Z%-actions fixing a disjoint union of odd
dimensional projective spaces
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Abstract

Consider the real, complex and quaternionic n-dimensional projective
spaces, RP", CP" and HP"; to unify notation, write K;P" for the real (d = 1),
complex (d = 2) and quaternionic (d = 4) n-dimensional projective space.
Consider a pair (M, ®), where M is a closed smooth manifold and & is a
smooth action of the group ZX on M; here, Z5 is considered as the group
generated by k commuting smooth involutions Ty, Ty, ..., T. Write F for the
tixed-point set of ®. In this paper we prove the following two results: i) If F is
adisjoint union F = RP™ URP"2 LI...UIRP", where j > 2, each n; is odd and
n; # ny if i # t, then (M, ®) bounds equivariantly. ii) If F = K;P" L K;P™,
whered = 1,2 and 4 and n and m are odd, then (M, ®) bounds equivariantly.
These results are found in the literature for k = 1.

1 Introduction

Consider a pair (M, ®), where M is a closed smooth manifold and & is a smooth
action of the group Z5 on M. Here, Z is considered as the group generated
by k commuting smooth involutions Tj, I», ..., Ty. Then it is well known that the
tixed-point set of @, F, is a finite and disjoint union of closed submanifolds of
M. If 5 — F is the normal bundle of F in M, then 17 decomposes under ® into
the Whitney sum of the subbundles on which Z} acts as one of the irreducible
(nontrivial) real representations, which are all one-dimensional over R and can
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be described by homomorphisms p : Z5 — Z, = {+1, —1} which are onto: Z§
acts on the reals so that ¢ € Z5 acts as multiplication by p(g). In other words,

’7:@59 ,
0

where ¢, is the subbundle of 77 on which Z acts in the fibers as p; that is, where
each T; acts as multiplication by p(T;), and where the sum excludes the trivial

homomorphism 1 € Hom (ZS, 7). Alternatively, €p is the normal bundle of F in
the fixed-point set F, of the subgroup kernel(p). Setting P = Hom(Z5, Z,) — {1},
we define the fixed data of (M; ®) as the object (F; {e, }pep), the fixed-point set F

and a list of 2F — 1 vector bundles over it indexed by P. In this setting, a natural
question is the classification, up to equivariant cobordism, of the pairs (M, P)
with a given condition on the fixed data of ®; in particular, for a given F, such a
question is the classification of the pairs (M, ®) for which the fixed-point set is
F. This is a well-established problem in the literature, and started in 1964 with
the results of Conner and Floyd [3], with F = S" U {point} and k = 1, F= an
n-dimensional real projective space, RP", with k = 1 and n odd, and F = a finite
set of isolated points and every k. These results were applications of the equivari-
ant cobordism theory, introduced in [3], which extended the famous cobordism
theory of 1954 of René Thom. Taking into account this theory, to be plausible,
this problem demands the knowledge of the real K-theory of F or, more specifi-
cally, the knowledge of all possible characteristic classes of vector bundles over
F. This is the case of the projective spaces K;P", d = 1,2 and 4. So the case F
= a disjoint union of projective spaces has an intense and still unfinished history
in the literature, started, as mentioned above, with the case F = IRP", where
k = 1 and n is odd, of [3]. In this case, Conner and Floyd proved that (M, ®)
bounds equivariantly, and with the same arguments it is possible to prove this
k = 1 result for F = K;P",d = 2 and 4 (n odd). Later, in [18], Stong solved
the case F = RP" with n even and k = 1, showing that in this case (M, ®) is
equivariantly cobordant to the involution (RP" x RP", twist), where twist maps
(x,y) into (v, x). The same is valid for F = K;P", d = 2 and 4, and proofs (sim-
ilar to the real case) can be found in [6]. In [2], F. Capobianco solved the case
F = RP" and k > 1 for every n > 1, and cited the fact that the same arguments
work for d = 2 and 4. This closes the one component case. The two compo-
nents case was started with the Royster paper [16], where a partial classification
was obtained for the case F = RP" LURP" and k = 1, leaving open only the
case in which m and 7 are even and nonzero (that is, Royster solved also the case
F = RP"URP? = RP" U {point} for any n > 1). Among their results, Royster
proved that if n and m are odd, then (M, ®) bounds equivariantly; the same is
valid for complex and quaternionic projective spaces, and proofs can be found
in [5]. Continuing with the two components case and k = 1, in [12] and [11],
P. L. Q. Pergher, A. Ramos and R. de Oliveira obtained the complex and quater-
nionic versions of the results of Royster not covered by [5] (m and n odd). Specifi-
cally, they solved the cases F = K;P" LIK;P™ for d = 2 and 4, where m > 01is even
and n > 1is odd, and where m = 0 and n > 2 is even. In addition, they solved
the particular case of the problem left open by Royster, given by F = RP" LIIRP",
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where m = 2%, n is even and n > 251 which includes the case F = RP? LJ RP™,
m > 4 even, which had been proved in [11]. Also the complex and quaternionic
versions of these cases were obtained in [12]. Still concerning the case k = 1, if the
number of components of F is greater than 2, then the only known result is due
to Torrence and Huo [4; Section 3]: if F is an arbitrary union of odd-dimensional
real projective spaces, then (M, ®) bounds equivariantly.

