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Abstract

We classify generalized Wallach spaces which are g.o. spaces. We also
investigate homogeneous geodesics in generalized Wallach spaces for any
given invariant Riemannian metric and we give some examples.

Introduction

Let (M, g) be a homogeneous Riemannian manifold, i.e. a connected Rieman-
nian manifold on which the largest connected group G of isometries acts transi-
tively. Then M can be expressed as a homogeneous space (G/K, g) where K is the
isotropy group at a fixed point o of M, and g is a G-invariant metric. In this case
the Lie algebra g of G has an Ad(K)-invariant decomposition g = k⊕ m, where
m ⊂ g is a linear subspace of g and k is the Lie algebra of K. In general such
decomposition is not unique. The Ad(K)-invariant subspace m can be naturally
identified with the tangent space ToM via the projection π : G → G/K.

A geodesic γ(t) through the origin o of M = G/K is called homogeneous if it is
an orbit of a one-parameter subgroup of G, that is

γ(t) = exp(tX)(o), t ∈ R, (1)

where X is a non zero vector of g.
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A homogeneous Riemannian manifold is called a g.o. space, if all geodesics are
homogeneous with respect to the largest connected group of isometries. All natu-
rally reductive spaces are g.o. spaces ([15]), but the converse is not true in general.
In [13] A. Kaplan proved the existence of g.o. spaces that are in no way naturally
reductive. These are generalized Heisenberg groups with two-dimensional cen-
ter. In [16] O. Kowalski, F. Prüfer and L. Vanhecke made an explicit classification
of all naturally reductive spaces up to dimension five. In [18] O. Kowalski and
L. Vanhecke gave a classification of all g.o. spaces, which are in no way naturally
reductive, up to dimension six. In [11] C. Gordon described g.o. spaces which are
nilmanifolds and in [29] H. Tamaru classified homogeneous g.o. spaces which
are fibered over irreducible symmetric spaces. In [6] and [7] O. Kowalski and
Z. Dušek investigated homogeneous geodesics in Heisenberh groups and some
H-type groups. Examples of g.o. spaces in dimension seven were obtained by
Dušek, O. Kowalski and S. Nikčević in ([9]). Also, in [1] the first author and
D.V. Alekseevsky classified generalized flag manifolds which are g.o. spaces.

Concerning the existence of homogeneous geodesics in homogeneous Rie-
mannian manifold, we recall the following. V.V. Kajzer proved that a Lie group
endowed with a left-invariant metric admits at least one homogeneous geodesic
([12]). O. Kowalski and J. Szenthe extended this result to all homogeneous Rie-
mannian manifolds ([17]). An extension of the result of [17] to reductive homo-
geneous pseudo-Riemannian manifolds has been also obtained ([7], [24]). Also,
O. Kowalski, S. Nikčević and Z. Vlášek studied homogeneous geodesics in homo-
geneous Riemannian manifolds ([14]), and G. Calvaruso and R. Marinosci stud-
ied homogeneous geodesics in three-dimension Lie groups ([21], [5]). Homoge-
neous geodesics were studied by J. Szenthe ([25], [26], [27], [28]). In addition,
D. Latifi studied homogeneous geodesics in homogeneous Finsler spaces ([19]),
and the first author investigated homogeneous geodesics in the flag manifold
SO(2l + 1)/U(l − m)× SO(2m + 1) ([3]).

Homogeneous geodesics in the affine setting were studied in [10]. Finally,
D.V. Alekseevsky and Yu. G. Nikonorov in [2] studied the structure of compact
g.o. spaces and gave some sufficient conditions for existence and non existence of
an invariant metric with homogeneous geodesics on a homogeneous space of a
compact Lie group G. They also gave a classification of compact simply connected
g.o. spaces of positive Euler characteristic.

Because of these results, it is natural to study g.o. spaces as well as to describe
homogeneous geodesics for other large classes of homogeneous spaces. In this
paper, we study this problem for generalized Wallach spaces. These spaces were
well known before as three-locally-symmetric spaces ([20]), however they were
recently classified by Z. Chen, Y. Kang and K. Liang ([4]) and Yu.G. Nikonorov
([23]). We search for homogeneous geodesics in these spaces.

