\mathbb{Z}_{2}^{k}-actions fixing a disjoint union of odd dimensional projective spaces

Allan E. R. de Andrade Pedro L.Q. Pergher Sérgio T. Ura*

Abstract

Consider the real, complex and quaternionic n-dimensional projective spaces, $\mathbb{R} P^{n}, \mathbb{C} P^{n}$ and $\mathbb{H} P^{n}$; to unify notation, write $K_{d} P^{n}$ for the real $(d=1)$, complex $(d=2)$ and quaternionic $(d=4) n$-dimensional projective space. Consider a pair (M, Φ), where M is a closed smooth manifold and Φ is a smooth action of the group \mathbb{Z}_{2}^{k} on M; here, \mathbb{Z}_{2}^{k} is considered as the group generated by k commuting smooth involutions $T_{1}, T_{2}, \ldots, T_{k}$. Write F for the fixed-point set of Φ. In this paper we prove the following two results: i) If F is a disjoint union $F=\mathbb{R} P^{n_{1}} \sqcup \mathbb{R} P^{n_{2}} \sqcup \ldots \sqcup \mathbb{R} P^{n_{j}}$, where $j \geq 2$, each n_{i} is odd and $n_{i} \neq n_{t}$ if $i \neq t$, then (M, Φ) bounds equivariantly. ii) If $F=K_{d} P^{n} \sqcup K_{d} P^{m}$, where $d=1,2$ and 4 and n and m are odd, then (M, Φ) bounds equivariantly. These results are found in the literature for $k=1$.

1 Introduction

Consider a pair (M, Φ), where M is a closed smooth manifold and Φ is a smooth action of the group \mathbb{Z}_{2}^{k} on M. Here, \mathbb{Z}_{2}^{k} is considered as the group generated by k commuting smooth involutions $T_{1}, T_{2}, \ldots, T_{k}$. Then it is well known that the fixed-point set of Φ, F, is a finite and disjoint union of closed submanifolds of M. If $\eta \rightarrow F$ is the normal bundle of F in M, then η decomposes under Φ into the Whitney sum of the subbundles on which \mathbb{Z}_{2}^{k} acts as one of the irreducible (nontrivial) real representations, which are all one-dimensional over \mathbb{R} and can

[^0]be described by homomorphisms $\rho: \mathbb{Z}_{2}^{k} \rightarrow \mathbb{Z}_{2}=\{+1,-1\}$ which are onto: \mathbb{Z}_{2}^{k} acts on the reals so that $g \in \mathbb{Z}_{2}^{k}$ acts as multiplication by $\rho(g)$. In other words,
$$
\eta=\bigoplus_{\rho} \varepsilon_{\rho}
$$
where ε_{ρ} is the subbundle of η on which \mathbb{Z}_{2}^{k} acts in the fibers as ρ; that is, where each T_{j} acts as multiplication by $\rho\left(T_{j}\right)$, and where the sum excludes the trivial homomorphism $1 \in \operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right)$. Alternatively, ε_{ρ} is the normal bundle of F in the fixed-point set F_{ρ} of the subgroup $\operatorname{kernel}(\rho)$. Setting $\mathcal{P}=\operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right)-\{1\}$, we define the fixed data of $(M ; \Phi)$ as the object $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$, the fixed-point set F and a list of $2^{k}-1$ vector bundles over it indexed by \mathcal{P}. In this setting, a natural question is the classification, up to equivariant cobordism, of the pairs (M, Φ) with a given condition on the fixed data of Φ; in particular, for a given F, such a question is the classification of the pairs (M, Φ) for which the fixed-point set is F. This is a well-established problem in the literature, and started in 1964 with the results of Conner and Floyd [3], with $F=\mathbb{S}^{n} \sqcup\{$ point $\}$ and $k=1, F=$ an n-dimensional real projective space, $\mathbb{R} P^{n}$, with $k=1$ and n odd, and $F=$ a finite set of isolated points and every k. These results were applications of the equivariant cobordism theory, introduced in [3], which extended the famous cobordism theory of 1954 of René Thom. Taking into account this theory, to be plausible, this problem demands the knowledge of the real K-theory of F or, more specifically, the knowledge of all possible characteristic classes of vector bundles over F. This is the case of the projective spaces $K_{d} P^{n}, d=1,2$ and 4 . So the case F $=$ a disjoint union of projective spaces has an intense and still unfinished history in the literature, started, as mentioned above, with the case $F=\mathbb{R} P^{n}$, where $k=1$ and n is odd, of [3]. In this case, Conner and Floyd proved that (M, Φ) bounds equivariantly, and with the same arguments it is possible to prove this $k=1$ result for $F=K_{d} P^{n}, d=2$ and 4 (n odd). Later, in [18], Stong solved the case $F=\mathbb{R} P^{n}$ with n even and $k=1$, showing that in this case (M, Φ) is equivariantly cobordant to the involution $\left(\mathbb{R} P^{n} \times \mathbb{R} P^{n}, t w i s t\right)$, where twist maps (x, y) into (y, x). The same is valid for $F=K_{d} P^{n}, d=2$ and 4 , and proofs (similar to the real case) can be found in [6]. In [2], F. Capobianco solved the case $F=\mathbb{R} P^{n}$ and $k>1$ for every $n \geq 1$, and cited the fact that the same arguments work for $d=2$ and 4 . This closes the one component case. The two components case was started with the Royster paper [16], where a partial classification was obtained for the case $F=\mathbb{R} P^{n} \sqcup \mathbb{R} P^{m}$ and $k=1$, leaving open only the case in which m and n are even and nonzero (that is, Royster solved also the case $F=\mathbb{R} P^{n} \sqcup \mathbb{R} P^{0}=\mathbb{R} P^{n} \sqcup\{$ point $\}$ for any $n \geq 1$). Among their results, Royster proved that if n and m are odd, then (M, Φ) bounds equivariantly; the same is valid for complex and quaternionic projective spaces, and proofs can be found in [5]. Continuing with the two components case and $k=1$, in [12] and [11], P. L. Q. Pergher, A. Ramos and R. de Oliveira obtained the complex and quaternionic versions of the results of Royster not covered by [5] (m and n odd). Specifically, they solved the cases $F=K_{d} P^{n} \sqcup K_{d} P^{m}$ for $d=2$ and 4, where $m \geq 0$ is even and $n \geq 1$ is odd, and where $m=0$ and $n \geq 2$ is even. In addition, they solved the particular case of the problem left open by Royster, given by $F=\mathbb{R} P^{n} \sqcup \mathbb{R} P^{m}$,
where $m=2^{s}, n$ is even and $n \geq 2^{s+1}$, which includes the case $F=\mathbb{R} P^{2} \sqcup \mathbb{R} P^{m}$, $m \geq 4$ even, which had been proved in [11]. Also the complex and quaternionic versions of these cases were obtained in [12]. Still concerning the case $k=1$, if the number of components of F is greater than 2, then the only known result is due to Torrence and Huo [4; Section 3]: if F is an arbitrary union of odd-dimensional real projective spaces, then (M, Φ) bounds equivariantly.

