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Abstract

Let Z[Q16] be the group ring where Q16 = 〈x, y|x4 = y2, xyx = y〉 is the
quaternion group of order 16 and ε the augmentation map. We show that,
if PX = K(x − 1) and PX = K(−xy + 1) has solution over Z[Q16] and all
m×m minors of ε(P) are relatively prime, then the linear system PX = K has
a solution over Z[Q16], where P = [pij] is an m × n matrix with m ≤ n. As a
consequence of such results, we show that there is no map f : W → MQ16

that
is strongly surjective, i.e., such that MR[ f , a] = min{#(g−1(a))|g ∈ [ f ]} 6= 0.
Here, MQ16

is the orbit space of the 3-sphere S3 with respect to the action
of Q16 determined by the inclusion Q16 ⊆ S3 and W is a CW-complex of
dimension 3 with H3(W; Z) = 0.

1 Introduction

Given a map f : W → M between topological spaces, and an arbitrary point
a ∈ M, recall that MR[ f , a] = min{#(g−1(a))|g ∈ [ f ]}, where [−] means a
homotopy class. We say that a map f : W → M is strongly surjective, if any map
homotopic to it is surjective or, equivalently, if MR[ f , a] 6= 0 for some a ∈ M.
The problem of the existence of a map f : W → M which is strongly surjective
has been studied in the paper [1] when W is a CW-complex and M is a closed
manifold, both of dimension 3. The main results are:
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i) There is no map f : W → M which is a strongly surjective map if W is a
CW-complex with H3(W; Z) = 0 and M is either S1 × S2, S1 × S1 × S1, or a
lens space;

ii) There is no map f : W → M which is a strongly surjective map if W is a CW-

complex with H3(W; Z̃) = 0 and M is either S1 × P2, where P2 denotes the
2-dimensional real projective space, or MA = S2 × [0, 1]/(x, 0) ∼ (−x, 1).

Here, H3(W; Z̃) is the cohomology with an arbitrary local coefficient system

Z̃.

iii) There exists a strongly surjective map f : W → MA, where W is a certain
3-complex with H3(W; Z) = 0.

The above results were obtained making use of the obstruction theory. The
existence or non-existence of a strongly surjective map f : W → M may be
determined by an obstruction class ω3( f ) ∈ H3(W; Z[π]), where H3(W; Z[π])
is the cohomology group of W with a local coefficient system and π = π1(M).
In [1], the vanishing of the obstruction to deform a map f : W → M to a root free
map is described in terms of solutions of a liner system PX = K over the group
ring Z[π]. Let Q8 = 〈x, y|x2 = y2, xyx = y〉 be the quaternion group of order 8
and MQ8

the orbit space of the 3-sphere S3 with respect to the action determined

by the inclusion Q8 ⊆ S3. In [2] we studied the problem of the existence of a map
f : W → MQ8

which is strongly surjective, we obtained:

iv) If W is a three dimensional CW-complex with H3(W; Z) = 0 then there is
no strongly surjective map f : W → MQ8

.

This case differs from the previous one because π1(MQ8
) = Q8 is nonabelian. To

prove the statement iv) is equivalent to demonstrate that: If PX = K(x − 1) and
PX = K(−xy + 1) have solutions over Z[Q8] where P = [pij] is an m × n matrix
with m ≤ n, and all m × m minors of ε(P) = [ε(pij)] are relatively prime, then the
system PX = K has a solution over Z[Q8]. The condition about ε(P) is obtained
from the hypothesis that H3(W; Z) = 0.

In this work we consider linear systems over Z[Q16] and maps
f : W → MQ16

. The main results are:

Theorem 1.1. Let PX = K be a linear system over Z[Q16], where P = [pij] is an m × n
with m ≤ n. If PX = K(x − 1) and PX = K(−xy + 1) have solutions over Z[Q16]
and all m × m minors of ε(P) = [ε(pij)] are relatively prime, then the system PX = K
has a solution over Z[Q16].

Theorem 1.2. If W is a three dimensional CW-complex with H3(W; Z) = 0, then there
is no strongly surjective map f : W → MQ16

.

The techniques used in [2] unfortunately do not apply to this case. Therefore we
introduce new techniques to study the case Q16. Let M2(Z) be the ring of 2 × 2

matrices with entries in Z and H(Q[
√

2]) the quaternion field. Throughout this
paper, the problem of solving the linear system PX = K will be converted to
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solving linear systems over Z, M2(Z) and H(Q[
√

2]). The problem of solving
linear equations over the quaternion field H(R), has been studied in [3] and [8]
making use of quaternionic determinant and inverse square matrix, subjects that
will be used in this work.
The paper is organized as follows. Sections 2, 3, 4, 5, 6, 7 are dedicated to prove
theorem 1.1. Section 8 contains the proof of theorem 1.2 and discusses the case
Q32.

2 Linear systems over Z[Q16]

Consider the quaternion group Q16 = 〈x, y|x4 = y2, xyx = y〉 of order 16. Any
element w ∈ Q16 has a unique canonical form w = xµyδ, with 0 ≤ µ < 8 and
δ = 0, 1. The function ε : Z[Q16] → Z given by ∑

p
i=1 riwi 7→ ∑

p
i=1 ri is a ring

homomorphism. Let Q be the field of rational numbers, M2(Q) the ring

of 2 × 2 matrices with entries in Q, Q[
√

2] = {a + b
√

2| a, b ∈ Q}, H(Q[
√

2])
the quaternion field and Q4 ⊕ M2(Q)⊕ H(Q[

√
2]) the ring with component-wise

addition and multiplication. The quaternion field H(Q[
√

2]) has dimension 8

over Q with basis β = {1,
√

2, i,
√

2i, j,
√

2j, k,
√

2k} where i2 = j2 = k2 = −1,
ij = k = −ji, jk = i = −kj and ki = j = −ik. Consider the isomorphism of rings

T : Q(Q16) → Q4 ⊕ M2(Q)⊕ H(Q[
√

2]) given by:

1 7−→ (1, 1, 1, 1,
[
1 0
0 1

]
, 1) x 7−→ (1, 1,−1,−1,

[
0 −1
1 0

]
,
√

2
2 + i

√
2

2 )

x2 7−→ (1, 1, 1, 1,
[−1 0

0 −1

]
, i) x3 7−→ (1, 1,−1,−1,

[
0 1
−1 0

]
,−

√
2

2 + i
√

2
2 )

x4 7−→ (1, 1, 1, 1,
[
1 0
0 1

]
,−1) x5 7−→ (1, 1,−1,−1,

[
0 −1
1 0

]
,−

√
2

2 − i
√

2
2 )

x6 7−→ (1, 1, 1, 1,
[−1 0

0 −1

]
,−i) x7 7−→ (1, 1,−1,−1,

[
0 1
−1 0

]
,
√

2
2 − i

√
2

2 )

y 7−→ (1,−1, 1,−1,
[
0 1
1 0

]
, j) xy 7−→ (1,−1,−1, 1,

[−1 0
0 1

]
,
√

2
2 j +

√
2

2 k)

x2y 7−→ (1,−1, 1,−1,
[

0 −1
−1 0

]
, k) x3y 7−→ (1,−1,−1, 1,

[
1 0
0 −1

]
,−

√
2

2 j +
√

2
2 k)

x4y 7−→ (1,−1, 1,−1,
[
0 1
1 0

]
,−j) x5y 7−→ (1,−1,−1, 1,

[−1 0
0 1

]
,−

√
2

2 j −
√

2
2 k)

x6y 7−→ (1,−1, 1,−1,
[

0 −1
−1 0

]
,−k) x7y 7−→ (1,−1,−1, 1,

[
1 0
0 −1

]
,
√

2
2 j −

√
2

2 k)

Given an element q = q0 + q1x + · · ·+ q7x7 + q8y+ q9xy+ · · ·+ q15x7y ∈ Z[Q16],
denote by T(q) = (ε(q), q1 , q2, q3, q4, q5), where

ε(q) = q0 + q1 + · · ·+ q6 + q7 + q8 + q9 + · · ·+ q14 + q15

q1 = q0 + q1 + · · ·+ q6 + q7 − q8 − q9 − · · · − q14 − q15

q2 = q0 − q1 + · · ·+ q6 − q7 + q8 − q9 + · · ·+ q14 − q15

q3 = q0 − q1 + · · ·+ q6 − q7 − q8 + q9 − · · · − q14 + q15

q4 =

[
n1 n2

n3 n4

]

q5 = a + b
√

2 + ci + d
√

2i + ej + f
√

2j + gk + h
√

2k

.

and



504 C. Aniz

n1 = q0 − q2 + q4 − q6 − q9 + q11 − q13 + q15

n2 = −q1 + q3 − q5 + q7 + q8 − q10 + q12 − q14

n3 = q1 − q3 + q5 − q7 + q8 − q10 + q12 − q14

n4 = q0 − q2 + q4 − q6 + q9 − q11 + q13 − q15

a = q0 − q4 b =
q1 − q3 − q5 + q7

2

c = q2 − q6 d =
q1 + q3 − q5 − q7

2

e = q8 − q12 f =
q9 − q11 − q13 + q15

2

g = q10 − q14 h =
q9 + q11 − q13 − q15

2

Let φ : Z → Z2 be the quotient map, φ(n), n ∈ Z will be abbreviated n and
should not be confused with p, p ∈ H(R) the conjugate of the quaternions.
Notice that φ will be used also as the obvious extension map from the matrix
sets Mn(Z) to Mn(Z2).

Lemma 2.1. The set of all the elements

a + b
√

2 + ci + d
√

2i + ej + f
√

2j + gk + h
√

2k,

where a, c, e, g, 2b, 2d, 2 f , 2h ∈ Z with 2b = 2d and 2 f = 2h, denoted by H(Q[
√

2]),

is a subring of H(Q[
√

2]).

Proof: Let q1 = a1 + b1

√
2 + c1i + d1

√
2i + e1i + f1

√
2j + g1k + h1

√
2k and q2 =

a2 + b2

√
2 + c2i + d2

√
2i + e2j + f2

√
2j + g2k + h2

√
2k be elements of H(Q[

√
2]).

The element q1 − q2 lies in H(Q[
√

2]). Consider the product

q1 · q2 = a + b
√

2 + ci + d
√

2i + ej + f
√

2j + gk + h
√

2k,

where

i) a = a1a2 − c1c2 − e1e2 − g1g2 + 2(b1b2 − d1d2 − f1 f2 − h1h2)

ii) b = a1b2 + b1a2 − c1d2 − c2d1 − e1 f2 − f1e2 − g1h2 − g2h1

iii) c = a1c2 + c1a2 + e1g2 − g1e2 + 2(b1d2 + d1b2 + f2h1 − f1h2)

iv) d = a1d2 + b1c2 − c1b2 − a2d1 − e1h2 + f1g2 − g1 f2 − e2h1

v) e = a1e2 − c1g2 + e1a2 + g1c2 + 2(b1 f2 − d1h2 + f1b2 + h1d2)

vi) f = a1 f2 + b1e2 − c1h2 − g2d1 + e1b2 + f1a2 + g1d2 + c2h1

vii) g = a1g2 + c1e2 − e1c2 + g1a2 + 2(b1h2 + d1 f2 + f1d2 + h1b2)

viii) h = a1h2 + b1g2 + c1 f2 + e2d1 + e1d2 + f1c2 + g1b2 + a2h1.

Note that 2b12b2 − 2d12d2 − 2 f12 f2 − 2h12h2 = 2k with k ∈ Z, since 2b1 = 2d1,
2 f1 = 2h1, 2b2 = 2d2 and 2 f2 = 2h2. Hence, 2(b1b2 − d1d2 − f1 f2 − h1h2) = k ∈ Z
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and a ∈ Z. By a similar argument, c, e, g ∈ Z.
Now,

2b = a12b2 + 2b1a2 − c12d2 − c22d1 − e12 f2 − 2 f1e2 − g12h2 − g22h1

and

2d = a12d2 + 2b1c2 − c12b2 − a22d1 − e12h2 + 2 f1g2 − g12 f2 − e22h1.

Because a12b2 = a12d2, 2b1a2 = 2d1a2, c12d2 = c12b2, c22d1 = c22b1,
e12 f2 = e12h2, e22 f1 = e22h1, g12h2 = g12 f2 and 2h1g2 = 2 f1g2, then 2b = 2d.
Analogously, 2 f = 2h.

The restriction T : Z[Q16] → Z4 ⊕ M2(Z) ⊕ H(Q[
√

2]) gives an embedding of

Z[Q16] in Z4 ⊕ M2(Z) ⊕ H(Q[
√

2]). To study the solutions of a linear system
PX = K over Z[Q16], where P = [pij] is an m × n matrix with entries in Z[Q16],

and X = [x1 · · · xn]
t and K = [k1 · · · km]

t are column vectors with coordinates in
Z[Q16], we will consider first the problem in Z4 ⊕ M2(Z)⊕ H(Q[

√
2]).

Theorem 2.2. If the system PX = K has a solution over Z4 ⊕ M2(Z) ⊕ H(Q[
√

2]),
where P = [T(pij)] and K = [T(k1) · · · T(km)]t, then the system PX = 16K has a
solution over Z[Q16].