One of the main results in the present paper is Theorem 2, which classifies gen-
eralized Wallach spaces which are g.o. spaces. For those which are not, we show
how to obtain homogeneous geodesics. We make explicit computations for the
three dimensional Lie group SU(2) (thus recovering a result of R.A. Marinosci),
and for the Stiefel manifold SO(4)/SO(2).

The paper is organized as follows: In Section 1 we recall the basic definitions
and properties of homogeneous geodesics in a Riemannian manifold. In Section 2
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we recall the definition of generalized Wallach spaces as well as their classifica-
tion from [23]. In Section 3 we classify g.o. spaces among generalized Wallach
spaces. For those which are not g.o. spaces, in Section 4 we discuss how to find
all homogeneous geodesics for a given G-invariant Riemannian metric.
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1 Homogeneous geodesics in homogeneous Riemannian man-

ifolds

Let (M = G/K, g) be a homogeneous Riemannian manifold, where G is compact
and semisimple. Let g and k be the Lie algebras of G and K respectively and let

g = k⊕m (2)

be a reductive decomposition. The canonical projection π : G → G/K induces an
isomorphism between the subspace m and the tangent space To M at the identity
o = eK. The G-invariant metric g induces a scalar product 〈·, ·〉 on m which is
Ad(K)-invariant. Let B(·, ·) = −Killing form on g. Then any Ad(K)-invariant
scalar product 〈·, ·〉 on m can be expressed as 〈x, y〉 = B(Λx, y) (x, y ∈ m),
where Λ is an Ad(K)-equivariant positive definite symmetric operator on m.
Conversely, any such operator Λ determines an Ad(K)-invariant scalar product
〈x, y〉 = B(Λx, y) on m, which in turn determines a G-invariant Riemannian met-
ric g on m. We say that Λ is the operator associated to the metric g, or simply the
associated operator. Also, a Riemannian metric generated by inner product B(·, ·)
is called standard metric.

Definition 1. A nonzero vector X ∈ g is called a geodesic vector if the curve (1) is a
geodesic.

Lemma 1 ([18]). A nonzero vector X ∈ g is a geodesic vector if and only if

〈[X, Y]m, Xm〉 = 0, (3)

for all Y ∈ m. Here the subscript m denotes the projection into m.

A useful description of homogeneous geodesics (1) is provided by the follow-
ing :
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Proposition 1 ([1]). Let (M = G/K, g) be a homogeneous Riemannian manifold and
Λ be the associated operator. Let a ∈ k and x ∈ m. Then the following are equivalent:

(1) The orbit γ(t) = expt(a + x) · o of the one-parameter subgroup expt(a + x)
through the point o = eK is a geodesic of M.

(2) [a + x, Λx] ∈ k.
(3) 〈[a, x], y〉 = 〈x, [x, y]m〉 for all y ∈ m.
(4) 〈[a + x, y]m, x〉 = 0 for all y ∈ m.

An important corollary of Proposition 1 is the following:

Corollary 1 ([1]). Let (M = G/K, g) be a homogeneous Riemannian manifold. Then
(M = G/K, g) is a g.o. space if and only if for every x ∈ m there exists an a(x) ∈ k

such that
[a(x) + x, Λx] ∈ k.

The following Proposition is very important for us to investigate g.o. spaces
in generalized Wallach spaces.

Proposition 2. ([2, Proposition 5]) Let (M = G/K, g) be a compact g.o. space with
associated operator Λ. Let X, Y ∈ m be eigenvectors Λ with different eigenvalues λ, µ.
Then

[X, Y] =
λ

λ − µ
[h, X] +

µ

λ − µ
[h, Y] (4)

for some h ∈ k.

If we want to decide whether a homogeneous Riemannian manifold
(M = G/K, g) is a g.o. space or not, we need to find a decomposition of the
form (2) and look for geodesic vectors of the form

X =
s

∑
i=1

aiei +
l

∑
j=1

xj Aj. (5)

Here {ei : i = 1, 2, . . . , s} is a basis of m and {Aj : j = 1, 2, . . . , l} is a basis of k. By
substituting X into equation (3) we obtain a system of linear algebraic equations
for the parameters xj. If for any X ∈ m \ {0} this system for the variables xj

has real solutions, then it follows that the homogeneous Riemannian manifold
(M = G/K, g) is a g.o. space.