Summarizing, one has the one component case completely solved and, with exception of $(m, n)=($ even, even $), m, n>0$ and $m \neq 2^{s}, n \neq 2^{s}$, the two components case solved for $k=1$. Then there is the project of considering the two components case for $k>1$. In this direction, we cite the results of P. Pergher of [13] $\left(F=\mathbb{R} P^{n} \sqcup\{\right.$ point $\}, n$ odd and $\left.k>1\right)$, [7] $\left(F=\mathbb{R} P^{n} \sqcup\{\right.$ point $\}, n$ even and $k=2$) and [15] ($F=\mathbb{R} P^{n} \sqcup\{$ point $\}, n$ even and $k>1$). Also one has the results of P. Pergher, A. Ramos and R. Oliveira, obtained by joining [11], [12] and [8] $\left(F=K_{d} P^{n} \sqcup K_{d} P^{m}, d=1,2\right.$ and $4, n>0$ even and $m=2^{s}$, and $\left.k>1\right)$. We emphasize that the methods used in these papers ([13], [7], [15], [12], [11] and [8]) are not suitable for the case where $m>0, n>0$ and $(m, n) \neq$ (even, even). Therefore, our contribution to this case will be to introduce a new technique and to prove the following two correlated theorems:

Theorem 1. Let (M, Φ) be a \mathbb{Z}_{2}^{k}-action, $k>1$, with fixed-point set $F=\mathbb{R} P^{n_{1}} \sqcup$ $\mathbb{R} P^{n_{2}} \sqcup \ldots \sqcup \mathbb{R} P^{n_{j}}$, where $j \geq 2$, each n_{i} is odd and $n_{i} \neq n_{t}$ if $i \neq t$. Then (M, Φ) bounds equivariantly.

Theorem 2. Let (M, Φ) be a \mathbb{Z}_{2}^{k}-action, $k>1$, with fixed-point set $F=K_{d} P^{n} \sqcup$ $K_{d} P^{m}$, where $d=1,2$ and 4 and n and m are odd. Then (M, Φ) bounds equivariantly.

Theorem 1 extends partially, for $k>1$, the result of Torrence and Huo [4; Section 3], and Theorem 2 extends, for $k>1$, the similar $k=1$ result of [16] and [5]. The paper is organized as follows: Section 2 is devoted to some preliminary technical stuff. In Section 2, we prove Theorem 1 and the $k=2$ case of Theorem 2. In Section 3 we prove Theorem 2, by joining its previous $k=2$ case with a result of P. Pergher and R. Oliveira of [9] (which is the subtle point of the proof; in fact, this technique is a novelty in the related literature, as mentioned above).

2 Preliminaries

Keeping the notation of the previous section, let $(M ; \Phi), \Phi=\left(T_{1}, \ldots, T_{k}\right)$, a smooth \mathbb{Z}_{2}^{k}-action with fixed data $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$. Each s-dimensional component of ($F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}$) can be considered as an element of $\mathcal{N}_{s}\left(\prod_{\rho \in \mathcal{P}} B O\left(n_{\rho}\right)\right.$), the bordism of s-dimensional manifolds with a map into a product of classifying spaces $B O\left(n_{\rho}\right)$ for n_{ρ}-dimensional vector bundles, where n_{ρ} denotes the dimension of ε_{ρ} over the component (this is the simultaneous cobordism between lists of vector bundles: if \mathcal{P} is any finite set, two lists (indexed by \mathcal{P}) of vector bundles over closed n dimensional manifolds, $\left(F^{n} ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ and $\left(V^{n} ;\left\{\mu_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$, are simultaneously cobordant if there exists a $(n+1)$-dimensional manifold W^{n+1} with boundary $\partial\left(W^{n+1}\right)=F^{n} \sqcup V^{n}$ (disjoint union) and a list of vector bundles over W^{n+1}, $\left(W^{n+1} ;\left\{\eta_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$, so that each η_{ρ} restricted to $F^{n} \sqcup V^{n}$ is equivalent to $\varepsilon_{\rho} \sqcup \mu_{\rho}$). According to [17], the equivariant cobordism class of $(M ; \Phi)$ is determined by
the simultaneous cobordism class of $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$. On the other hand, the simultaneous cobordism class of $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ is determined by its characteristic numbers : write $W(F)=1+w_{1}+w_{2}+\ldots$ and, for each $\rho \in \mathcal{P}, W\left(\varepsilon_{\rho}\right)=1+v_{1}^{\rho}+v_{2}^{\rho}+\ldots$, for the Stiefel-Whitney classes of the tangent bundle of F and of the bundle ε_{ρ}, respectively. Then a characteristic number of $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ is an evaluation of the form $K[F]$, where K is a product of w_{i}^{\prime} s and $v_{j}^{\rho \prime}$ s, $\rho \in \mathcal{P}$, and $[F]$ is the fundamental \mathbb{Z}_{2}-homology class of $F . K[F]$ must be understood as a sum $\sum_{s} K_{s}\left[F^{s}\right]$, where F^{s} is the union of the s-dimensional components of F, and K_{s} is the part of K with degree s. A class $X \in H^{*}(F)$ is called a characteristic term if it is a sum of products of characteristic classes of F and of the $\varepsilon_{\rho}, \rho \in \mathcal{P}$; that is, each homogeneous part of X can participate as a term of a product of classes yielding a characteristic number of $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$.