Proof: Observe that the isomorphism T has the following property:
1 + x + · · ·+ x7 + y + xy + · · ·+ x7y

16
7−→ (1, 0, 0, 0, 0, 0)

1 + x + · · ·+ x7 − y − xy − · · · − x7y

16
7−→ (0, 1, 0, 0, 0, 0)

1 − x + · · ·+ x6 − x7 + y − xy + · · ·+ x6y − x7y

16
7−→ (0, 0, 1, 0, 0, 0)

1 − x + · · ·+ x6 − x7 − y + xy − · · · − x6y + x7y

16
7−→ (0, 0, 0, 1, 0, 0)

1 − x4

2
7−→ (0, 0, 0, 0, 0, 1)

x2 − x6

2
7−→ (0, 0, 0, 0, 0, i)

y − x4y

2
7−→ (0, 0, 0, 0, 0, j)

x2y − x6y

2
7−→ (0, 0, 0, 0, 0, k)

x − x3 − x5 + x7

2
7−→ (0, 0, 0, 0, 0,

√
2)

x + x3 − x5 − x7

2
7−→ (0, 0, 0, 0, 0,

√
2i)

xy + x3y − x5y − x7y

2
7−→ (0, 0, 0, 0, 0,

√
2k)

xy − x3y − x5y + x7y

2
7−→ (0, 0, 0, 0, 0,

√
2j)

1 − x2 + x4 − x6 − xy + x3y − x5y + x7y

8
7−→ (0, 0, 0, 0,

[
1 0
0 0

]
, 0)
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−x + x3 − x5 + x7 + y − x2y + x4y − x6y

8
7−→ (0, 0, 0, 0,

[
0 1
0 0

]
, 0)

x − x3 + x5 − x7 + y − x2y + x4y − x6y

8
7−→ (0, 0, 0, 0,

[
0 0
1 0

]
, 0)

1 − x2 + x4 − x6 + xy − x3y + x5y − x7y

8
7−→ (0, 0, 0, 0,

[
0 0
0 1

]
, 0)

Thus, every element of Z4 ⊕ M2(Z)⊕ H(Q([
√

2]) multiplied by

T(16) = (16, 16, 16, 16,

[
16 0
0 16

]
, 16)

is an element of T(Z[Q16]). By hypothesis PX = K has a solution over

Z4 ⊕ M2(Z) ⊕ H(Q([
√

2]), that is, there exists a column vector X0 with coor-
dinates in Z4 ⊕ M2(Z) ⊕ H(Q([

√
2]) such that PX0 = K. As T(16) belongs to

the center of Z4 ⊕ M2(Z) ⊕ H(Q([
√

2]), then P(T(16)X0) = T(16)K. Let X1 be
a column vector with coordinates in Z[Q16] such that T(X1) = T(16)X0, then
PX1 = 16K.

Let M(q) be the 16 × 16 matrix given by multiplication in Z[Q16], that is,

M(q) =




J L R S
L J S R
S R J L
R S L J


 ,

where

J =




q0 q7 q6 q5

q1 q0 q7 q6

q2 q1 q0 q7

q3 q2 q1 q0


 L =




q4 q3 q2 q1

q5 q4 q3 q2

q6 q5 q4 q3

q7 q6 q5 q4




and

R =




q12 q13 q14 q15

q13 q14 q15 q8

q14 q15 q8 q9

q15 q8 q9 q10


 S =




q8 q9 q10 q11

q9 q10 q11 q12

q10 q11 q12 q13

q11 q12 q13 q14




The linear system PX = K over Z[Q16] is equivalent to a linear system
M(P)X = V(K) over Z, where M(P) = [M(pij)] is a block matrix and

V(K) = [v(k1) · · · v(km)]t with v(q) =
[

q0 · · · q15

]t
is a column vector with

coordinates in Z.

Lemma 2.3. Let AX = K be a linear system over Z, where A is an m × n matrix with
m ≤ n. If the system AX = 2rK has a solution over Z, where r ≥ 1 is an integer and
the matrix A has at least one odd m × m-minor, then AX = K has solution over Z.

Proof: By hypothesis, there exists an m × m-submatrix B = [bij] of A with an odd
det B. Therefore, the system AX = (det B)K has a solution over Z. Suppose that
AX0 = 2rK, AX1 = (det B)K and s · 2r + p · (det B) = 1 with s, p ∈ Z. Then,
A(sX0 + pX1) = s · 2rK + p · (det B)K = (s · 2r + p · det B)K = K.
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3 Parity between det M(q) and ε(q)

Let [T] be the matrix of T, then

[T]M(q)[T]−1 =




ε(q) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 q1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 q2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 q3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 n1 0 n2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 n1 0 n2 0 0 0 0 0 0 0 0
0 0 0 0 n3 0 n4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 n3 0 n4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Q(q)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




where

Q(q) =




a 2b −c −2d −e −2 f −g −2h
b a −d −c − f −e −h −g
c 2d a 2b −g −2h e 2 f
d c b a −h −g f e
e 2 f g 2h a 2b −c −2d
f e h g b a −d −c
g 2h −e −2 f c 2d a 2b
h g − f −e d c b a




Theorem 3.1. If A = [Aij] is a square block matrix, where the Aij are mutually commu-
tative m × m matrices, and B is the m × m matrix obtained by taking the determinant of
A with the Aij as elements, then det A = det B.

Proof: See theorem 1 of [7].

Let q = a+ b
√

2+ ci + d
√

2i + ej + f
√

2j+ gk+ h
√

2k be an element of H(Q[
√

2])
and s(q) = a2 + c2 + e2 + g2 + 2b2 + 2d2 + 2 f 2 + 2h2.

Lemma 3.2.
√

det Q(q) = −8(ba + dc + f e + hg)2 + s(q)2

Proof: Consider the mutually commutative matrices,

A =

[
a 2b
b a

]
, B =

[
c 2d
d c

]
, C =

[
e 2 f
f e

]
, D =

[
g 2h
h g

]
.
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Therefore

Q(q) =




A −B −C −D
B A −D C
C D A −B
D −C B A




and applying the theorem 3.1, we have

det Q(q) = det(A2 + B2 + C2 + D2)2 = (det(A2 + B2 + C2 + D2))2.

If S = A2 + B2 + C2 + D2, then

S =

[
s(q) 4(ba + dc + f e + hg)

2(ba + dc + f e + hg) s(q)

]

Thus,
√

det Q(q) =
√

det S = −8(ba + dc + f e + hg)2 + s(q)2.

Theorem 3.3. The numbers det Q(q) and ε(q) have the same parity.

Proof: The term −8(ba + dc + f e + hg)2 is always even, then the parity det Q(q)
is equal to parity s(q) = a2 + c2 + e2 + g2 + 2b2 + 2d2 + 2 f 2 + 2h2. The numbers
ε(q) and a + c + e + g + 2b + 2 f have the same parity. We have the following
possibilities:

i) ε(q) odd, 2b and 2 f even.

