ λ)) = (1 + αd)
p3 .(1 + αd + cd).(1 + cd)k1−p1d.

Since W(ǫ3 ⊕ (ǫ1 ⊗ λ)) and c are characteristic terms (see the definition in
Section 2) of the list (RP(ǫ2); λ, ǫ3 ⊕ (ǫ1 ⊗ λ)), (1 + c)r.W(ǫ3 ⊕ (ǫ1 ⊗ λ)) also is,
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for any r ≥ 0. In particular, for any natural number S, (1 + c)2S−(k1−p1d).W(ǫ3 ⊕

(ǫ1 ⊗λ)) is a characteristic term. For S sufficiently large, (1+ c)2S
= (1+ c2S

) = 1,
and thus

(1 + c)2S−(k1−p1d).W(ǫ3 ⊕ (ǫ1 ⊗ λ)) = (1 + αd)
p3 .(1 + αd + cd)

is a characteristic term. Because p3 is even and p1 is odd, the homogeneous
part of degree d of this characteristic term is αd + cd. It follows that αd is a
characteristic term of the list in question, which yields the characteristic number
αn

dck2−1[RP(ǫ2)]. Since H∗(RP(ǫ2), Z2) is the free H∗(F1, Z2)-module on

1, c, c2, . . . , ck2−1 (see [1]), we have that αn
dck2−1[RP(ǫ2)] = 1, which contradicts

the fact that (RP(ǫ2); λ, ǫ3 ⊕ (ǫ1 ⊗ λ)) bounds simultaneously. Therefore k2 = l2,
k3 = l3 and P2 = Q2. We shall prove that pi = qi for i = 2 and 3; since p1 = q1,
this will give that the lists (F1; ǫ1, ǫ2, ǫ3) and (F2; µ1, µ2, µ3) have the same char-
acteristic numbers, that is, are simultaneously cobordant. This will give that
(F1; ǫ1, ǫ2, ǫ3) ⊔ (F2; µ1, µ2, µ3) bounds simultaneously, which means that (M, Φ)
bounds equivariantly, thus ending the proof.

If p2 and p3 are odd, by Lemma 3.3, p2 = q2 and p3 = q3, and the desired result
follows. So we can suppose p2 or p3 even. Suppose first p3 even. Set ξ → RP(µ2)
for the Hopf line bundle, and write W(ξ) = 1 + e. Since P2 = Q2, by Lemma 3.2
the lists θ1 = (RP(ǫ2); λ, ǫ3 ⊕ (ǫ1 ⊗ λ)) and θ2 = (RP(µ2); ξ, µ3 ⊕ (µ1 ⊗ ξ)) are
simultaneously cobordant, which means that their corresponding characteristic
numbers are the same.

As above, one has

W(ǫ3 ⊕ (ǫ1 ⊗ λ)) = (1 + αd)
p3(1 + αd + cd)p1(1 + cd)k1−p1 , (1)

W(µ3 ⊕ (µ1 ⊗ ξ)) = (1 + βd)
q3(1 + βd + ed)q1(1 + ed)l1−q1. (2)

Since k1 − p1 = l1 − q1, the same trick with characteristic numbers used above
cancels the terms (1 + cd)k1−p1 and (1 + ed)l1−q1 in (2) and (3), thus showing
that (1 + αd)

p3(1 + αd + cd)p1 and (1 + βd)
q3(1 + βd + ed)q1 are corresponding

characteristic terms of the lists θ1 and θ2. Because p3 (and so q3) is even and
p1 = q1 is odd, the homogeneous part of degree d of these characteristic terms
are αd + cd and βd + ed; in particular, αd and βd are corresponding characteristic
terms of θ1 and θ2. It follows that (1 + αd + cd)r and (1 + βd + ed)r are corre-
sponding characteristic terms of θ1 and θ2, for any r ≥ 0. In particular, for S

sufficiently large, (1 + αd + cd)2S−p1 .(1 + αd)
p3(1 + αd + cd)p1 = (1 + αd)

p3 and

(1 + βd + ed)2S−q1.(1 + βd)
q3(1 + βd + ed)q1 = (1 + βd)

q3 are corresponding char-
acteristic terms of θ1 and θ2, noting that these terms are exactly W(ǫ3) and W(µ3).
Since ǫ3 and µ3 are bundles over copies of KdPn, wdi(ǫ3) = 0 and wdi(µ3) = 0 if
i > n. Take then i ≤ n. Because W(ǫ3) and W(µ3) are corresponding character-
istic terms of θ1 and θ2, wdi(ǫ3) = (p3