3 Proofs

As announced in Section 1, we first prove Theorem 1. Let $\alpha_{d} \in H^{d}\left(K_{d} P^{n}, \mathbb{Z}_{2}\right)$ be the generator, $d=1,2$ and 4 . It is well known that, if $\eta \rightarrow K_{d} P^{n}$ is a vector bundle, from the structure of the Grothendieck ring of vector bundles over projectives spaces, there exists a natural number $p \geq 0$ so that the Stiefel-Whitney class $W(\eta)$ has the form $\left(1+\alpha_{d}\right)^{p}$. The number p is unique modulo 2^{s}, where s is the smallest number with $n<2^{s}$. For example, if η is the tangent bundle, then $W(\eta)=$ $W\left(K_{d} P^{n}\right)=\left(1+\alpha_{d}\right)^{n+1}$.
Lemma 3.1. Suppose $\eta \rightarrow K_{d} P^{n}$ a vector bundle, where n is odd. Then η bounds if, and only if, $W(\eta)=\left(1+\alpha_{d}\right)^{p}$ with p even.
Proof. One has $W\left(K_{d} P^{n}\right)=\left(1+\alpha_{d}\right)^{n+1}$, with $n+1$ even. So, if p is even, $w_{d i}(\eta)=$ 0 and $w_{d i}\left(K_{d} P^{n}\right)=0$ if i is odd. Since $\operatorname{dim}\left(K_{d} P^{n}\right)=d n$, every characteristic number of η comes from a cohomology class which necessarily contains a term $w_{d i}(\eta)$ (or $w_{d i}\left(K_{d} P^{n}\right)$) with i odd. Hence η bounds. If p is odd, $w_{d}(\eta)=\alpha_{d}$ and the characteristic number $\left(w_{d}(\eta)\right)^{n}\left[K_{d} P^{n}\right]=\left(\alpha_{d}\right)^{n}\left[K_{d} P^{n}\right]$ is nonzero.
Corollary 3.1. Consider a list of vector bundles over $K_{d} P^{n},\left(K_{d} P^{n} ; \eta_{1}, \eta_{2}, \ldots, \eta_{t}\right)$, where n is odd and each η_{i} bounds. Then this list bounds simultaneously.
Proof. The characteristic number argument is the same of Lemma 3.1.
Now we prove Theorem 1. Let $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ be the fixed data of (M, Φ), and take $\rho \in \mathcal{P}$ and a component $\mathbb{R} P^{n_{i}}$ of F. As in Section 1, set F_{ρ} for the fixedpoint set of the subgroup $\operatorname{kernel}(\rho) \subset \mathbb{Z}_{2}^{k}$, and $\left(F_{\rho}\right)_{i}$ for the component of F_{ρ} that contains $\mathbb{R} P^{n_{i}}$. Choosing $T \in \mathbb{Z}_{2}^{k}$ with $T \notin \operatorname{kernel}(\rho)$, the involution $\left(\left(F_{\rho}\right)_{i}, T\right)$ fixes $\mathbb{R} P^{n_{i}}$ and possibly some other components of F. By Torrence and Huo , $\left(\left(F_{\rho}\right)_{i}, T\right)$ bounds equivariantly, and so its fixed data bounds. Since $n_{l} \neq n_{s}$ if $l \neq s$, the normal bundle of $\mathbb{R} P^{n_{i}}$ in $\left(F_{\rho}\right)_{i}$, which is $\varepsilon_{\rho} \rightarrow \mathbb{R} P^{n_{i}}$, bounds. By Corollary 3.1, the list ($\mathbb{R} P^{n_{i}} ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}$) bounds simultaneously. It follows that ($F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}$) bounds simultaneously, which proves Theorem 1.

The next step is to prove the $k=2$ case of Theorem 2. Let $(M, \Phi), \Phi=\left(T_{1}, T_{2}\right)$, be a \mathbb{Z}_{2}^{2}-action. Set $T_{3}=T_{1} T_{2}$. The fixed data of (M, Φ) can be written, in this case, as $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$, where $\varepsilon_{i} \rightarrow F$ is the normal bundle of F in $F_{T_{i}}=$ the fixedpoint set of T_{i}. Take $P \subset F_{T_{1}}$ any component of $F_{T_{1}}$, and set $B \subset P$ for the union of
components of F contained in P. Consider $\mathbb{R} P\left(\varepsilon_{1}\right) \rightarrow F$ the real projective space bundle associated to $\varepsilon_{1} \rightarrow F$, and let $\lambda \rightarrow \mathbb{R} P\left(\varepsilon_{1}\right)$ be the usual Hopf line bundle over $\mathbb{R} P\left(\varepsilon_{1}\right)$.
Lemma 3.2. Over B, the list of two bundles $\left(\mathbb{R} P\left(\varepsilon_{1}\right) ; \lambda, \varepsilon_{2} \oplus\left(\varepsilon_{3} \otimes \lambda\right)\right)$ bounds simultaneously (here we are suppressing bundle maps).
Proof. See [10] (or [14]).
Taking into account that any pair $\left(S_{1}, S_{2}\right)$, where $S_{1}, S_{2} \in\left\{T_{1}, T_{2}, T_{3}\right\}$ and $S_{1} \neq S_{2}$, determines a \mathbb{Z}_{2}^{2}-action, that is, any $\left\{T_{i}, T_{j}, T_{k}\right\}, i \neq j, j \neq k, i \neq k$, plays the role of $\left\{T_{1}, T_{2}, T_{3}\right\}$, with same fixed data up to permutation, Lemma 3.2 can be re-written as: over B, the list $\left(\mathbb{R} P\left(\varepsilon_{i}\right) ; \lambda, \varepsilon_{j} \oplus\left(\varepsilon_{k} \otimes \lambda\right)\right)$ bounds simultaneously.