In this case, a + c + e + g is odd, 2b = 2n1, 2 f = 2n2, 2d = 2n3 and 2h = 2n4

with n1, n2, n3, n4 ∈ Z. Therefore, 4b2 = 4k1, 4 f 2 = 4k2, 4d2 = 4k3, 4h2 = 4k4

with k1, k2, k3, k4 ∈ Z and 2b2 + 2d2 + 2 f 2 + 2h2 = 2(k1 + k2 + k3 + k4) is even.
Because a2 + c2 + e2 + g2 is odd, then s(q) is odd.

ii) ε(q) odd, 2b and 2 f odd.

In this case, a + c + e + g is odd, 2b = 2n1 + 1, 2 f = 2n2 + 1, 2d = 2n3 + 1
and 2h = 2n4 + 1 with n1, n2, n3, n4 ∈ Z. Thus, 4b2 = 4k1 + 1, 4 f 2 = 4k2 + 1,
4d2 = 4k3 + 1, 4h2 = 4k4 + 1 with k1, k2, k3, k4 ∈ Z and

2b2 + 2d2 + 2 f 2 + 2h2 = 2(k1 + k2 + k3 + k4) + 2

As a2 + c2 + e2 + g2 is odd, then s(q) is odd.

iii) ε(q) odd, 2b odd and 2 f even.

In this case, a + c + e + g is even, 2b = 2n1 + 1, 2 f = 2n2, 2d = 2n3 + 1 and
2h = 2n4 with n1, n2, n3, n4 ∈ Z. So, 4b2 = 4k1 + 1, 4 f 2 = 4k2, 4d2 = 4k3 + 1 and
4h2 = 4k4, com k1, k2, k3, k4 ∈ Z and

2b2 + 2d2 + 2 f 2 + 2h2 = 2(k1 + k2 + k3 + k4) + 1
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As a2 + c2 + e2 + g2 is even, then s(q) is odd.

If ε(q) is even, the argument is analogous.

In particular, it was demonstrated that the numbers ε(q) and s(q) have the same
parity.

Theorem 3.4. The numbers ε(q) and det N(q) have the same parity, where

N(q) =




n1 0 n2 0
0 n1 0 n2

n3 0 n4 0
0 n3 0 n4




Proof: Because the matrix N(q) is formed by commutative blocks, by theorem 3.1

det N(q) = (n1n4 − n3n2)
2.

Notice that n1 = n4 and n3 = n2. We have two cases to consider:

i) ε(q) odd.

In this case, we have n1 6= n3, then det N(q) is odd.

ii) ε(q) even.

In this case, we have n1 = n3, then det N(q) is even.

Theorem 3.5. The numbers det M(q) and ε(q) have the same parity.

Proof: The determinant of the matrix M(q) is equal to the determinant of the
matrix [T]M(q)[T]−1. Therefore,

det M(q) = ε(q) · q1 · q2 · q3 · det N(q) · det Q(q).

Now apply theorem 3.3 and theorem 3.4.

4 Linear systems over M2(Z)

Let Z be the ring of integer numbers and M2(Z) the ring of 2 × 2 matrices with
entries in Z. Consider the matrices

A =

[
a b
c d

]
, K =

[
x0 y0

z0 t0

]

in M2(Z). The system AX = K over M2(Z) is equivalent to the system
N(A)X = v(K)t over Z, where

N(A) =




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d


 and v(K) =

[
x0 y0 z0 t0

]
.
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Let Z2 = {0̄, 1̄} be the ring of integers modulo 2 and E4(Z2) be the set of all 4× 4
matrices over Z2 of the form:

E =




a 0̄ b 0̄
0̄ a 0̄ b
b 0̄ a 0̄
0̄ b 0̄ a




The set E4(Z2) is a commutative subring with identity of the matrix ring M4(Z2).
Since det(E) = a + b for any E ∈ E4(Z2), we have

det(E1 + E2) = det(E1) + det(E2)

for all E1, E2 ∈ E4(Z2).

Consider N2(Z) the set of matrices A = [aij] ∈ M2(Z) such that a11 = a22 and
a21 = a12. Observe that, if A ∈ N2(Z), then φ(N(A)) ∈ E4(Z2).

Lemma 4.1. Let A = [Aij] be an n × n matrix over E4(Z2), i.e, a block matrix. If A is
regarded as a matrix over Z2, then its determinant will be

det(A) = ∑
σ∈Sn

det(A1σ(1)) · · ·det(Anσ(n)),

where Sn is the symmetric group on n symbols.

Proof: As blocks Aij of A are commutative pairwise, we can apply theorem 3.1.
Thus,

det(A) = det

(

∑
σ∈Sn

sgn(σ)A1σ(1) · · · Anσ(n)

)
.

Since the determinant on E4(Z2) is additive, the result follows.

Lemma 4.2. Let B = [Bij] be an m × m matrix with entries in N2(Z). If

D(B) = [det(Bij)] and N(B) = [N(Bij)], then det D(B) = det N(B).

Proof: As φ(N(Bij)) ∈ E4(Z2), from lemma 4.1

det(φN(B)) = ∑
σ∈Sm

det(φ(N(B1σ(1)))) · · · det(φ(N(Bmσ(m))))

= ∑
σ∈Sm

φ(det(N(B1σ(1)))) · · · φ(det(N(Bmσ(m))))

Since det N(Bij) = (det Bij)
2, then det(N(Bij)) = det Bij and

φ(det N(B)) = ∑
σ∈Sm

φ(det(B1σ(1))) · · · φ(det(Bmσ(m)))

= φ

(

∑
σ∈Sm

det(B1σ(1)) · · ·det(Bmσ(m))

)

Hence, det N(B) = det D(B).



Linear systems over Z[Q16] and roots of maps ... 511

Theorem 4.3. Consider the linear system AX = K over M2(Z), where
A = [Aij] is an m × n matrix with m ≤ n and Aij ∈ N2(Z). If the system AX =

K ·
[
−1 −1
1 −1

]
has solution over M2(Z) and the matrix D(A) = [det(Aij)] has at

least one odd m × m-minor, then the system AX = K has a solution over M2(Z).

Proof: Certainly, the system AX = K over M2(Z) is equivalent to the
system N(A)X = V(K) over Z, where N(A) = [N(Aij)] is a block matrix and

V(K) = [v(k1) · · · v(km)]
t is a column vector. Multiplying the equation AX =

K ·
[
−1 −1
1 −1

]
by

[
−1 1
−1 −1

]
from the right, we have

AX ·
[
−1 1
−1 −1

]
= K ·

[
2 0
0 2

]
.

Hence, a solution of AX = K ·
[
−1 −1
1 −1

]
over M2(Z) yields a solution of the

system N(A)X = 2V(K) over Z. If we find a 2m × 2m odd minor of N(A), we
can apply lemma 2.3 and conclude that N(A)X = V(K) has solution over Z. By
hypothesis, there exists an m × m-submatrix B = [Bij] of A with an odd det D(B).
From lemma 4.2, det N(B) is odd.