If, on the other hand, we need to find all homogeneous geodesics in the
homogeneous Riemannian manifold (M = G/K, g), then we have to calculate
all geodesic vectors in the Lie algebra g. Condition (3) reduces to a system of s
quadratic equations for the variables xj and ai. Then the geodesic vectors cor-
respond to those solutions of this system for the variables x1, . . . , xl, a1, . . . , as,
which are not all equal to zero.

2 Generalized Wallach spaces

Let G/K be a compact homogeneous space with connected compact semisimple
Lie group G and a compact subgroup K. Denoted by g and k Lie algebras of
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G and K respectively. We assume that G/K is almost effective, i.e., there are
no non-trivial ideals of the Lie algebra g in k ⊂ g. Let 〈·, ·〉 = B(Λ·, ·) be an
Ad(K)-invariant scalar product on m, where Λ is the associated operator.

We assume that the homogeneous space G/K has the following property. The
module m decomposes into a direct sum of three Ad(K)-invariant irreducible
modules pairwise orthogonal with respect to B, i.e.

m = m1 ⊕m2 ⊕m3, (6)

such that

[mi,mi] ⊂ k i = 1, 2, 3. (7)

A homogeneous space with this property is called generalized Wallach space.

Some examples of these spaces are the manifolds of complete flags in the com-
plex, quaternionic, and Cayley projective planes, that is SU(3)/Tmax ,
Sp(3)/Sp(1) × Sp(1) × Sp(1), F4/Spin(8) (known as Wallach spaces), and the
generalized flag manifolds SU(n1 + n2 + n3)/S(U(n1) × U(n2) × U(n3)),
SO(2n)/U(1) × U(n − 1) and E6/U(1)× U(1)× SO(8).

Every generalized Wallach space admits a three parameter family of invariant
Riemannian metrics determined by Ad(K)-invariant inner products

〈·, ·〉 = λ1B(·, ·) |m1
+λ2B(·, ·) |m2 +λ3B(·, ·) |m3 , (8)

where λ1, λ2, λ3 are positive real numbers.

Let di be the dimension of mi. Let {e
j
i} be an orthogonal basis of mj with

respect to B, where j = 1, 2, 3 and 1 ≤ i ≤ dj. Consider the expression [ijk]
defined by the equality

[ijk] = ∑
α,β,γ

B([ei
α, e

j
β], ek

γ)
2, (9)

where α, β, γ range from 1 to di, dj and dk respectively (cf. [30]). The symbols
[ijk] are symmetric in all three indices due to the bi-invariance of the metric B.
Moreover, for the spaces under consideration we have [ijk] = 0, if two induces
coincide.

We recall the classification of generalized Wallach spaces that was recently
obtained by Yu.G. Nikoronov ([23]) and Z. Chen, Y. Kang, K. Liang ([4]):

Theorem 1 ([23], [4]). Let G/K be a connected and simply connected compact homoge-
neous space. Then G/K is a generalized Wallach space if and only if one of the following
types:

1) G/K is a direct product of three irreducible symmetric spaces of compact type
([ijk] = 0 in this case).

2) The group is simple and the pair (g, k) is one of the pairs in Table 1.
3) G = F × F × F × F and H = diag(F) ⊂ G for some connected simple connected

compact simple Lie group F, with the following description on the Lie algebra level:

(g, k) = (f⊕ f⊕ f⊕ f, diag(f) = {(X, X, X, X) | X ∈ f},
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where f is the Lie algebra of F, and (up to permutation) m1 = {(X, X,−X,−X) | X ∈
f}, m2 = {(X,−X, X,−X) | X ∈ f}, m3 = {(X,−X,−X, X) | X ∈ f}.

g k g k

so(k + l + m) so(k)⊕ so(l)⊕ so(m) e7 so(8)⊕ 3sp(1)
su(k + l + m) su(k)⊕ su(l)⊕ su(m) e7 su(6)⊕ sp(1)⊕ R

sp(k + l + m) sp(k)⊕ sp(l)⊕ sp(m) e7 so(8)
su(2l), l ≥ 2 u(l) e8 so(12)⊕ 2sp(1)
so(2l), l ≥ 4 u(l)⊕ u(l − 1) e8 so(8)⊕ so(8)

e6 su(4)⊕ 2sp(1)⊕ R f4 so(5)⊕ 2sp(1)

e6 so(8)⊕ R
2 f4 so(8)

e6 sp(3)⊕ sp(1)

Table 1. The pairs (g, k) corresponding to generalized Wallach spaces G/K with G

simple.