Take then a \mathbb{Z}_{2}^{2}-action (M, Φ) with fixed-point set $F=K_{d} P^{n} \sqcup K_{d} P^{m}$, where $d=1,2$ and 4 and n and m are odd; we want to show that (M, Φ) bounds equivariantly. Suppose first $n \neq m$. Then the case $d=1$ is covered by Theorem 1 , and if $d=2$ or 4 the same approach of Theorem 1 together with the classification for $k=1$ of [5] works. Therefore we can suppose that F consists of two copies of $K_{d} P^{n}$, which we call $F=F_{1} \sqcup F_{2}$. Denote the fixed data of (M, Φ) by $\left(F_{1} ; \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) \sqcup\left(F_{2} ; \mu_{1}, \mu_{2}, \mu_{3}\right)$, and by P_{i} and $Q_{i}, i=1,2,3$, the component of $F_{T_{i}}$ that contains F_{1} and F_{2}, respectively. From [5], one has the following result.
Lemma 3.3. Let (M, T) be an involution fixing two odd dimensional copies of $K_{d} P^{n}$, with normal bundles η and μ. Write $W(\eta)=\left(1+\alpha_{d}\right)^{p}, W(\mu)=\left(1+\beta_{d}\right)^{q}$. Then either p and q are even, or p and q are odd and $p=q$.

Write $W\left(\epsilon_{i}\right)=\left(1+\alpha_{d}\right)^{p_{i}}, W\left(\mu_{i}\right)=\left(1+\beta_{d}\right)^{q_{i}}, k_{i}=\operatorname{dim}\left(\epsilon_{i}\right)$ and $l_{i}=\operatorname{dim}\left(\mu_{i}\right)$, $i=1,2,3$. One has that either $P_{i}=Q_{i}$, or $P_{i} \cap Q_{i}=\varnothing$. Take $T_{j} \neq T_{i}$. If $P_{i}=Q_{i}$, $\left(P_{i}, T_{j}\right)$ is an involution with fixed data $\left(\epsilon_{i} \rightarrow F_{1}\right) \sqcup\left(\mu_{i} \rightarrow F_{2}\right)$, and if $P_{i} \cap Q_{i}=$ $\varnothing,\left(P_{i}, T_{j}\right)$ and $\left(Q_{i}, T_{j}\right)$ are involutions with fixed data $\epsilon_{i} \rightarrow F_{1}$ and $\mu_{i} \rightarrow F_{2}$, respectively. Taking into account Lemma 3.3 and the one component case, we conclude that, for $i=1,2,3$, either p_{i} and q_{i} are even, or p_{i} and q_{i} are odd and $p_{i}=q_{i}$. If p_{1}, p_{2} and p_{3} (and so q_{1}, q_{2} and q_{3}) are even, then Corollary 3.1 says that both the lists $\left(F_{1} ; \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ and $\left(F_{2} ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ bound simultaneously, which implies that (M, Φ) bounds equivariantly. So, without loss of generality, we can suppose that p_{1} is odd. We assure that $k_{i}=l_{i}, i=1,2,3$. Since p_{1} is odd, $P_{1}=Q_{1}$ and thus $k_{1}=l_{1}$. Then $k_{2}+k_{3}=l_{2}+l_{3}$. So, if p_{2} or p_{3} are odd, $k_{2}=l_{2}$ and $k_{3}=l_{3}$, and thus we can suppose p_{2} and p_{3} even. By contradiction, suppose $k_{2} \neq l_{2}$. Then $P_{2} \cap Q_{2}=\varnothing$ and, by Lemma 3.2, over F_{1}, the list $\left(\mathbb{R} P\left(\epsilon_{2}\right) ; \lambda, \epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)$ bounds simultaneously, where $\lambda \rightarrow \mathbb{R} P\left(\epsilon_{2}\right)$ is the Hopf line bundle. Write $W(\lambda)=1+c$. Then it is known that

$$
W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)=\left(1+\alpha_{d}\right)^{p_{3}} \cdot\left(\sum_{i=0}^{k_{1}}\binom{p_{1}}{i}\binom{k_{1}}{i} c^{k_{1}-i} \alpha_{d}^{i}\right) .
$$

After some routine computations, we conclude that

$$
W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)=\left(1+\alpha_{d}\right)^{p_{3}} \cdot\left(1+\alpha_{d}+c^{d}\right) \cdot\left(1+c^{d}\right)^{k_{1}-p_{1} d} .
$$