5 Quaternionic determinants

In the case studied in [2] the 4× 4 matrix equivalent to Q(q) had entries in Z and
the techniques of section 4 were sufficient to obtain the expected results. Here
Q(q) has rational entries, being necessary the introduction of new concepts such
as quaternionic determinants. Let R be the field of real numbers, we can write
A ∈ Mn(H(R)) uniquely as A = A0 + A1i + A2j + A3k where A0, A1, A2 and A3

are real n × n matrices. Consider the homomorphism µ : Mn(H(R)) → M4n(R)
given by

µ(A) =




A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0




According to [5], the Study’s determinant is Sdet(A) =
√

detR µ(A).
For any a = a0 + a1i + a2 j + a3k ∈ H(R) define

ψ(a) =




a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0


 .

Given an matrix A = [aij] ∈ Mn(H(R)), the matrix ψ(A) = [ψ(aij)] ∈ M4n(R)
can be transformed by means of exchanging lines, columns and signs in the ma-

trix µ(A). Therefore, Sdet(A) =
√

detR ψ(A).
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The conjugate of a quaternion q = q0 + q1i + q2 j + q3k is defined to be
q = q0 − q1i − q2 j − q3k so that p + q = p + q, p · q = q · p for all p, q ∈ H(R).
The norm of q is defined by η(q) = q · q = q2

0 + q2
1 + q2

2 + q2
3 such that η(p · q) =

η(p) · η(q) and the trace of q is t(q) = q + q.

Given a matrix A ∈ Mn(H(R)) define A∗ = A
t
, if A = A∗, we say that A is Her-

mitian. For a Hermitian matrix, the Moore’s determinant is defined by specifying
a certain ordering of the factors in the n! terms in the sum. Let σ be a permutation
of n. Write it as a product of disjoint cycles. Permute each cycle cyclically until
the smallest number in the cycle is in front. Then sort the cycles in decreasing
order according to the first number of each cycle. In other words, write

σ = (n11 · · · n1l1)(n21 · · · n2l2) · · · (nr1 · · · nrlr),

where for each i, we have ni1 < nij for all j > 1, and n11 > n21 > · · · > nr1. Then
we define

Mdet(A) = ∑
σ∈Sn

|σ|an11n12
· · · an1l1

n11
an21n22 · · · anr lrnr1

Observe that, for any matrix A ∈ Mn(H(R)), the matrix AA∗ is Hermitian.

Theorem 5.1. For any quaternionic matrix A, we have

SdetA = Mdet(AA∗).

Proof: See theorem 10 of [5].

If A is Hermitian, then Mdet(A) is a real number. In particular, if A is Hermitian

and A ∈ Mn(H(Q[
√

2])), then Mdet(A) ∈ H(Q[
√

2]) and Mdet(A) is a real
number. Therefore, Mdet(A) = a + b

√
2, with a, b ∈ Z, because b ∈ Q with 2b

even. Notice that, if q ∈ H(Q[
√

2]), then

η(q) = (a + b
√

2)2 + (c + d
√

2)2 + (e + f
√

2)2 + (g + h
√

2)2

= (a2 + c2 + e2 + g2 + 2b2 + 2d2 + 2 f 2 + 2h2) + 2
√

2(ab + cd + e f + gh)

= s(q) + 2(ab + cd + e f + gh)
√

2

Therefore, η(q) = s(q) + r
√

2 with s(q), r ∈ Z.

Lemma 5.2. For any q1, q2 ∈ H(Q[
√

2]) we have s(q1 + q2) = s(q1) + s(q2) and

s(q1 · q2) = s(q1) · s(q2).

Proof: Notice that,

η(q1 + q2) = (q1 + q2) · (q1 + q2) = q1q1 + q1q2 + q2q1 + q2q2

= η(q1) + η(q2) + q1q2 + q1q2 = η(q1) + η(q2) + t(q1q2)

= s(q1) + r1

√
2 + s(q2) + r2

√
2 + (2m + n

√
2)

= s(q1) + s(q2) + 2m + (r1 + r2 + n)
√

2

Hence, s(q1 + q2) = s(q1) + s(q2) + 2m, that is, s(q1 + q2) = s(q1) + s(q2).
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Moreover,

η(q1 · q2) = η(q1) · η(q2)

= (s(q1) + r1

√
2) · (s(q2) + r2

√
2)

= s(q1) · s(q2) + 2r1r2 + (s(q1) + s(q2))
√

2

Thus, s(q1 · q2) = s(q1) · s(q2) + 2r1r2, that is, s(q1 · q2) = s(q1) · s(q2).

Lemma 5.3. If A =

[
q1 q2

q3 q4

]
∈ M2(H(Q[

√
2])) and s(A) =

[
s(q1) s(q2)
s(q3) s(q4)

]
, then

Mdet(AA∗) = S + R
√

2 with R, S ∈ Z and S = det s(A).

Proof: Consider the matrix

A · A∗ =
[

q1 q2

q3 q4

]
·
[

q1 q3
q2 q4

]
=

[
q1q1 + q2q2 q1q3 + q2q4
q3q1 + q4q2 q3q3 + q4q4

]
.

The Moore’s determinant is

Mdet(AA∗) = (q1q1 + q2q2)(q3q3 + q4q4)− (q3q1 + q4q2)(q1q3 + q2q4)

= q1q1q3q3 + q1q1q4q4 + q2q2q3q3 + q2q2q4q4

− q3q1q1q3 − q3q1q2q4 − q4q2q1q3 − q4q2q2q4

Because q1q1q3q3 = q3q1q1q3, q2q2q4q4 = q4q2q2q4 , q3q1q2q4 = q4q̄2q1q̄3, then

Mdet(AA∗) = q1q̄1q4q̄4 + q2q̄2q3q̄3 − t(q3 q̄1q2q̄4)

= (s(q1) + r1

√
2) · (s(q4) + r2

√
2) + (s(q3) + r3

√
2) · (s(q2) + r4

√
2)

+ (2k1 + r5

√
2)

= s(q1) · s(q4) + s(q3) · s(q2) + 2k2 + R
√

2

If S = s(q1) · s(q4) + s(q3) · s(q2) + 2k2, then Mdet(AA∗) = S + R
√

2 with

det s(A) = S.