Summarizing, one has the one component case completely solved and, with
exception of (m,n) = (even,even), m,n > 0 and m # 2°, n # 2°, the two com-
ponents case solved for k = 1. Then there is the project of considering the two
components case for k > 1. In this direction, we cite the results of P. Pergher
of [13] (F = RP" U {point}, n odd and k > 1), [7] (F = RP" U {point}, n even
and k = 2) and [15] (F = RP" U {point}, n even and k > 1). Also one has the
results of P. Pergher, A. Ramos and R. Oliveira, obtained by joining [11], [12] and
[8] (F = K;P*UK;P",d =1,2and 4,n > 0evenand m = 2°, and k > 1). We
emphasize that the methods used in these papers ([13], [7], [15], [12], [11] and
[8]) are not suitable for the case where m > 0, n > 0 and (m,n) # (even,even).
Therefore, our contribution to this case will be to introduce a new technique and
to prove the following two correlated theorems:

Theorem 1. Let (M, ®) bea Z’E—action, k > 1, with fixed-point set F = IRP™ L
RP™ U....URP", where j > 2, each n; is odd and n; # ny ifi # t. Then (M, ®) bounds
equivariantly.

Theorem 2. Let (M, ®) be a Z’é-action, k > 1, with fixed-point set F = K P" L
KyP™, where d = 1,2 and 4 and n and m are odd. Then (M, ®) bounds equivariantly.

Theorem 1 extends partially, for k > 1, the result of Torrence and Huo [4;
Section 3], and Theorem 2 extends, for k > 1, the similar k = 1 result of [16] and
[5]. The paper is organized as follows: Section 2 is devoted to some preliminary
technical stuff. In Section 2, we prove Theorem 1 and the k = 2 case of Theorem 2.
In Section 3 we prove Theorem 2, by joining its previous k = 2 case with a result
of P. Pergher and R. Oliveira of [9] (which is the subtle point of the proof; in fact,
this technique is a novelty in the related literature, as mentioned above).

2 Preliminaries

Keeping the notation of the previous section, let (M; ®), ® = (T, ..., Tx), a smooth
Zk-action with fixed data (F; {ep}pep). Each s-dimensional component of

(F;{€p}pep) can be considered as an element of N ( Ie_IP BO(n,)), the bordism of
P

s-dimensional manifolds with a map into a product of classifying spaces BO(n,)
for n,-dimensional vector bundles, where 7, denotes the dimension of ¢, over
the component (this is the simultaneous cobordism between lists of vector bundles:
if P is any finite set, two lists (indexed by P) of vector bundles over closed n-
dimensional manifolds, (F"; {e, } pep) and (V"; {4, } pcp), are simultaneously cobor-
dant if there exists a (n + 1)-dimensional manifold W"*! with boundary
o(W"t1) = F" 1y V" (disjoint union) and a list of vector bundles over W"*1,
(W™ {115} oep), so that each 1, restricted to F" LI V" is equivalent to &, L ).
According to [17], the equivariant cobordism class of (M; ®) is determined by
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the simultaneous cobordism class of (F; {e,}pep). On the other hand, the simul-
taneous cobordism class of (F; {, }pep) is determined by its characteristic numbers
: write W(F) = 14wy + wp + ... and, foreach p € P, W(e,) = 1+ 0 + 05 + ...,
for the Stiefel-Whitney classes of the tangent bundle of F and of the bundle ¢,,
respectively. Then a characteristic number of (F; {¢, },cp) is an evaluation of the

form K[F], where K is a product of w;’s and ZJ;-) ’s, p € P, and [F] is the fundamental