i )α
i
d and wdi(µ3) = (q3

i )βi
d also are. Together

with the fact that αi
d ∈ Hdi(RP(ǫ2), Z2) over F1 and βi

d ∈ Hdi(RP(ǫ2), Z2) over
F2 are nonzero and corresponding characteristic terms of θ1 and θ2, this gives
that (p3

i ) = (q3
i ). Then wdi(ǫ3) = αi

d if, and only if, wdi(µ3) = βi
d. It follows that

p3 = q3, as desired. Note that, in the above arguments, after we suppose that p1 is
odd and p3 is even, we concluded that P2 = Q2 and p3 = q3 with no involvement
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of p2 in all the characteristic number arguments. That is, in both cases, p2 odd
or even, one has p1 = q1 and p3 = q3. Thus, if in addition p2 is odd, by Lemma
3.3 p2 = q2 and the result follows. On the other hand, if p2 is even, we repeat
all the above procedure interchanging the roles of p2 and p3 to also conclude that
p2 = q2. Since the (remaining) case (p1, p2, p3) = (odd, even, odd) is a permutation
of the case (p1, p2, p3) = (odd, odd, even), the result follows.

4 The case F = KdPn ⊔ KdPn with n odd and k ≥ 2

This final section will be devoted to the above case. As mentioned in Section 1,
the crucial point will be a result from [9], which combined with the previous k = 2
case will give the desired result. As said there, this technique is a novelty in the
related literature. The result from [9] in question can be described as follows. Let
(M; Φ) be a Zk

2-action with fixed data (F; {ερ}ρ∈P ), and let Ω be a subgroup of

Hom(Zk
2, Z2). Then the part of the fixed data of (M; Φ) given by (F; {ερ}ρ∈Ω∩P)

can be realized as the fixed data of a subgroup G ⊂ Z
k
2 acting (by restriction) on

the fixed-point set of the restriction of Φ to some appropriate subgroup H ⊂ Zk
2.

In fact, in [9] it is proved that there exists a subgroup G ⊂ Zk
2 so that the restriction

Hom(Zk
2, Z2) → Hom(G, Z2) maps Ω isomorphically onto Hom(G, Z2). If, as a

Z2-vector space, dim(G) = r < k, one can take a (k − r)-dimensional subgroup
H ⊂ Zk

2 so that Zk
2 = G ⊕ H. Set FH = the fixed-point set of H, and Ψ= the

restriction of Φ to G × FH . One then has the following

Lemma 4.1. The fixed data of the G-action (FH ; Ψ) is (F; {µρ′}ρ′∈P ′), where for each

ρ′ ∈ P ′ = Hom(G, Z2) − {1} one has µρ′ = ερ, where ρ is the unique element of

Ω ∩ P with ρ|G = ρ′. In other words, the fixed data of G acting on the fixed-point set

of H is F with the subbundles ερ, ρ ∈ Ω ∩ P , and in terms of P ′, these subbundles are
indexed under the restriction Ω ∩ P → P ′.
Proof. See Lemma 3.1 of [9].

Take now a Z
k
2-action (M, Φ) with the fixed-point set F consisting of two

copies of KdPn (F1 and F2), where d = 1, 2 and 4 and n is odd. Write (F1; {ǫρ}ρ∈P)⊔
(F2; {µρ}ρ∈P ) for the fixed data of (M, Φ). As before, write Fρ for the fixed-point

set of the subgroup kernel(ρ) ⊂ Z
k
2, and Pρ and Qρ for the components of Fρ

that contains F1 and F2, respectively. Choose T ∈ Zk
2 with T /∈ kernel(ρ). If

Pρ = Qρ, (Pρ, T) is an involution fixing F1 ⊔ F2, and if Pρ ∩ Qρ = ∅, (Pρ, T) and
(Qρ, T) are involutions fixing F1 and F2, respectively. Write W(ǫρ) = (1 + αd)

pρ

and W(µρ) = (1 + βd)
qρ . As before, for any ρ ∈ P , either pρ and qρ are even,

or pρ and qρ are odd and pρ = qρ. If pρ (and so qρ) is even for every ρ ∈ P , by
Corollary 3.1 the lists (F1; {ǫρ}ρ∈P ) and (F2; {µρ}ρ∈P ) bound simultaneously, and
thus (M, Φ) bounds equivariantly. Therefore we can assume that at least for one
ρ0 ∈ P , pρ0 (and so qρ0) is odd (and so pρ0 = qρ0). Choose an arbitrary ρ ∈ P .
If ρ = ρ0, pρ = qρ. If ρ 6= ρ0, we consider the subgroup Ω = {1, ρ, ρ0, ρ.ρ0} ∼=
Z

2
2 ⊂ Hom(Zk

2, Z2). Then, there exists a subgroup G ∼= Z
2
2 ⊂ Z

k
2 so that the re-

striction Hom(Zk
2, Z2) → Hom(G, Z2) maps Ω isomorphically onto Hom(G, Z2).