The technique used to prove the lemma 5.3 requires the analysis of an excessively
large number of combinations to n greater than two, so we will use Ivan Kyrchei’s
ideas in [8] to extend it. In [8], for an A ∈ Mn(H(R)) is defined the ith row deter-
minant, denoted by rdetiA and jth column determinant, denoted by cdetiA. For
the purpose of this work it is only necessary to define the ith row determinant. In
[8], definition 2.4, the ith row determinant of A ∈ Mn(H(R)) is defined as the al-
ternating sum of n! products of entries of A, during which the index permutation
of every product is written by the direct product of disjoint cycles. That is

rdetiA = ∑
σ∈Sn

(−1)n−rai ik1
aik1

ik1+1
· · · aik1+l1

i · · · aikr ikr+1
· · · aikr+lr ikr
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The cycle notation of the permutation σ is written as follows

σ = (i ik1
ik1+1 · · · ik1+l1)(ik2

ik2+1 · · · ik2+l2) · · · (ikr
ikr+1 · · · ikr+lr)

Here the index i opens the first cycle from the left and the other cycles satisfy the
following conditions

ik2
< ik3

< · · · < ikr
and ikt

< ikt+s
, for s = 1, . . . , lt and t = 2, . . . , r

Theorem 5.4. If A ∈ Mn(H(R)) is a Hermitian matrix, then

rdet1A = · · · = rdetnA = cdet1A = · · · = cdetnA ∈ R

Proof: See theorem 3.1 of [8].

Since all column and row determinants of a Hermitian matrix over H(R) are
equal, in [8] remark 3.1, put

det(A) = rdeti A = cdetiA for i = 1, . . . , n.

Given a matrix A = [aij] ∈ Mn(H(Q[
√

2])), we define A2 = [a2
ij]. The next result

was inspired by theorem 3.1 of [8].

Theorem 5.5. For any matrix A = [aij] ∈ Mn(H(Q[
√

2])), if

det(AA∗) = S1 + R1

√
2 and det(A2A∗

2) = S2 + R2

√
2,

with S1, R1, S2, R2 ∈ Z, then S1 = S2.

Proof: Initially suppose that the matrix A = [aij] is Hermitian, then aii ∈ R and
aij = aij. We divide the monomials of some rdeti A into two subsets. If the indices
of the coefficients of a monomial form a permutation as product of disjoint cycles
of lengths 1 and 2 then we include this monomial in the first subset, the other
monomials belong to the second subset. If the indices of the coefficients form a
disjoint cycle of length 1, then these coefficients are entries of the principal diago-

nal of the Hermitian matrix A, hence they are real number of the form s1 + r1

√
2

with s1, r1 ∈ Z. If the indices of the coefficients form a disjoint cycle of length 2,
then these elements are conjugated, aikik+1

= aik+1ik
, and their product takes on a

real value number as well,

aikik+1
· aik+1ik

= aik+1ik
aik+1ik

= η(aik+1ik
) = s(aik+1ik

) + r
√

2

Let d be a monomial from the second subset and assume that the indices of its
coefficients form a permutation as a product of r disjoint cycles, by the proof of
the theorem 3.1 of [8], there exist another 2p − 1 monomials, where p = r − ρ and
ρ is the number of disjoint cycles of length 1 and 2, such that the sum of these
2p − 1 monomials and d is given by

(−1)n−rαt(hv1
) · · · t(hvp )



Linear systems over Z[Q16] and roots of maps ... 515

Here α is the product of the coefficients whose indices form disjoint cycles of

lengths 1 and 2, vk ∈ {1, . . . , r} and k = 1, . . . p. As t(q) = 2m + n
√

2 with

m, n ∈ Z, if det A = s2 + r2

√
2, then the parity of s1 is determined by the mono-

mials of the first subset.
Now we consider the Hermitian matrix C = AA∗ and the Hermitian matrix
D = A2A∗

2 . Note that,

cij =
n

∑
k=1

aika∗kj and dij =
n

∑
k=1

a2
ik(a

∗
kj)

2.

From lemma 5.2, s(cij) = s(dij). Let us look at the elements of the principal
diagonal,

cii =
n

∑
k=1

aika∗ki =
n

∑
k=1

aikaik =
n

∑
k=1

η(aik) =
n

∑
k=1

s(aik) + ri

√
2

and

dii =
n

∑
k=1

a2
ik(a

∗
ki)

2 =
n

∑
k=1

a2
ika2

ik =
n

∑
k=1

η(a2
ik) =

n

∑
k=1

s(a2
ik) + r′i

√
2,

since s(cii) = s(dii), if c11 · · · cnn = s3 + r3

√
2 and d11 · · · dnn = s4 + r4

√
2, then

s3 = s4. Now, let’s consider the monomials whose indices of coefficients form a
disjoint cycle of length 2, in this case these elements are conjugated, cikik+1

= cik+1ik

and dikik+1
= dik+1ik

, then

cikik+1
· cik+1ik

= cik+1ik
· cik+1ik

= η(cik+1ik
) = s(cik+1ik

) + r5

√
2

and

dikik+1
· dik+1ik

= dik+1ik
· dik+1ik

= η(dik+1ik
) = s(dik+1ik

) + r6

√
2,

with s(cik+1ik
) = s(dik+1ik

).

Therefore, if det(AA∗) = S1 + R1

√
2 and det(A2 A∗

2) = S2 + R2

√
2, then

S1 = S2.

In [8], definition 7.2, for any A ∈ Mn(H(R)), the determinant of its correspond-
ing Hermitian matrix is called its double determinant, that is,

ddetA = det(A∗A) = det(AA∗).

Corollary 5.6. For any matrix A = [aij] ∈ Mn(H(Q[
√

2])), if

Mdet(AA∗) = S1 + R1

√
2 and Mdet(A2 A∗

2) = S2 + R2

√
2,

with S1, R1, S2, R2 ∈ Z, then S1 = S2.

Proof: By remark 7.2 of [8], we have ddetA = Mdet(A∗A).
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6 Linear systems over H(Q[
√

2])

Lemma 6.1. If q ∈ H(Q[
√

2]), then q2 ∈ H(Z[
√

2]).

Proof: Let q = (a + b
√

2) + (c + d
√

2)i + (e + f
√

2)j + (g + h
√

2)k be an element

of q ∈ H(Q[
√

2]), we have

q2 = (A + B
√

2) + (C + D
√

2)i + (E + F
√

2)j + (G + H
√

2)k,

where

i) (a2 − c2 − e2 − g2 + 2(b2 − d2 − f 2 − h2)) + 2(ab − cd − e f − gh)
√

2 =

A + B
√

2, with A ∈ Z and B ∈ Z

ii) (2ac + 2(2bd)) + 2(−eh)
√

2 = C + D
√

2, with C ∈ Z and D ∈ Z

iii) (2ae + 2(2b f )) + 2(a f + be)
√

2 = E + F
√

2, with E ∈ Z and F ∈ Z

iv) 2ag + 2(2(bh + d f ))) + 2(ah + bg + c f + ed)
√

2 = G + H
√

2, with G ∈ Z

and H ∈ Z.

Consider the ring homomorphism ϕ : Q[
√

2] → M2(Q) given by

ϕ(a + b
√

2) =

[
a 2b
b a

]
.