Zj-homology class of F. K[F] must be understood as a sum Y K;[F*], where F*
is the union of the s — dimensional components of F, and K; is the part of K with
degree s. A class X € H*(F) is called a characteristic term if it is a sum of prod-
ucts of characteristic classes of F and of the €p, P € P; that is, each homogeneous
part of X can participate as a term of a product of classes yielding a characteristic
number of (F; {ey},ep)-

3 Proofs

As announced in Section 1, we first prove Theorem 1. Let ay € H(K;P", Z,) be
the generator, d = 1,2 and 4. Itis well known that, if 7 — K;P" is a vector bundle,
from the structure of the Grothendieck ring of vector bundles over projectives
spaces, there exists a natural number p > 0 so that the Stiefel-Whitney class W(7)
has the form (1 + a;)P. The number p is unique modulo 2°, where s is the smallest
number with n < 2°. For example, if 77 is the tangent bundle, then W(7) =
W(KsP") = (1+ ag)" .

Lemma 3.1. Suppose n — K;P" a vector bundle, where n is odd. Then 1 bounds if, and
only if, W(n) = (14 ay)P with p even.

Proof. One has W(K;P") = (1 +ay)" !, with n + 1 even. So, if p is even, wy;(17) =
0 and wy;(KyP") = 0if i is odd. Since dim(K;P") = dn, every characteristic
number of # comes from a cohomology class which necessarily contains a term
wgi () (or wy;(KyP™)) with i odd. Hence # bounds. If p is odd, w;() = a; and
the characteristic number (w;(7))" [K;P"] = (ay)"[K;P"] is nonzero. ]

Corollary 3.1. Consider a list of vector bundles over K;P", (KyP"; 111,42, .., ), where
n is odd and each n; bounds. Then this list bounds simultaneously.
Proof. The characteristic number argument is the same of Lemma 3.1. m

Now we prove Theorem 1. Let (F; {¢, },cp) be the fixed data of (M, ®), and
take p € P and a component RP" of F. As in Section 1, set F, for the fixed-
point set of the subgroup kernel(p) C Z5, and (F,); for the component of F, that
contains RP". Choosing T € Z& with T ¢ kernel(p), the involution ((F,);, T)
fixes RP" and possibly some other components of F. By Torrence and Huo
, ((Fp)i, T) bounds equivariantly, and so its fixed data bounds. Since n; # n;
if | # s, the normal bundle of RP" in (F,);, which is ¢, — RP", bounds. By
Corollary 3.1, the list (RP"; {e,},ep) bounds simultaneously. It follows that
(F; {&p }oep) bounds simultaneously, which proves Theorem 1.

The next step is to prove the k = 2 case of Theorem 2. Let (M, @), ® = (T1, T»),
be a Z3-action. Set T3 = T T,. The fixed data of (M, ®) can be written, in this
case, as (F;e1,€2,¢3), where ¢; — F is the normal bundle of F in Fr, = the fixed-
point set of T;. Take P C Fr, any component of Fr,, and set B C P for the union of
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components of F contained in P. Consider RP(e1) — F the real projective space
bundle associated to ¢; — F, and let A — RP(eq) be the usual Hopf line bundle
over RP(eq).

Lemma 3.2. Over B, the list of two bundles (RP(e1); A, €2 & (€3 ® A)) bounds simul-
taneously (here we are suppressing bundle maps).
Proof. See [10] (or [14]). [ |

Taking into account that any pair (S1,S2), where S1,S2 € {Ty,T», T3} and
S1 # S, determines a Z%-action, that is, any {T;, T;, Ti}, i #j,j # ki # k, plays
the role of {T1, T, T3}, with same fixed data up to permutation, Lemma 3.2 can
be re-written as: over B, the list (RP(¢;); A, ¢; © (ex ® A)) bounds simultaneously.

Take then a Z3-action (M, ®) with fixed-point set F = K;P" LI K;P™, where
d =1,2 and 4 and n and m are odd; we want to show that (M, ®) bounds equiv-
ariantly. Suppose first n # m. Then the case d = 1 is covered by Theorem 1,
and if d = 2 or 4 the same approach of Theorem 1 together with the classifica-
tion for k = 1 of [5] works. Therefore we can suppose that F consists of two
copies of K;P", which we call F = F; U F,. Denote the fixed data of (M, ®) by
(F1;€1,€2,€3) U (Fo; 1, M2, u3), and by P; and Q;, i = 1,2,3, the component of Fr,
that contains F; and F, respectively. From [5], one has the following result.