3 g.o. generalized Wallach spaces

Let (G/K, g) be a generalized Wallach space with reductive decomposition
g = k⊕m, equipped with a G-invariant metric corresponding to a scalar product

of the form (8). Let l = dimk and di = dim(mi) (i = 1, 2, 3), and let {e0
i } and {e

j
s}

be orthogonal bases of k and mj respectively with respect to B, where 1 ≤ i ≤ l,
j = 1, 2, 3 and 1 ≤ s ≤ dj. For any X ∈ g \ {0} we write

X =
l

∑
i=1

xie
0
i +

d1

∑
j=1

aje
1
j +

d2

∑
k=1

bke2
k +

d3

∑
s=1

cse
3
s , xi, aj, bk, cs ∈ R. (10)

Then by Lemma 1 it follows that X is a geodesic vector if and only if

〈[
l

∑
i=1

xie
0
i +

d1

∑
j=1

aje
1
j +

d2

∑
k=1

bke2
k +

d3

∑
s=1

cse
3
s , Y]m,

d1

∑
j=1

aje
1
j +

d2

∑
k=1

bke2
k +

d3

∑
s=1

cse
3
s 〉 = 0,

(11)
for all Y ∈ m. Hence we obtain the following system of d1 + d2 + d3 equations














































































− ∑
l
i=1(∑

d1
j=1 ajB([e

0
i , e1

1]m, e1
j ))xiλ1 = ∑

d2
k=1 ∑

d3
s=1 bkcsB([e2

k , e1
1]m, e3

s)(λ3 − λ2)
...

...

− ∑
l
i=1(∑

d1
j=1 ajB([e

0
i , e1

d1
]m, e1

j ))xiλ1 = ∑
d2
k=1 ∑

d3
s=1 bkcsB([e2

k , e1
d1
]m, e3

s )(λ3 − λ2)

− ∑
l
i=1(∑

d2
k=1 bkB([e0

i , e2
1]m, e2

k))xiλ2 = ∑
d1
j=1 ∑

d3
s=1 ajcsB([e1

j , e2
1]m, e3

s)(λ3 − λ1)
...

...

− ∑
l
i=1(∑

d2
k=1 bkB([e0

i , e2
d2
]m, e2

k))xiλ2 = ∑
d1
j=1 ∑

d3
s=1 ajcsB([e1

j , e2
d2
]m, e3

s )(λ3 − λ1)

− ∑
l
i=1(∑

d3
s=1 csB([e0

i , e3
1]m, e3

s))xiλ3 = ∑
d1
j=1 ∑

d2
k=1 ajbkB([e1

j , e3
1]m, e2

k)(λ2 − λ1)
...

...

− ∑
l
i=1 B(∑

d3
s=1 csB([e0

i , e3
d3
]m, e3

s ))xiλ3 = ∑
d1
j=1 ∑

d2
k=1 ajbkB([e1

j , e3
d3
]m, e2

k)(λ2 − λ1).

(12)
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If we set

A = −







































∑
d1
j=1 ajB([e

0
1, e1

1]m, e1
j )λ1 · · · ∑

d1
j=1 ajB([e

0
l , e1

1]m, e1
j )λ1

...
...

∑
d1
j=1 ajB([e

0
1, e1

d1
]m, e1

j )λ1 · · · ∑
d1
j=1 ajB([e

0
l , e1

d1
]m, e1

j )λ1

∑
d2
k=1 bkB([e0

1, e2
1]m, e2

k)λ2 · · · ∑
d2
k=1 bkB([e0

l , e2
1]m, e2

k)λ2
...

...

∑
d2
k=1 bkB([e0

1, e2
d2
]m, e2

k)λ2 · · · ∑
d2
k=1 bkB([e0

l , e2
d2
]m, e2

k)λ2

∑
d3
s=1 csB([e0

1, e3
1]m, e3

s)λ3 · · · ∑
d3
s=1 csB([e0

l , e3
1]m, e3

s)λ3
...

...

