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Abstract

We prove the weak-∗ convergence of a certain sequence of averages of
unitary operators associated to the action of the free group on its Gromov
boundary. This result, which can be thought as an ergodic theorem à la von
Neumann with coefficients, provides a new proof of the irreducibility of the
quasi-regular representation of the free group.

1 Introduction

In this paper, we consider the action of the free group Fr on its boundary B, a
probability space associated to the Cayley graph of Fr relative to its canonical
generating set. This action is known to be ergodic (see for example [FTP82] and
[FTP83]), but since the measure is not preserved, no theorem on the convergence
of means of the corresponding unitary operators had been proved. Note that a
close result is proved in [FTP83, Lemma 4, Item (i)].
We formulate such a convergence theorem in Theorem 1.2. We prove it following
the ideas of [BM11] and [Boy15] replacing [Rob03, Theorem 4.1.1] by Theorem 1.1.
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1.1 Geometric setting and notation

We will denote Fr = 〈a1, ..., ar〉 the free group on r generators, for r ≥ 2. For an

element γ ∈ Fr, there is a unique reduced word in {a±1
1 , ..., a±1

r } which represents
it. This word is denoted γ1 · · · γk for some integer k which is called the length of
γ and is denoted by |γ|. The set of all elements of length k is denoted Sn and
is called the sphere of radius k. If u ∈ Fr and k ≥ |u|, let us denote Pru(k) :=
{γ ∈ Fr | |γ| = k, u is a prefix of γ}.
Let X be the geometric realization of the Cayley graph of Fr with respect to the

set of generators {a±1
1 , ..., a±1

r }, which is a 2r-regular tree. We endow it with the
(natural) distance, denoted by d, which gives length 1 to every edge ; for this
distance, the natural action of Fr on X is isometric and freely transitive on the
vertices. As a metric space, X is CAT(−1). In particular, it is uniquely geodesic,
the geodesics between vertices being finite sequences of successive edges. We
denote by [x, y] the unique geodesic joining x to y.
We fix, once and for all, a vertex x0 in X. For x ∈ X, the vertex of X which is the
closest to x in [x0, x], is denoted by ⌊x⌋ ; because the action is free, we can identify
⌊x⌋ with the element γ that brings x0 on it, and this identification is an isometry.

The Cayley tree and its boundary

As for any other CAT(−1) space, we can construct a boundary of X and endow
it with a distance and a measure. For a general construction, see [Bou95]. The
construction we provide here is elementary.

Let us denote by B the set of all right-infinite reduced words on the alphabet

{a±1
1 , ..., a±1

r }. This set is called the boundary of X.

We will consider the set X := X ∪ B.

For u = u1 · · · ul ∈ Fr \ {e}, we define the sets

Xu := {x ∈ X | u is a prefix of ⌊x⌋}

Bu := {ξ ∈ B | u is a prefix of ξ}

Cu := Xu ∪ Bu

We can now define a natural topology on X by choosing as a basis of neigh-
borhoods

1. for x ∈ X, the set of all neighborhoods of x in X

2. for ξ ∈ B, the set {Cu | u is a prefix of ξ}

For this topology, X is a compact space in which the subset X is open and
dense. The induced topology on X is the one given by the distance. Every isom-
etry of X continuously extends to a homeomorphism of X.
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Distance and measure on the boundary

For ξ1 and ξ2 in B, we define the Gromov product of ξ1 and ξ2 with respect to x0

by

(ξ1|ξ2)x0 := sup {k ∈ N | ξ1 and ξ2 have a common prefix of length k}

and
dx0(ξ1, ξ2) := e−(ξ1|ξ2)x0 .

Then d defines an ultrametric distance on B which induces the same topology
; precisely, if ξ = u1u2u3 · · · , then the ball centered in ξ of radius e−k is just Bu1...uk

.
On B, there is at most one Borel regular probability measure which is invariant

under the isometries of X which fix x0; indeed, such a measure µx0 must satisfy

µx0(Bu) =
1

2r(2r − 1)|u|−1

and it is straightforward to check that the ln(2r − 1)-dimensional Hausdorff
measure associated to the distance dx0 (normalized to give measure 1 to B) verifies
this property, so we will denote this measure by µx0 .

If ξ = u1 · · · un · · · ∈ B, and x, y ∈ X, then the sequence (d(x, u1 · · · un)−
d(y, u1 · · · un))n∈N is stationary. We denote this limit βξ(x, y). The function βξ is
called the Busemann function at ξ.