Since $W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)$ and c are characteristic terms (see the definition in Section 2) of the list $\left(\mathbb{R} P\left(\epsilon_{2}\right) ; \lambda, \epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right),(1+c)^{r} . W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)$ also is,
for any $r \geq 0$. In particular, for any natural number $S,(1+c)^{2^{S}-\left(k_{1}-p_{1} d\right)} . W\left(\epsilon_{3} \oplus\right.$ $\left.\left(\epsilon_{1} \otimes \lambda\right)\right)$ is a characteristic term. For S sufficiently large, $(1+c)^{2^{S}}=\left(1+c^{2^{S}}\right)=1$, and thus

$$
(1+c)^{2^{s}-\left(k_{1}-p_{1} d\right)} \cdot W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)=\left(1+\alpha_{d}\right)^{p_{3}} \cdot\left(1+\alpha_{d}+c^{d}\right)
$$

is a characteristic term. Because p_{3} is even and p_{1} is odd, the homogeneous part of degree d of this characteristic term is $\alpha_{d}+c^{d}$. It follows that α_{d} is a characteristic term of the list in question, which yields the characteristic number $\alpha_{d}^{n} c^{k_{2}-1}\left[\mathbb{R} P\left(\epsilon_{2}\right)\right]$. Since $H^{*}\left(\mathbb{R} P\left(\epsilon_{2}\right), \mathbb{Z}_{2}\right)$ is the free $H^{*}\left(F_{1}, \mathbb{Z}_{2}\right)$-module on $1, c, c^{2}, \ldots, c^{k_{2}-1}$ (see [1]), we have that $\alpha_{d}^{n} c^{k_{2}-1}\left[\mathbb{R} P\left(\epsilon_{2}\right)\right]=1$, which contradicts the fact that $\left(\mathbb{R} P\left(\epsilon_{2}\right) ; \lambda, \epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)$ bounds simultaneously. Therefore $k_{2}=l_{2}$, $k_{3}=l_{3}$ and $P_{2}=Q_{2}$. We shall prove that $p_{i}=q_{i}$ for $i=2$ and 3 ; since $p_{1}=q_{1}$, this will give that the lists $\left(F_{1} ; \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ and $\left(F_{2} ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ have the same characteristic numbers, that is, are simultaneously cobordant. This will give that $\left(F_{1} ; \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) \sqcup\left(F_{2} ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ bounds simultaneously, which means that (M, Φ) bounds equivariantly, thus ending the proof.

If p_{2} and p_{3} are odd, by Lemma 3.3, $p_{2}=q_{2}$ and $p_{3}=q_{3}$, and the desired result follows. So we can suppose p_{2} or p_{3} even. Suppose first p_{3} even. Set $\xi \rightarrow \mathbb{R} P\left(\mu_{2}\right)$ for the Hopf line bundle, and write $W(\xi)=1+e$. Since $P_{2}=Q_{2}$, by Lemma 3.2 the lists $\theta_{1}=\left(\mathbb{R} P\left(\epsilon_{2}\right) ; \lambda, \epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right)$ and $\theta_{2}=\left(\mathbb{R} P\left(\mu_{2}\right) ; \xi, \mu_{3} \oplus\left(\mu_{1} \otimes \xi\right)\right)$ are simultaneously cobordant, which means that their corresponding characteristic numbers are the same.

As above, one has

$$
\begin{align*}
W\left(\epsilon_{3} \oplus\left(\epsilon_{1} \otimes \lambda\right)\right) & =\left(1+\alpha_{d}\right)^{p_{3}}\left(1+\alpha_{d}+c^{d}\right)^{p_{1}}\left(1+c^{d}\right)^{k_{1}-p_{1}}, \tag{1}\\
W\left(\mu_{3} \oplus\left(\mu_{1} \otimes \xi\right)\right) & =\left(1+\beta_{d}\right)^{q_{3}}\left(1+\beta_{d}+e^{d}\right)^{q_{1}}\left(1+e^{d}\right)^{l_{1}-q_{1}} . \tag{2}
\end{align*}
$$