Choose a (k − 2)-dimensional subgroup H ⊂ Zk
2 so that Zk

2 = G ⊕ H. Set FH =



588 A. E. R. de Andrade – P. L.Q. Pergher – S. T. Ura

the fixed-point set of H, and Ψ= the restriction of Φ to G × FH . Then, by Lemma
4.1, (FH ; Ψ) is a Z2

2-action with fixed data (F1; ǫρ, ǫρ0 , ǫρ.ρ0) ⊔ (F2; µρ, µρ0 , µρ.ρ0),
and with at least one subbundle of the fixed data over F1 and its corresponding
subbundle over F2 having Stiefel classes of the form (1 + αd)

p and (1 + βd)
p with

p odd. This is the situation found in Section 3, where it was proved that pρ = qρ.
Since this is valid for every ρ ∈ P , the lists (F1; {ǫρ}ρ∈P ) and (F2; {µρ}ρ∈P ) have
the same characteristic numbers, and (M, Φ) bounds equivariantly.

Remark. Let F be a disjoint (finite) union of connected, smooth and closed man-
ifolds such that each component of F bounds (which is the case of F = KdPn ⊔
KdPm with n and m odd and F = RPn1 ⊔RPn2 ⊔ ...⊔RPnj of Theorem 1). We will

discuss on the existence of bounding Z
k
2-actions fixing F. Write F =

n
⊔

j=0

Fj, where

Fj denotes the union of those components of F having dimension j, and thus n
is the dimension of the components of F of largest dimension. Choose a natural
number m > n, and for each 0 ≤ j ≤ n a bounding vector bundle ηm−j → Fj of di-
mension m − j (for example, a trivial (m − j)-dimensional vector bundle over Fj).
Consider ∂ :

⊕m
j=0 Nj(BO(m − j)) → Nm−1(BO(1)) the homomorphism of the

Conner and Floyd short exact sequence of [3]. Choosing a trivial vector bundle
as a representative of [ηm−j] ∈ Nj(BO(m − j)), it is easy to see that ∂([ηm−j]) = 0.
Thus, for each 0 ≤ j ≤ n, there is a bounding involution (Mm

j , Tj) with fixed data

ηm−j → Fj; here, each Mm
j is a closed smooth m-dimensional manifold. Then

(Mm, T) =
n
⊔

j=0

(Mm
j , Tj) is a bounding involution fixing F. Now, for each k ≥ 2, we

can construct a special Z
k
2-action fixing F, denoted by Γk

k(Mm, T), having (Mm, T)

as a starting point. Because (Mm, T) bounds, Γk
k(Mm, T) also bounds (for details

on Γk
k(Mm, T), see [8; Section 1]).

We remark that there are nonbounding Zk
2-actions so that its fixed-point set

bounds. For example, consider the Dold manifold

P(1, n) =
S1 × CPn

−1 × (conjugation)
.

The mod 2 cohomology of P(1, n) is H∗(P(1, n), Z2) = Z2[c, d]/(c2 = 0,
dn+1 = 0), where c ∈ H1(P(1, n), Z2) and d ∈ H2(P(1, n), Z2). The tangen-
tial Stiefel-Whitney class of P(1, n) is W(P(1, n)) = (1 + c)(1 + c + d)n+1. Over
P(1, n) one has a 2-dimensional vector bundle η → P(1, n) with W(η) = 1+ c+ d;
as a reference for these facts, see [19; Section 1]. With this data in hand, a routine
characteristic number calculation shows that, if n is odd, then P(1, n) bounds,
η does not bound and ∂(η) = 0. Then there exists a nonbounding involution
(M2n+3, T) with fixed data η → P(1, n). Again, for k ≥ 2, Γk

k(M2n+3, T) are non-

bounding Zk
2-actions fixing P(1, n).
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