∑
d3
s=1 csB([e0

1, e3
d3
]m, e3

s)λ3 · · · ∑
d3
s=1 csB([e0

l , e3
d3
]m, e3

s)λ3







































,

X =











x1

x2
...

xl











,

and

B =









































∑
d2
k=1 ∑

d3
s=1 bkcsB([e2

k , e1
1]m, e3

s)(λ3 − λ2)
...

∑
d2
k=1 ∑

d3
s=1 bkcsB([e2

k , e1
d1
]m, e3

s )(λ3 − λ2)

∑
d1
j=1 ∑

d3
s=1 ajcsB([e1

j , e2
1]m, e3

s)(λ3 − λ1)
...

∑
d1
j=1 ∑

d3
s=1 ajcsB([e1

j , e2
d2
]m, e3

s)(λ3 − λ1)

∑
d1
j=1 ∑

d2
k=1 ajbkB([e1

j , e3
1]m, e2

k)(λ2 − λ1)
...

∑
d1
j=1 ∑

d2
k=1 ajbkB([e1

j , e3
d3
]m, e2

k)(λ2 − λ1)









































,

then System (12) is equivalent to AX = B. Then we have the following:

Proposition 3. Let (G/K, g) be a generalized Wallach space, where the metric g is de-
termined by the scalar product (8). Then for any aj (j = 1, . . . , d1), bk (k = 1, . . . , d2)
and cs (s = 1, . . . , d3) not all equal to zero, (G/K, g) is a g.o. space if and only if
rank(A) = rank(A, B).

Proof. By Proposition 1 and Corollary 1 it follows that (G/K, g) is a g.o. space
if and only if for any X ∈ m \ {0} there exists an a(X) such that the curve
expt(a(X) + X) · o (t ∈ R) is a geodesic. This means that system (12) of d1 +
d2 + d3 equations for the variables xi (i = 1, . . . , l) has real solutions for any
aj, bk, cs (j = 1, . . . , d1, k = 1, . . . , d2, s = 1, . . . , d3) not all equal to zero. Then
system AX = B has real solutions if and only if rank(A) = rank(A, B).

Next, we shall investigate which of the families of spaces listed in Theorem 1
are g.o. spaces.
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Theorem 2. Let (G/K, g) be a generalized Wallach space as listed in Theorem 1. Then
1) If (G/K, g) is a space of type 1) then this is a g.o. space for any Ad(K)-invariant

Riemannian metric.
2) If (G/K, g) is a space of type 2) or 3) then this is a g.o. space if and only if g is the

standard metric.

Proof. Assume that (G/K, g) is a g.o. space, and the corresponding metric
(λ1, λ2, λ3) is geodesic orbit with λi 6= λj. Proposition 2 implies that
[mi,mj] ⊂ mi ⊕mj. Since (G/K, g) is a generalized Wallach space, it follows that
[mi,mj] ⊂ mk, k /∈ {i, j}, hence we get [mi,mj] = 0.

For case 1) it is [ijk] = 0 for all i, j, k ∈ {1, 2, 3}. Indeed, formula (9) implies

that B([ei
α, e

j
β], ek

γ) = 0 for any i, j, k ∈ {1, 2, 3} and for any α, β, γ ranging from 1

to di, dj and dk respectively. Hence [ei
α, e

j
β] = 0 for i 6= j and for any α, β ranging

from 1 to di and dj. Therefore, a generalized Wallach space (G/K, g) of type 1) is
naturally reductive for any Ad(K)-invariant Riemannian metric (λ1, λ2, λ3), so it
is a g.o. space.

For case 2) the only non zero [ijk] is [123] (cf. [22]). Then formula (9) implies

that there exist α, β, γ such that B([ei
α, e

j
β], ek

γ) 6= 0, where i 6= j 6= k 6= i. It follows

that there exist α, β such that [ei
α, e

j
β] 6= 0 for i 6= j. This implies that [mi,mj] 6= 0,

which is a contradiction. Hence we obtain that λi = λj. Therefore, a generalized
Wallach space (G/K, g) of type 2) or 3) is a g.o. space if and only if g is the
standard metric.