Since $k_{1}-p_{1}=l_{1}-q_{1}$, the same trick with characteristic numbers used above cancels the terms $\left(1+c^{d}\right)^{k_{1}-p_{1}}$ and $\left(1+e^{d}\right)^{l_{1}-q_{1}}$ in (2) and (3), thus showing that $\left(1+\alpha_{d}\right)^{p_{3}}\left(1+\alpha_{d}+c^{d}\right)^{p_{1}}$ and $\left(1+\beta_{d}\right)^{q_{3}}\left(1+\beta_{d}+e^{d}\right)^{q_{1}}$ are corresponding characteristic terms of the lists θ_{1} and θ_{2}. Because p_{3} (and so q_{3}) is even and $p_{1}=q_{1}$ is odd, the homogeneous part of degree d of these characteristic terms are $\alpha_{d}+c^{d}$ and $\beta_{d}+e^{d}$; in particular, α_{d} and β_{d} are corresponding characteristic terms of θ_{1} and θ_{2}. It follows that $\left(1+\alpha_{d}+c^{d}\right)^{r}$ and $\left(1+\beta_{d}+e^{d}\right)^{r}$ are corresponding characteristic terms of θ_{1} and θ_{2}, for any $r \geq 0$. In particular, for S sufficiently large, $\left(1+\alpha_{d}+c^{d}\right)^{2^{s}-p_{1}} .\left(1+\alpha_{d}\right)^{p_{3}}\left(1+\alpha_{d}+c^{d}\right)^{p_{1}}=\left(1+\alpha_{d}\right)^{p_{3}}$ and $\left(1+\beta_{d}+e^{d}\right)^{2^{s}-q_{1}} .\left(1+\beta_{d}\right)^{q_{3}}\left(1+\beta_{d}+e^{d}\right)^{q_{1}}=\left(1+\beta_{d}\right)^{q_{3}}$ are corresponding characteristic terms of θ_{1} and θ_{2}, noting that these terms are exactly $W\left(\epsilon_{3}\right)$ and $W\left(\mu_{3}\right)$. Since ϵ_{3} and μ_{3} are bundles over copies of $K_{d} P^{n}, w_{d i}\left(\epsilon_{3}\right)=0$ and $w_{d i}\left(\mu_{3}\right)=0$ if $i>n$. Take then $i \leq n$. Because $W\left(\epsilon_{3}\right)$ and $W\left(\mu_{3}\right)$ are corresponding characteristic terms of θ_{1} and $\theta_{2}, w_{d i}\left(\epsilon_{3}\right)=\binom{p_{3}}{i} \alpha_{d}^{i}$ and $w_{d i}\left(\mu_{3}\right)=\binom{q_{3}}{i} \beta_{d}^{i}$ also are. Together with the fact that $\alpha_{d}^{i} \in H^{d i}\left(\mathbb{R} P\left(\epsilon_{2}\right), \mathbb{Z}_{2}\right)$ over F_{1} and $\beta_{d}^{i} \in H^{d i}\left(\mathbb{R} P\left(\epsilon_{2}\right), \mathbb{Z}_{2}\right)$ over F_{2} are nonzero and corresponding characteristic terms of θ_{1} and θ_{2}, this gives that $\binom{p_{3}}{i}=\binom{q_{3}}{i}$. Then $w_{d i}\left(\epsilon_{3}\right)=\alpha_{d}^{i}$ if, and only if, $w_{d i}\left(\mu_{3}\right)=\beta_{d}^{i}$. It follows that $p_{3}=q_{3}$, as desired. Note that, in the above arguments, after we suppose that p_{1} is odd and p_{3} is even, we concluded that $P_{2}=Q_{2}$ and $p_{3}=q_{3}$ with no involvement
of p_{2} in all the characteristic number arguments. That is, in both cases, p_{2} odd or even, one has $p_{1}=q_{1}$ and $p_{3}=q_{3}$. Thus, if in addition p_{2} is odd, by Lemma $3.3 p_{2}=q_{2}$ and the result follows. On the other hand, if p_{2} is even, we repeat all the above procedure interchanging the roles of p_{2} and p_{3} to also conclude that $p_{2}=q_{2}$. Since the (remaining) case $\left(p_{1}, p_{2}, p_{3}\right)=($ odd, even, odd $)$ is a permutation of the case $\left(p_{1}, p_{2}, p_{3}\right)=($ odd , odd, even $)$, the result follows.