Lemma 3.3. Let (M, T) be an involution fixing two odd dimensional copies of K;P",
with normal bundles n and u. Write W(n) = (1 +ay)?, W(u) = (1 + B4)7. Then
either p and q are even, or p and q are odd and p = q.

Write W(e;) = (14 ay)Pi, W(p;) = (1+ Ba)%, ki = dim(e;) and [; = dim(u;),
i = 1,2,3. One has that either P; = Q;, or ;N Q; = @. Take T; # T;. If P, = Q;,
(P;, T;) is an involution with fixed data (¢; — F) U (u; — F), and if ;N Q; =
@, (P;, T;) and (Q;, T;) are involutions with fixed data ¢; — F and p; — B,
respectively. Taking into account Lemma 3.3 and the one component case, we
conclude that, for i = 1,2, 3, either p; and g; are even, or p; and g; are odd and
pi = q;- If p1, p2 and p3 (and so g1, g2 and g3) are even, then Corollary 3.1 says
that both the lists (Fy; €1, €2, €3) and (F; p1, g2, #3) bound simultaneously, which
implies that (M, ®) bounds equivariantly. So, without loss of generality, we can
suppose that p; is odd. We assure that k; = [;,1 = 1,2, 3. Since p; isodd, P; = Q;
and thus ky = I1. Thenky + k3 = Ip 4 I3. So, if pp or p3 are odd, k» = I, and k3 = I3,
and thus we can suppose p, and p3 even. By contradiction, suppose ky # I. Then
P,NQy = @and, by Lemma 3.2, over Fj, the list (RP(e2); A, €3 & (61 ® A)) bounds
simultaneously, where A — RP(e;) is the Hopf line bundle. Write W(A) =1 +c.
Then it is known that

k1 k .
W(€3 %, (61 X )\)) = (1 + ‘Xd)m-(z <pz1) ( il)ckl_lald)'
i=0
After some routine computations, we conclude that

W(es® (e1 @A) = (1+ag)P.(1+ag+c).(1+cH—rd,

Since W(e3 @ (61 ® A)) and ¢ are characteristic terms (see the definition in
Section 2) of the list (RP(e2);A, €3 B (€1 @ A)), (1+¢)".W(es ® (61 ® A)) also is,
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for any r > 0. In particular, for any natural number S, (1 + 0)25_(k1_p1d).W(€3 &>

(61 ® A)) is a characteristic term. For S sufficiently large, (14 ¢)?” = (1+¢¥) =1,
and thus

(147~ E=PD Wies @ (e ®A)) = (14 ag)P.(1+ g+ c)

is a characteristic term. Because p3 is even and p; is odd, the homogeneous
part of degree d of this characteristic term is a; + ¢?. It follows that ay is a
characteristic term of the list in question, which yields the characteristic number
a'c®2"1[RP(ey)].  Since H*(RP(e;),Z5) is the free H*(F,Z»)-module on
1c,c%...,ck271 (see [1]), we have that aic®2~1[RP(e;)] = 1, which contradicts
the fact that (RP(e2); A, €3 @ (61 ® A)) bounds simultaneously. Therefore k, = Iy,
ks = Iz and P, = Q. We shall prove that p; = g; for i = 2 and 3; since p; = 73,
this will give that the lists (Fj; €1, €2, €3) and (Fp; 1, pa, pi3) have the same char-
acteristic numbers, that is, are simultaneously cobordant. This will give that
(Fi; €1, €2, €3) U (Fy; g1, p2, p3) bounds simultaneously, which means that (M, ®)
bounds equivariantly, thus ending the proof.

If p> and p3 are odd, by Lemma 3.3, p» = ¢2 and p3 = g3, and the desired result
follows. So we can suppose p; or p3 even. Suppose first ps even. Set & — RP ()
for the Hopf line bundle, and write W(g) = 1+ e. Since P, = Q,, by Lemma 3.2
the lists 6; = (RP(e2); A, €3 @ (61 @ A)) and 6 = (RP(u2); ¢, ps @ (41 @ €)) are
simultaneously cobordant, which means that their corresponding characteristic
numbers are the same.