4 Homogeneous geodesics in generalized Wallach spaces

Let (G/K, g) be a generalized Wallach space with B-orthogonal decomposition
g = k⊕m, where m = m1 ⊕m2 ⊕m3 and B = −Killing form on g. Let {e0

i } and

{e
j
s} be the orthogonal bases of k and mj respectively with respect to B (1 ≤ i ≤ l,

j = 1, 2, 3, 1 ≤ s ≤ dj). For any X ∈ g \ {0} we write

X =
l

∑
i=1

xie
0
i +

d1

∑
j=1

aje
1
j +

d2

∑
k=1

bke2
k +

d3

∑
s=1

cse
3
s , xi, aj, bk, cs ∈ R.

In order to find all homogeneous geodesics in G/K, it suffices to find all the
real solutions of the system (12), of d1 + d2 + d3 quadratic equations for the vari-
ables xi, aj, bk, cs, which are not all equal to zero.

By Theorem 2 we only consider homogeneous geodesics in generalized
Wallach spaces types 2) and 3) given in Theorem 1 for the metric (λ1, λ2, λ3),
where at least two of λ1, λ2, λ3 are different. Then the geodesic vectors corre-
spond to those solutions of the system (12) for the variables xi, aj, bk, cs, which are
not all equal to zero. However, for many generalized Wallach spaces it is difficult
to find all the real solutions of the system (12).

Next, we will give two examples of generalized Wallach spaces and give all
the homogeneous geodesics for any given metric.
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Example 1. We consider the generalized Wallach space SU(2)/{e}.

Let {
√
−1hα, Aα√

2
, Bα√

2
} be an orthogonal basis of su(2) with respect to B, where

α denotes a simple root of the Lie algebra su(2), and Aα = Eα − E−α,
Bα =

√
−1(Eα + E−α). Here {Eα} denotes the Weyl basis of su(2). We set

Xα = Aα√
2
, Yα = Bα√

2
. Then we have that

[
√
−1hα, Xα] = α(hα)Yα = Yα,

[
√
−1hα, Yα] = −α(hα)Xα = −Xα,

[Xα, Yα] =
√
−1hα.

The Lie algebra su(2) has an orthogonal decomposition su(2) = m1 ⊕ m2 ⊕
m3, where m1,m2,m3 are spanned by

√
−1hα, Xα and Yα respectively. For any

X ∈ su(2) we write

X = a
√
−1hα + bXα + cYα, a, b, c ∈ R.

We will find all geodesic vectors of SU(2)/{e} for a given metric (λ1, λ2, λ3).
The system (12) for SU(2)/{e} is











bc(λ3 − λ2) = 0

ac(λ3 − λ1) = 0

ab(λ2 − λ1) = 0.

(13)

Case 1. λ1 = λ2 6= λ3. The solutions of the system (13) are c = 0 or c 6= 0,
a = b = 0, so the geodesic vectors are X = a

√
−1hα + bXα and X = cYα.

Case 2. λ1 = λ3 6= λ2. The solutions of the system (13) are b = 0 or b 6= 0,
a = c = 0, so the geodesic vectors are X = a

√
−1hα + cYα and X = bXα.

Case 3. λ2 = λ3 6= λ1. The solutions of the system (13) are a = 0 or a 6= 0,
b = c = 0, so the geodesic vectors are X = bXα + cYα and X = a

√
−1hα.

Case 4. λ1, λ2, λ3 are distinct. Then the system (13) reduces to ab = ac = bc = 0,
whose solutions are a = b = 0 or a = c = 0 or b = c = 0. In this case any vector
X ∈ mi\{0} (i = 1, 2, 3) is a geodesic vector.

Therefore we obtain the following theorem, which recovers a result on R.A.
Marinosci [21, p. 266]

Proposition 4. For the generalized Wallach space SU(2)/{e} the only geodesic vectors
for a given metric (λ1, λ2, λ3) are the following:
1) If λi = λj 6= λk (i, j, k ∈ {1, 2, 3}), then any vector X ∈ mk\{0} or
X ∈ (mi ⊕mj)\{0}.
2) If λ1, λ2, λ3 are distinct, then any vector X ∈ m1 ∪m2 ∪m3.

Example 2. We consider the generalized Wallach space SO(n)/SO(n − 2), (n ≥ 4).