4 The case $F=K_{d} P^{n} \sqcup K_{d} P^{n}$ with n odd and $k \geq 2$

This final section will be devoted to the above case. As mentioned in Section 1, the crucial point will be a result from [9], which combined with the previous $k=2$ case will give the desired result. As said there, this technique is a novelty in the related literature. The result from [9] in question can be described as follows. Let $(M ; \Phi)$ be a \mathbb{Z}_{2}^{k}-action with fixed data $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$, and let Ω be a subgroup of $\operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right)$. Then the part of the fixed data of $(M ; \Phi)$ given by $\left(F ;\left\{\varepsilon_{\rho}\right\}_{\rho \in \Omega \cap \mathcal{P}}\right)$ can be realized as the fixed data of a subgroup $G \subset \mathbb{Z}_{2}^{k}$ acting (by restriction) on the fixed-point set of the restriction of Φ to some appropriate subgroup $H \subset \mathbb{Z}_{2}^{k}$. In fact, in [9] it is proved that there exists a subgroup $G \subset \mathbb{Z}_{2}^{k}$ so that the restriction $\operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right) \rightarrow \operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)$ maps Ω isomorphically onto $\operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)$. If, as a \mathbb{Z}_{2}-vector space, $\operatorname{dim}(G)=r<k$, one can take a $(k-r)$-dimensional subgroup $H \subset \mathbb{Z}_{2}^{k}$ so that $\mathbb{Z}_{2}^{k}=G \oplus H$. Set $F_{H}=$ the fixed-point set of H, and $\Psi=$ the restriction of Φ to $G \times F_{H}$. One then has the following
Lemma 4.1. The fixed data of the G-action $\left(F_{H} ; \Psi\right)$ is $\left(F ;\left\{\mu_{\rho^{\prime}}\right\}_{\rho^{\prime} \in \mathcal{P}^{\prime}}\right)$, where for each $\rho^{\prime} \in \mathcal{P}^{\prime}=\operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)-\{1\}$ one has $\mu_{\rho^{\prime}}=\varepsilon_{\rho}$, where ρ is the unique element of $\Omega \cap \mathcal{P}$ with $\rho_{\mid G}=\rho^{\prime}$. In other words, the fixed data of G acting on the fixed-point set of H is F with the subbundles $\varepsilon_{\rho}, \rho \in \Omega \cap \mathcal{P}$, and in terms of \mathcal{P}^{\prime}, these subbundles are indexed under the restriction $\Omega \cap \mathcal{P} \rightarrow \mathcal{P}^{\prime}$.
Proof. See Lemma 3.1 of [9].
Take now a \mathbb{Z}_{2}^{k}-action (M, Φ) with the fixed-point set F consisting of two copies of $K_{d} P^{n}\left(F_{1}\right.$ and $\left.F_{2}\right)$, where $d=1,2$ and 4 and n is odd. Write $\left(F_{1} ;\left\{\epsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right) \sqcup$ $\left(F_{2} ;\left\{\mu_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ for the fixed data of (M, Φ). As before, write F_{ρ} for the fixed-point set of the subgroup $\operatorname{kernel}(\rho) \subset \mathbb{Z}_{2}^{k}$, and P_{ρ} and Q_{ρ} for the components of F_{ρ} that contains F_{1} and F_{2}, respectively. Choose $T \in \mathbb{Z}_{2}^{k}$ with $T \notin \operatorname{kernel}(\rho)$. If $P_{\rho}=Q_{\rho},\left(P_{\rho}, T\right)$ is an involution fixing $F_{1} \sqcup F_{2}$, and if $P_{\rho} \cap Q_{\rho}=\varnothing,\left(P_{\rho}, T\right)$ and $\left(Q_{\rho}, T\right)$ are involutions fixing F_{1} and F_{2}, respectively. Write $W\left(\epsilon_{\rho}\right)=\left(1+\alpha_{d}\right)^{p_{\rho}}$ and $W\left(\mu_{\rho}\right)=\left(1+\beta_{d}\right)^{q_{\rho}}$. As before, for any $\rho \in \mathcal{P}$, either p_{ρ} and q_{ρ} are even, or p_{ρ} and q_{ρ} are odd and $p_{\rho}=q_{\rho}$. If p_{ρ} (and so q_{ρ}) is even for every $\rho \in \mathcal{P}$, by Corollary 3.1 the lists $\left(F_{1} ;\left\{\epsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ and $\left(F_{2} ;\left\{\mu_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ bound simultaneously, and thus (M, Φ) bounds equivariantly. Therefore we can assume that at least for one $\rho_{0} \in \mathcal{P}, p_{\rho_{0}}$ (and so $q_{\rho_{0}}$) is odd (and so $p_{\rho_{0}}=q_{\rho_{0}}$). Choose an arbitrary $\rho \in \mathcal{P}$. If $\rho=\rho_{0}, p_{\rho}=q_{\rho}$. If $\rho \neq \rho_{0}$, we consider the subgroup $\Omega=\left\{1, \rho, \rho_{0}, \rho . \rho_{0}\right\} \cong$ $\mathbb{Z}_{2}^{2} \subset \operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right)$. Then, there exists a subgroup $G \cong \mathbb{Z}_{2}^{2} \subset \mathbb{Z}_{2}^{k}$ so that the restriction $\operatorname{Hom}\left(\mathbb{Z}_{2}^{k}, \mathbb{Z}_{2}\right) \rightarrow \operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)$ maps Ω isomorphically onto $\operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)$. Choose a ($k-2$)-dimensional subgroup $H \subset \mathbb{Z}_{2}^{k}$ so that $\mathbb{Z}_{2}^{k}=G \oplus H$. Set $F_{H}=$
the fixed-point set of H, and $\Psi=$ the restriction of Φ to $G \times F_{H}$. Then, by Lemma 4.1, $\left(F_{H} ; \Psi\right)$ is a \mathbb{Z}_{2}^{2}-action with fixed data $\left(F_{1} ; \epsilon_{\rho}, \epsilon_{\rho_{0}}, \epsilon_{\rho . \rho_{0}}\right) \sqcup\left(F_{2} ; \mu_{\rho}, \mu_{\rho_{0}}, \mu_{\rho . \rho_{0}}\right)$, and with at least one subbundle of the fixed data over F_{1} and its corresponding subbundle over F_{2} having Stiefel classes of the form $\left(1+\alpha_{d}\right)^{p}$ and $\left(1+\beta_{d}\right)^{p}$ with p odd. This is the situation found in Section 3, where it was proved that $p_{\rho}=q_{\rho}$. Since this is valid for every $\rho \in \mathcal{P}$, the lists $\left(F_{1} ;\left\{\epsilon_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ and $\left(F_{2} ;\left\{\mu_{\rho}\right\}_{\rho \in \mathcal{P}}\right)$ have the same characteristic numbers, and (M, Φ) bounds equivariantly.

Remark. Let F be a disjoint (finite) union of connected, smooth and closed manifolds such that each component of F bounds (which is the case of $F=K_{d} P^{n} \sqcup$ $K_{d} P^{m}$ with n and m odd and $F=\mathbb{R} P^{n_{1}} \sqcup \mathbb{R} P^{n_{2}} \sqcup \ldots \sqcup \mathbb{R} P^{n_{j}}$ of Theorem 1). We will discuss on the existence of bounding \mathbb{Z}_{2}^{k}-actions fixing F. Write $F=\bigsqcup_{j=0}^{n} F^{j}$, where F^{j} denotes the union of those components of F having dimension j, and thus n is the dimension of the components of F of largest dimension. Choose a natural number $m>n$, and for each $0 \leq j \leq n$ a bounding vector bundle $\eta^{m-j} \rightarrow F^{j}$ of dimension $m-j$ (for example, a trivial $(m-j)$-dimensional vector bundle over F^{j}). Consider $\partial: \bigoplus_{j=0}^{m} \mathcal{N}_{j}(B O(m-j)) \rightarrow \mathcal{N}_{m-1}(B O(1))$ the homomorphism of the Conner and Floyd short exact sequence of [3]. Choosing a trivial vector bundle as a representative of $\left[\eta^{m-j}\right] \in \mathcal{N}_{j}(B O(m-j))$, it is easy to see that $\partial\left(\left[\eta^{m-j}\right]\right)=0$. Thus, for each $0 \leq j \leq n$, there is a bounding involution $\left(M_{j}^{m}, T_{j}\right)$ with fixed data $\eta^{m-j} \rightarrow F^{j}$; here, each M_{j}^{m} is a closed smooth m-dimensional manifold. Then $\left(M^{m}, T\right)=\bigsqcup_{j=0}^{n}\left(M_{j}^{m}, T_{j}\right)$ is a bounding involution fixing F. Now, for each $k \geq 2$, we can construct a special \mathbb{Z}_{2}^{k}-action fixing F, denoted by $\Gamma_{k}^{k}\left(M^{m}, T\right)$, having $\left(M^{m}, T\right)$ as a starting point. Because $\left(M^{m}, T\right)$ bounds, $\Gamma_{k}^{k}\left(M^{m}, T\right)$ also bounds (for details on $\Gamma_{k}^{k}\left(M^{m}, T\right)$, see [8; Section 1]).