As above, one has

W@ (e1®A) = (1+a)P(1+ag+cHPr(14cH)a—n, )
W@ (11 ®8)) = (1+Ba)P(1+Bag+e?)i(1+eh)hm, )

Since k1 — p1 = |1 — g1, the same trick with characteristic numbers used above
cancels the terms (1 + ¢?)f1=P1 and (1 + ¢)2~% in (2) and (3), thus showing
that (1 + ayg)P*(1 4+ ay + )Pt and (1 + B4)B(1 + By + )T are corresponding
characteristic terms of the lists 6; and 6,. Because p3 (and so g3) is even and
p1 = q1 is odd, the homogeneous part of degree d of these characteristic terms
are ay + c? and B, + e*; in particular, a; and B, are corresponding characteristic
terms of 6; and 6. It follows that (1 + a; + c?)" and (1 + B4 + €?)" are corre-
sponding characteristic terms of 6; and 6, for any r > 0. In particular, for S
sufficiently large, (1 + ag + ¢)2P1(1 + ay)P3 (1 + ag + )P = (14 a4)P and
(14 B4+ )2 =0 (14 Ba)B(1+ By +eh) = (1+ B4)P are corresponding char-
acteristic terms of 6; and 6;, noting that these terms are exactly W(e3) and W (u3).
Since €3 and 3 are bundles over copies of K;P", wy;(€3) = 0 and wy;(u3) = 0 if
i > n. Take then i < n. Because W(e3) and W(u3) are corresponding character-
istic terms of 61 and 6, wy;(e3) = (7)o, and wg;(uz) = (%) B also are. Together
with the fact that &/, € H¥(RP(e;), Z,) over F; and B, € H¥(RP(e;), Z,) over
F, are nonzero and corresponding characteristic terms of ; and 6, this gives
that (7?) = (7). Then wg;(e3) = o, if, and only if, wy;(u3) = Bi. It follows that
p3 = 3, as desired. Note that, in the above arguments, after we suppose that p; is
odd and pj3 is even, we concluded that P, = Q, and p3 = g3 with no involvement
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of p; in all the characteristic number arguments. That is, in both cases, p> odd
or even, one has p; = g1 and p3 = g3. Thus, if in addition p; is odd, by Lemma
3.3 p» = g2 and the result follows. On the other hand, if p, is even, we repeat
all the above procedure interchanging the roles of p, and p3 to also conclude that
p2 = (. Since the (remaining) case (p1, p2, p3) = (odd, even, odd) is a permutation
of the case (p1, p2, p3) = (0dd, 0dd, even), the result follows.

4 The case F = K;P" LI K;P" with n odd and k > 2

This final section will be devoted to the above case. As mentioned in Section 1,
the crucial point will be a result from [9], which combined with the previous k = 2
case will give the desired result. As said there, this technique is a novelty in the
related literature. The result from [9] in question can be described as follows. Let
(M; ®) be a Z-action with fixed data (F; {e,},cp), and let 2 be a subgroup of
Hom(Z%,Z,). Then the part of the fixed data of (M; ®) given by (F; {ep}pcnp)
can be realized as the fixed data of a subgroup G C Z5 acting (by restriction) on
the fixed-point set of the restriction of ® to some appropriate subgroup H C Z5.
In fact, in [9] it is proved that there exists a subgroup G C ZX so that the restriction
Hom(ZX,Z,) — Hom(G,Z,) maps (2 isomorphically onto Hom(G, Z,). If, as a
Zy-vector space, dim(G) = r < k, one can take a (k — r)-dimensional subgroup
H C ZS so that ZS = G ® H. Set Fy = the fixed-point set of H, and Y= the
restriction of ® to G x Fy. One then has the following

Lemma 4.1. The fixed data of the G-action (Fg;Y) is (F; {pip }orepr), where for each
o' € P' = Hom(G,Zy) — {1} one has py = &,, where p is the unique element of
QNP with pg = p'. In other words, the fixed data of G acting on the fixed-point set
of H is F with the subbundles g, 0 €QNP, and in terms of P!, these subbundles are
indexed under the restriction QNP — P'.