This is the Stiefel manifold of orthogonal 2-frames in R
n. Let so(n) and

so(n − 2) be the Lie algebras of SO(n) and SO(n − 2) respectively. Let Eab de-
note the n × n matrix with 1 in the (ab)-entry and 0 elsewhere. If eab = Eab − Eba,
then the set B = {eij = Eij − Eji : 1 ≤ i < j ≤ n} is a B-orthogonal basis of so(n).
The multiplication table of the elements in B is given as follows:
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Lemma 2. If all four indices are distinct, then the Lie brackets in B are zero. Otherwise,
it is [eij, ejk] = eik, where i, j, k are distinct.

Let so(n) = k⊕m1 ⊕m2 ⊕m3 be an orthogonal decomposition of so(n) with
respect to B, where k = span

R
{eij : 3 ≤ i < j ≤ n}, m1 = span

R
{e12},

m2 = span
R
{e1j : 3 ≤ j ≤ n}, and m3 = span

R
{e2j : 3 ≤ j ≤ n}. For any

X ∈ so(n) we write

X = ∑
3≤i<j≤n

aijeij + a12e12 + ∑
3≤j≤n

a1je1j + ∑
3≤j≤n

a2je2j, aij ∈ R.

Then the system (12) for SO(n)/SO(n − 2) takes the form















































































































(a13a23 + a14a24 + · · ·+ a1na2n)(λ3 − λ2) = 0

−(a14a34 + a15a35 + · · ·+ a1,na3n)λ2 = a12a23(λ3 − λ1)

(a13a34 − a15a45 − a16a46 − · · · − a1na4n)λ2 = a12a24(λ3 − λ1)

(a13a35 + a14a45 − a16a56 − a17a57 − · · · − a1na5n)λ2 = a12a25(λ3 − λ1)
...

(a13a3,n−1 + · · ·+ a1,n−2an−2,n−1 − a1nan−1,n)λ2 = a12a2,n−1(λ3 − λ1)

(a13a3n + a14a4,n + · · ·+ a1,n−1an−1,n)λ2 = a12a2n(λ3 − λ1)

−(a24a34 + a25a35 + · · ·+ a2na3n)λ3 = a12a13(λ1 − λ2)

(a23a34 − a25a45 − a26a46 − · · · − a2na4n)λ3 = a12a14(λ1 − λ2)

(a23a35 + a24a45 − a26a56 − a27a57 − · · · − a2na5n)λ3 = a12a15(λ1 − λ2)
...

(a23a3,n−1 + · · ·+ a2,n−2an−2,n−1 − a2nan−1,n)λ3 = a12a1,n−1(λ1 − λ2)

(a23a3n + a24a4n + · · ·+ a2,n−1an−1,n)λ3 = a12a1,n(λ1 − λ2).

(14)

As the above system is difficult to handle, we restrict to the Stiefel mani-
fold SO(4)/SO(2) and look for geodesics X = a34e34 + a12e12 + a13e13 + a14e14 +
a23e23 + a24e24. Then the above system simplifies to































(a13a23 + a14a24)(λ3 − λ2) = 0

a34a14λ2 = −a12a23(λ3 − λ1)

a34a13λ2 = a12a24(λ3 − λ1)

a34a24λ3 = a13a12(λ2 − λ1)

a34a23λ3 = −a14a12(λ2 − λ1).

(15)

In order to find all geodesic vectors in the generalized Wallach space
SO(4)/SO(2) for a given metric, we should find all the non zero real solutions
of the system (15).

Case 1. λ1 = λ2 6= λ3. Then the system (15) reduces to











a13a23 + a14a24 = 0

a34a14λ1 = −a12a23(λ3 − λ1)

a34a13λ1 = a12a24(λ3 − λ1).

(16)
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If a34 = 0 and a12 = 0 then the geodesic vectors are X = a13e13 + a14e14 +
a23e23 + a24e24 with a13a23 + a14a24 = 0.

If a34 = 0 and a12 6= 0 we get a23 = a24 = 0, so the geodesic vectors are
X = a12e12 + a13e13 + a14e14.

If a34 6= 0 and a12 = 0 we get a13 = a14 = 0, so the geodesic vectors are
X = a34e34 + a23e23 + a24e24.

If a34 6= 0, a12 6= 0 and a23 + a24 = 0 we have a13 = a14, geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a13e14 + a23e23 − a23e24.