We remark that there are nonbounding \mathbb{Z}_{2}^{k}-actions so that its fixed-point set bounds. For example, consider the Dold manifold

$$
P(1, n)=\frac{\mathrm{S}^{1} \times \mathbb{C} P^{n}}{-1 \times(\text { conjugation })} .
$$

The mod 2 cohomology of $P(1, n)$ is $H^{*}\left(P(1, n), \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[c, d] /\left(c^{2}=0\right.$, $\left.d^{n+1}=0\right)$, where $c \in H^{1}\left(P(1, n), \mathbb{Z}_{2}\right)$ and $d \in H^{2}\left(P(1, n), \mathbb{Z}_{2}\right)$. The tangential Stiefel-Whitney class of $P(1, n)$ is $W(P(1, n))=(1+c)(1+c+d)^{n+1}$. Over $P(1, n)$ one has a 2-dimensional vector bundle $\eta \rightarrow P(1, n)$ with $W(\eta)=1+c+d$; as a reference for these facts, see [19; Section 1]. With this data in hand, a routine characteristic number calculation shows that, if n is odd, then $P(1, n)$ bounds, η does not bound and $\partial(\eta)=0$. Then there exists a nonbounding involution $\left(M^{2 n+3}, T\right)$ with fixed data $\eta \rightarrow P(1, n)$. Again, for $k \geq 2, \Gamma_{k}^{k}\left(M^{2 n+3}, T\right)$ are nonbounding \mathbb{Z}_{2}^{k}-actions fixing $P(1, n)$.

Acknowledgement. We would like to thank the referee for a great amount of nice suggestions, which considerably improved the presentation of this paper.

References

[1] Borel, A. and Hirzebruch, F. Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
[2] Capobianco, F. L. Stationary points of $\left(\mathbb{Z}_{2}\right)^{k}$-actions, Proc. Amer. Math. Soc. 61 (1976), 377-380.
[3] Conner, P. E. and Floyd, E. E. Differentiable periodic maps, Springer-Verlag, Berlin, 1964.
[4] Hou, D. and Torrence B., Involutions fixing the union of odd-dimensional projective spaces, Canadian Math. Bull. 37 (1994), 66-74.
[5] Jiang, G. R. and Yan, C. Z. Involutions fixing the disjoint union of many projective $2 r+1$-spaces, Northeast. Math. J. 7 (1991), 473-479.
[6] Liu, X. G. Involutions fixing the disjoint union of copies of $\mathbb{H P}^{n}$, J. Jilin Univ. Sci. 40 (2002), 119-121.
[7] Pergher, P. L. Q. Bordism of two commuting involutions, Proc. Amer. Math. Soc. 126 (1998), 2141-2149.
[8] Pergher, P. L. Q. and de Oliveira, R. Commuting involutions whose fixed-point set consists of two special components, Fund. Math. 201 (2008), 241-259.
[9] Pergher, P. L. Q. and de Oliveira, R. $\left(\mathbb{Z}_{2}\right)^{k}$-actions with a special fixed-point set, Fund. Math. 186 (2005), 97-109.
[10] Pergher, P. L. Q. On \mathbb{Z}_{2}^{k} actions, Topology Appl. 117 (2002), 105-112.
[11] Pergher, P. L. Q., Ramos, A. and de Oliveira, R. $\left(\mathbb{Z}_{2}\right)^{k}$-actions fixing $\mathbb{R} P^{2} \sqcup$ $\mathbb{R} P^{\text {even }}$, Algebr. Geom. Topol. 7 (2007), 29-45.
[12] Pergher, P. L. Q. and Ramos, A. $\left(\mathbb{Z}_{2}\right)^{k}$-actions fixing $K_{d} P^{2^{s}} \sqcup K_{d} P^{\text {even }}$, Topology Appl. 156 (2009), 629-642.
[13] Pergher, P. L. Q. The union of a connected manifold and a point as fixed-point set of commuting involutions, Topology Appl. 69 (1996), 71-81.
[14] Pergher, P. L. Q. \mathbb{Z}_{2}^{k} actions fixing $\{$ point $\} \sqcup V^{n}$, Fund. Mathem. 171 (2002), 83-97.
[15] Pergher, P. L. Q. $\left(\mathbb{Z}_{2}\right)^{k}$-actions whose fixed data has a section, Trans. Amer. Math. Soc. 353 (2001), 175-189.
[16] Royster, D. C. Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29 (1980), 267-276.
[17] Stong, R. E. Equivariant bordism and $\left(\mathbb{Z}_{2}\right)^{k}$-actions, Duke Math. J. 37 (1970), 779-785.
[18] Stong, R. E. Involutions fixing projective spaces, Michigan Math. J. 13 (1966), 445-447.
[19] Stong, R. E. Vector bundles over Dold manifolds, Fund. Math. 169 (2001), 85-95.

Universidade Federal do Mato Grosso do Sul
Caixa Postal 210
Três Lagoas, MS 79620-080, Brazil
E-mail: saritamatematica@hotmail.com

Departamento de Matemática
Universidade Federal de São Carlos
Caixa Postal 676
São Carlos, SP 13565-905, Brazil
E-mails: pergher@dm.ufscar.br,stura@dm.ufscar.br

[^0]: *The authors were partially supported by FAPESP and CNPq
 Received by the editors in October 2016 - In revised form in January 2017.
 Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.
 2010 Mathematics Subject Classification : Primary 57R85; Secondary 57R75.
 Key words and phrases : \mathbb{Z}_{2}^{k}-action, Stiefel-Whitney class, characteristic number, characteristic term, real projective bundle, fixed data, equivariant cobordism, simultaneous cobordism.