Proof. See Lemma 3.1 of [9]. [ |

Take now a Z%-action (M, ®) with the fixed-point set F consisting of two
copies of K;P" (F; and F,), whered = 1,2 and 4 and n is odd. Write (Fi; {€) }oep) U
(F2; {Mp}pep) for the fixed data of (M, @). As before, write F, for the fixed-point
set of the subgroup kernel(p) C Z%, and P, and Q, for the components of F,
that contains F; and F,, respectively. Choose T € Z& with T ¢ kernel(p). If
Py = Qp, (Pp, T) is an involution fixing F; UF,, and if P, N Q, = @, (P, T) and
(Qp, T) are involutions fixing F; and F,, respectively. Write W(e,) = (1 + ay)Pr
and W(up) = (14 B4)%. As before, for any p € P, either p, and g, are even,
or p, and g, are odd and p, = gp. If pp (and so g,) is even for every p € P, by
Corollary 3.1 the lists (Fy; {€,}pep) and (F2; {1} pep) bound simultaneously, and
thus (M, ®) bounds equivariantly. Therefore we can assume that at least for one
po € P, pp, (and so g,,) is odd (and so pp, = gp,)- Choose an arbitrary p € P.
If o = po, pp = qp- If p # po, we consider the subgroup Q2 = {1,p, 00, 0.00} =
ZZ% C Hom(Zk,Z,). Then, there exists a subgroup G = Z3 C ZX so that the re-
striction Hom(Z%,Z,) — Hom(G, Z,) maps 2 isomorphically onto Hom (G, Z5).
Choose a (k — 2)-dimensional subgroup H C ZX so that Z5 = G ® H. Set Fy =
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the fixed-point set of H, and Y= the restriction of ® to G x Fy. Then, by Lemma
4.1, (Fy; YY) is a Z3-action with fixed data (Fy;€,,€py, €0.00) U (F2; Hos Hoos Hoopo)s
and with at least one subbundle of the fixed data over F; and its corresponding
subbundle over F, having Stiefel classes of the form (1 4 a;)” and (1 + B,;)? with
p odd. This is the situation found in Section 3, where it was proved that p, = gp.
Since this is valid for every p € P, the lists (Fi; {€p}pep) and (F2; {}p}oep) have
the same characteristic numbers, and (M, ®) bounds equivariantly.

Remark. Let F be a disjoint (finite) union of connected, smooth and closed man-

ifolds such that each component of F bounds (which is the case of F = K;P" L

K, P™ with n and m odd and F = RP™ LIIRP™ LI... LIRP" of Theorem 1). We will
n

discuss on the existence of bounding Z5-actions fixing F. Write F = | ] F/, where
j=0
FJ denotes the union of those components of F having dimension j, and thus n
is the dimension of the components of F of largest dimension. Choose a natural
number m > n, and for each 0 < j < n abounding vector bundle #™~/ — F/ of di—
mension m — j (for example, a trivial (m — j)-dimensional vector bundle over F/).
Consider 0 : @?:OA/}(BO(m — 7)) = Nu_1(BO(1)) the homomorphism of the
Conner and Floyd short exact sequence of [3]. Choosing a trivial vector bundle
as a representative of ["~/] € N;(BO(m — j)), it is easy to see that d(["~/]) = 0.
Thus, for each 0 < j < n, there is a bounding involution (M}”, T]') with fixed data
17m_j — FJ: here, each M;-” is a closed smooth m-dimensional manifold. Then
n
(M™,T) = |_| (M]m, T]) is a bounding involution fixing F. Now, for each k > 2, we
j=0

can construct a special Z5-action fixing F, denoted by I'f(M™, T), having (M™, T)
as a starting point. Because (M™, T) bounds, I'¥(M™, T) also bounds (for details
on I'¥(M™,T), see [8; Section 1]).

We remark that there are nonbounding ZX-actions so that its fixed-point set
bounds. For example, consider the Dold manifold

Sl x CP"
—1 x (conjugation)

P(1,n) =

The mod 2 cohomology of P(1,n) is H*(P(1,n),Z,) = Zsc,d]/(c> = 0,
d"*1 = 0), where c € HY(P(1,n),Zy) and d € H?*(P(1,n),Z>). The tangen-
tial Stiefel-Whitney class of P(1,1) is W(P(1,1)) = (1+¢)(1+ ¢ +d)"*1. Over
P(1,n) one has a 2-dimensional vector bundle 4 — P(1,n) with W(y) = 14+c+d;
as a reference for these facts, see [19; Section 1]. With this data in hand, a routine
characteristic number calculation shows that, if n is odd, then P(1,7) bounds,
1 does not bound and d() = 0. Then there exists a nonbounding involution
(M?"+3, T) with fixed data 7 — P(1,n). Again, for k > 2, TX(M?"*3,T) are non-
bounding Z%-actions fixing P(1, n).
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