Lemma 6.2. If A = [aij] is an element of Mn(H(Q[
√

2])), then

det Q(A) = (det(ϕ(Mdet(AA∗))))2 ,

where Q(A) = [Q(aij)].

Proof. The matrix ψ(A) is an element of M4n(Q[
√

2]). Notice that
ϕ(ψ(A)) = Q(A) ∈ M8n(Q), then det Q(A) = det(ϕ(detR ψ(A))). Because

detR ψ(A) = Sdet2(A) and Mdet(AA∗) = Sdet(A), we have

det Q(A) = (det(ϕ(Mdet(AA∗))))2 .

Lemma 6.3. If q1, q2 ∈ H(Z[
√

2]), then the matrices φ(Q(q1)) and φ(Q(q2)) are mu-
tually commutative and det(φ(Q(q1)) + φ(Q(q2))) = det φ(Q(q1)) + det φ(Q(q2)).

Proof: The matrices

Q(qi) =




Ai −Bi −Ci −Di

Bi Ai −Di Ci

Ci Di Ai −Bi

Di −Ci Bi Ai


 ,

where Ai, Bi, Ci, Di ∈ M2(Z) and are mutually commutative for i = 1, 2. Hence

φ(Q(qi)) =




φ(Ai) φ(Bi) φ(Ci) φ(Di)
φ(Bi) φ(Ai) φ(Di) φ(Ci)
φ(Ci) φ(Di) φ(Ai) φ(Bi)
φ(Di) φ(Ci) φ(Bi) φ(Ai)


 ,
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and φ(Q(q1)) · φ(Q(q2)) = φ(Q(q2)) · φ(Q(q1)). Moreover

det(φ(Q(q1)) + φ(Q(q2))) = det(φ(Q(q1) + Q(q2))) = φ(det(Q(q1) + Q(q2))).

Now, Q(q1) + Q(q2) = Q(q1 + q2) and from lemma 6.2,

det Q(q1 + q2) = (det(ϕ(η(q1 + q2))))
2 .

From lemma 5.2, η(q1 + q2) = s(q1) + s(q2) + 2m + (r1 + r2 + n)
√

2. Hence,

(det(ϕ(η(q1 + q2))))
2 =

(
(s(q1) + s(q2) + 2m)2 − 2(r1 + r2 + n)

)2
.

Thus,

Proof.

φ(det Q(q1 + q2)) = φ(s(q1)) + φ(s(q2)) = φ(det Q(q1)) + φ(det Q(q2)).

Theorem 6.4. If A = [aij] is an element of Mn(H(Q[
√

2])), then det s(A) and det Q(A)
have the same parity.

Proof. From lemma 6.1, the matrix Q(A2) = [Q(a2
ij)] has integer entries. Using

the techniques of section 4 and the lemma 6.3, we conclude that det Q(A2) and

det s(A2) have the same parity. As s(q) = s(q2), then det Q(A2) = det s(A). From
lemma 6.2

det Q(A2) = (det(ϕ(Mdet(A2A∗
2))))

2 = (S2
1 − 2R2

1)
2

and
det Q(A) = (det(ϕ(Mdet(AA∗))))2 = (S2

2 − 2R2
2)

2

From theorem 5.4, S1 = S2. Therefore

det s(A) = det Q(A2) = S1 = S2 = det Q(A).

Corollary 6.5. If A = [aij] is an element of Mn(H(Q[
√

2])), then

Mdet(AA∗) = S + R
√

2,

with S = det s(A).

Lemma 6.6. If A ∈ Mn(H(Q[
√

2])) and K is column vector with entries in H(Q[
√

2]),

then the system AX = Mdet(AA∗) · K has a solution in H(Q[
√

2]).

Proof: If Mdet(AA∗) = 0, then X = 0. On the other hand, if Mdet(AA∗) 6= 0, by

theorem 8.1 and remark 8.1 of [8], there exists Adj[[A]] ∈ Mn(H(Q[
√

2])) such
that A · Adj[[A]] = Mdet(AA∗) · In, where In is the identity matrix. Hence, A ·
(Adj[[A]]K) = Mdet(AA∗) · K. As H(Q[

√
2]) is a subring, then X0 = Adj[[A]]K

is a column vector with coordinates in H(Q[
√

2]) and AX0 = Mdet(AA∗) · K.
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Theorem 6.7. Consider the system AX = K over H(Q[
√

2]), where A = [aij] is a

m × n matrix with m ≤ n. If the system AX = K

(
1 −

√
2

2
j −

√
2

2
k

)
has a solution

over H(Q[
√

2]) and the matrix s(A) = [s(aij)] has at least one odd m × m-minor, then

the system AX = K has a solution over H(Q[
√

2]).

Proof: Multiplying the equation AX = K

(
1 −

√
2

2
j −

√
2

2
k

)
by 1 +

√
2

2
j +

√
2

2
k

from the right, we have AX

(
1 +

√
2

2
j +

√
2

2
k

)
= 2K. Therefore, the

equation AX = 2K has a solution over H(Q[
√

2]). By hypothesis, there
exists an m×m-submatrix B = [bij] of A with an odd det s(B). From corollary 6.5,

Mdet(BB∗) = S + R
√

2 with S odd. From lemma 6.6, the system

AX = (S + R
√

2)K has solution over H(Q[
√

2]). Multiplying the equation

AX = (S + R
√

2)K by R − S
√

2, we have AX(R − S
√

2) = (R2 − 2S2)K. Thus

the equation AX = (R2 − 2S2)K has solution over H(Q[
√

2]). As R2 − 2S2 is odd,

then AX = K has solution over H(Q[
√

2]).

7 Main Result

Consider matrices P = [qij] ∈ Mn(Z[Q16]), M(P) = [M(qij)], N(P) = [N(qij)],
ε(P) = [ε(qij)] and ǫ(P) = [ǫ(qij)], where

ǫ(qij) =




ε(qij) 0 0

0 q1
ij 0 0

0 0 q2
ij 0

0 0 0 q3
ij


 .

Let T be a diagonal block 16n × 16n-matrix, whose blocks of the diagonal is the
matrix [T], then T −1 is the diagonal block matrix, whose blocks of the diagonal
are [T]−1.Consider the matrix

T M(P)T −1 = [[T]M(qij)[T]
−1] =




ǫ(qij) 0 0

0 N(qij) 0
0 0 Q(qij)





Exchanging rows and columns of T M(P)T −1, we have

M(P) =




ǫ(P) 0 0
0 N(P) 0
0 0 Q(P)




Theorem 7.1. The numbers det M(P) and det ε(P) have the same parity.
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Proof: The number det M(P) is equal to the number detM(P). Now,

detM(P) = det ǫ(P) · det N(P) · det Q(P)

i) Using the same techniques of section 4, we have det ǫ(P) = det ε(P).

ii) From lemma 4.2 and theorem 3.4, it follows det N(P) = det ε(P).

iii) From theorem 6.4 and theorem 3.3, it follows det Q(P) = det ε(P).