If a34 6= 0, a12 6= 0 and a23 + a24 6= 0 we have a13 6= a14. If a13 = −a14 we have
a23 = a24, so geodesic vectors are X = a34e34 + a12e12 + a13e13 − a13e14 + a23e23 +
a23e24. If a13 6= −a14 we have a23 6= a24, so geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a14e14 + a23e23 + a24e24.

Case 2. λ1 = λ3 6= λ2. Then the system (15) reduces to











a13a23 + a14a24 = 0

a34a24λ1 = a13a12(λ2 − λ1)

a34a23λ1 = −a12a14(λ2 − λ1).

(17)

If a34 = 0 and a12 = 0, geodesic vectors are X = a13e13 + a14e14 + a23e23 + a24e24

with a13a23 + a14a24 = 0.
If a34 = 0 and a12 6= 0 we get a13 = a14 = 0, geodesic vectors are

X = a12e12 + a23e23 + a24e24.
If a34 6= 0 and a12 = 0 we get a23 = a24 = 0, geodesic vectors are

X = a34e34 + a13e13 + a14e14.
If a34 6= 0, a12 6= 0 and a23 + a24 = 0 we have a13 = a14, geodesic vectors are

X = a34e34 + a12e12 + a13e13 + a13e14 + a23e23 − a23e24.
If a34 6= 0, a12 6= 0 and a23 + a24 6= 0 we have a13 6= a14. If a13 = −a14 we have

a23 = a24, so geodesic vectors are X = a34e34 + a12e12 + a13e13 − a13e14 + a23e23 +
a23e24. If a13 6= −a14 we have a23 6= a24, so geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a14e14 + a23e23 + a24e24.

Case 3. λ3 = λ2 6= λ1. Then the system (12) reduces to



















a34a14λ2 = −a12a23(λ2 − λ1)

a34a13λ2 = a12a24(λ2 − λ1)

a34a24λ2 = a13a12(λ2 − λ1)

a34a23λ2 = −a14a12(λ2 − λ1).

(18)

If a34 = 0 and a12 = 0, geodesic vectors are X = a13e13 + a14e14 + a23e23 +
a24e24.

If a34 = 0 and a12 6= 0 we have a13 = a14 = a23 = a24 = 0, geodesic vectors are
X = a12e12.

If a34 6= 0 and a12 = 0 we have a13 = a14 = a23 = a24 = 0, geodesic vectors are
X = a34e34.

If a34 6= 0, a12 6= 0 and a23 + a24 = 0 we have a13 = a14, geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a13e14 + a23e23 − a23e24.

If a34 6= 0 , a12 6= 0 and a23 + a24 6= 0 we have a13 6= a14. If a13 = −a14 we have
a23 = a24, so geodesic vectors are X = a34e34 + a12e12 + a13e13 − a13e14 + a23e23 +
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a23e24. If a13 6= −a14 we have a23 6= a24, so geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a14e14 + a23e23 + a24e24.

Case 4. λ1, λ2, λ3 are all different.
If a34 = 0 and a12 = 0, geodesic vectors are X = a13e13 + a14e14 + a23e23 + a24e24

with a13a23 + a14a24 = 0.
If a34 = 0 and a12 6= 0 we have a13 = a14 = a23 = a24 = 0, geodesic vectors are

X = a12e12.
If a34 6= 0 and a12 = 0 we have a13 = a14 = a23 = a24 = 0, geodesic vectors are

X = a34e34.
If a34 6= 0, a12 6= 0 and a23 + a24 = 0 we have a13 = a14, geodesic vectors are

X = a34e34 + a12e12 + a13e13 + a13e14 + a23e23 − a23e24.
If a34 6= 0 , a12 6= 0 and a23 + a24 6= 0 we have a13 6= a14. If a13 = −a14 we have

a23 = a24, so geodesic vectors are X = a34e34 + a12e12 + a13e13 − a13e14 + a23e23 +
a23e24. If a13 6= −a14 we have a23 6= a24, so geodesic vectors are
X = a34e34 + a12e12 + a13e13 + a14e14 + a23e23 + a24e24.
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[16] O. Kowalski, F. Prüfer and L. Vanhecke: D’Atri spaces, in: Topics in Geome-
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