Therefore, det M(P) = det ε(P).

Theorem 7.2. Let PX = K be a linear system over Z[Q16], where P = [pij] is a m × n
matrix with m ≤ n. If PX = K(x − 1) and PX = K(−xy + 1) has a solution over
Z[Q16] and all m × m minors of ε(P) = [ε(pij)] are relatively prime, then the system
PX = K has a solution over Z[Q16].

Proof: First, we look at the system PX = K over Z4 ⊕ M2(Z) ⊕ H(Q[
√

2]). Ob-
serve that this system is equivalent to the systems, ε(P) = ε(K), P1X = K1,
P2X = K2, P3X = K3, P4 = K4 and P5X = K5, where P1 = [p1

ij], P2 = [p2
ij],

P3 = [p3
ij], P4 = [p4

ij], P5 = [p5
ij] and Ki = [ki

1 · · · ki
m]

t for i = 1, . . . , 5. The first four

systems must be solved over Z, the fifth system must be solved over M2(Z), and

the last one over H(Q[
√

2]). Since the m × m minors of ε(P) are relatively prime,
the system ε(P)X = ε(K) has a solution over Z. Notice that

T(x − 1) = (0, 0,−2,−2,

[
−1 −1
1 −1

]
,

√
2

2
− 1 +

√
2

2
i)

and

T(−xy + 1) = (0, 2, 2, 0,

[
2 0
0 0

]
,−

√
2

2
k −

√
2

2
j + 1).

By hypothesis PX = (x − 1)K and PX = (−xy + 1)K has a solution over Z[Q16],
then the systems P1 = 2K1, P2X = 2K2, P3X = −2K3 have solutions over Z,

P4X = K4 ·
[
−1 −1
1 −1

]

has a solution over M2(Z) and

P5X = K5 ·
(
−
√

2

2
k −

√
2

2
j + 1

)

has a solution over H(Q[
√

2]). Since the integers ε(pij), p1
ij, p2

ij, p3
ij, det(p4

ij) and

s(qij) has the same parity, the matrices P1, P2, P3, D = [det(p4
ij)] and s(P5) have

at least one odd m × m-minor. From lemma 2.3, the first three systems have a
solution over Z. From theorem 4.3, the system P4X = K4 has a solution over

M2(Z). From theorem 6.7, the last system has a solution over H(Q[
√

2]). Hence,
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the system PX = K has a solution over Z4 ⊕ M2(Z) ⊕ H(Q[
√

2]). By theorem
2.2, the system PX = 16K has a solution over Z[Q16]. Now, by theorem 7.1, there
exists a 16m × 16m submatrix B of M(P) with an odd det B, from lemma 2.3 the
system PX = K has a solution over Z[Q16].

8 Strongly surjective map

The orbit space of the 3-sphere S3 with respect to the action of the quaternion
group Q16 determined by the inclusion Q16 ⊆ S3 is a compact orientable mani-

fold of dimension 3, denoted by MQ16
. Let M̃Q16

be its universal covering. The
CW-complex structure of MQ16

has one 3-cell and two 2-cells, and the boundary
operator

∂̃MQ16
: H3(M̃Q16

, M̃2
Q16

) = Z[Q16] → H2(M̃2
Q16

, M̃1
Q16

) = Z[Q16]⊕ Z[Q16]

is given by ∂̃MQ16
(a) = a.(x − 1,−xy + 1)( see [6] pg. 253 and [10]).

Let W be a finite connected CW-complex of dimension 3, with m cells of dimen-

sion 3, n cells of dimension 2, and W̃ its universal covering. Suppose that the
boundary operator

∂̃3 : H3(W̃, W̃2) = ⊕m
i=1Z[Π] → H2(W̃

2, W̃1) = ⊕n
j=1Z[Π]

is given by the matrix

A =




ã11 . . . ã1m
...

...
...

ãn1 . . . ãnm




with columns defined by ∂̃3(ẽ
3
i ) = ã1i ẽ

2
1 + · · ·+ ãni ẽ

2
n for i = 1, . . . , m. We have

H3(W; Z) =
⊕m

i=1Z

Im(ε(A)t)
.

Here, Π = π1(W) and ε : Z[Π] → Z is given by ∑
p
i=1 rigi 7→ ∑

p
i=1 ri and ε(A)t is

the transpose of ε(A) = [ε(ãij)]. Given a map f : W → M, consider the matrix

P =




f#(ã11) . . . f#(ãn1)
...

...
...

f#(ã1m) . . . f#(ãnm)


 ,

where the ring homomorphism f# : Z[Π] → Z[π] is defined by

p

∑
i=1

rigi 7→
p

∑
i=1

ri f#(gi)

is the extension of the induced homomorphism f# : Π → π of fundamental
groups.
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Theorem 8.1. If W is a three dimensional CW-complex with H3(W; Z) = 0, then there
is no strongly surjective map f : W → MQ16

.

Proof: From corollary 5.5 of [1], we have to show that the system PX = K has a
solution over Z[Q16], where P is the matrix described above. From theorem 5.6
of [1], the systems PX = K(x − 1) and PX = K(−xy + 1) have solutions over
Z[Q16]. The hypothesis H3(W; Z) = 0 implies that m ≤ n and all m × m mi-
nors {ε1, . . . , εr} of ε(P) are relatively prime (see chapter 3, proposition 15 of [9]).
From theorem 7.2, with these hypotheses the system PX = K has a solution over
Z[Q16].

Finally, let MQ32
be the orbit space of 3-sphere S3 with respect to the action of

the quaternion group Q32 determined by the inclusion Q32 ⊆ S3. In the same
way, one can consider the problem of the existence of a strongly surjective map
f : W → MQ32

. This problem is equivalent to solving the linear system PX = K
over Z[Q32] satisfying the following assumptions: PX = K(x − 1) and PX =
K(−xy + 1) have solutions over Z[Q32] and all m × m minors of ε(P) are rela-
tively prime. The techniques used in this work rely heavily on the decomposition

Q[Q16] ∼= Q4 ⊕ M2(Q)⊕ H(Q[
√

2]). According to [4],

Q[Q32] ∼= Q4 ⊕ M2(Q)⊕ M2(Q[
√

2])⊕


 2 −

√
2,−1

Q[

√
2 +

√
2 +

√
2]


 .

Here,


 2 −

√
2,−1

Q[

√
2 +

√
2 +

√
2]


 is the quaternion algebra over the field

Q[

√
2 +

√
2 +

√
2], generated by i, j, where i2 = 2 −

√
2 , j2 = −1 and ij = −ji.

Therefore, the case Q32, is not a simple generalization of the case Q16.
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Caixa Postal 549
79070-900/Campo Grande, MS, Brasil
E-mail: claudemir.aniz@ufms.br