Let us denote, for ξ ∈ B and γ ∈ Fr the function

P(γ, ξ) := (2r − 1)βξ (x0,γx0)

The measure µx0 is, in addition, quasi-invariant under the action of Fr.
Precisely, the Radon-Nikodym derivative is given for γ ∈ Γ and for a.e. ξ ∈ B by

dγ∗µx0

dµx0

(ξ) = P(γ, ξ),

where γ∗µx0(A) = µx0(γ
−1A) for any Borel subset A ⊂ B.

The quasi-regular representation

Denote the unitary representation, called the quasi-regular representation of Fr

on the boundary of X by

π : Fr → U (L2(B))
γ 7→ π(γ)

defined as
(

π(γ)g
)

(ξ) := P(γ, ξ)
1
2 g(γ−1ξ)

for γ ∈ Fr and for g ∈ L2(B). We define the Harish-Chandra function

Ξ(γ) := 〈π(γ)1B, 1B〉 =
∫

B
P(γ, ξ)

1
2 dµx0(ξ), (1.1)
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where 1B denotes the characteristic function on the boundary.
For f ∈ C(X), we define the operators

Mn( f ) : g ∈ L2(B) 7→
1

|Sn|
∑

γ∈Sn

f (γx0)
π(γ)g

Ξ(γ)
∈ L2(B). (1.2)

We also define the operator

M( f ) := m( f|B)P1B
(1.3)

where m( f|B) is the multiplication operator by f|B on L2(B), and P1B
is the

orthogonal projection on the subspace of constant functions. So, for g ∈ L2(B),
M( f )g := 〈g, 1B〉 f|B .

1.2 Results

We have the following equidistribution theorem.

Theorem 1.1. We have, in C(X × X)∗, the weak-∗ convergence

1

|Sn|
∑

γ∈Sn

Dγx0 ⊗ Dγ−1x0
⇀ µx0 ⊗ µx0

where Dx denotes the Dirac measure on a point x.

We use the above theorem to prove the following convergence of operators.

Theorem 1.2. We have, for all f in C(X), the weak operator convergence

Mn( f ) −→
n→+∞

M( f ).

In other words, we have, for all f in C(X) and for all g, h in L2(B), the convergence

1

|Sn|
∑

γ∈Sn

f (γx0)
〈π(γ)g, h〉

Ξ(γ)
−→

n→+∞
〈M( f )g, h〉.

We deduce the irreducibility of π, and give an alternative proof of this well
known result (see [FTP82, Theorem 5]).

Corollary 1.3. The representation π is irreducible.

Proof. Applying Theorem 1.2 to f = 1X shows that the orthogonal projection
onto the space of constant functions is in the von Neumann algebra generated
with π. Then applying Theorem 1.2 to g = 1B shows that the vector 1B is cyclic.
Let F ≤ L2(B) be a closed nonzero invariant subspace. Suppose that ∀h ∈ F,
〈h, 1B〉 = 0. Then if h ∈ F, by assumption, for all γ ∈ Fr, 0 = 〈π(γ)h, 1B〉 =
〈h, π(γ−1)1B〉, so by cyclicity of 1B, h = 0. So there is a vector h ∈ F such that
P1B

(h) = 1B〈h, 1B〉 6= 0. But P1B
is in the von Neumann generated by π, so

〈h, 1B〉1B = P1B
(h) ∈ F. So F contains the cyclic vector 〈h, 1B〉1B, so F = L2(B).
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1.3 Remarks

The study of such averages of unitary operators has first been carried out in
[BM11], where an ergodic theorem is proved, in the context of the action of the
fundamental group of a compact negatively curved manifold on its universal
cover, using an equidistribution result due to Margulis. This work has been
generalized in [Boy15] to the context of certain discrete groups of isometries of
CAT(-1) spaces, where the equidistribution result is replaced by one of Roblin
[Rob03, Theorem 4.1.1]. The Cayley graph of the free group with respect to the
standard symmetric set of generators is, itself, a CAT(-1) space, but the quotient
(a wedge of circles of length 1) dramatically lacks the property of having a non-
arithmetic spectrum, which forces us to prove an analog of Roblin’s equidistribu-
tion theorem in this setting : this is Theorem 1.1.

It would have been possible to define the length of the edges of X labelled
by a±1 to be α (α being a real positive number) instead of 1. Let us denote by Xα

the obtained metric space. The quotient has a non-arithmetic spectrum if and
only if α 6∈ Q. According to [Gar14], the Hausdorff measures on the boundaries
of Xα1

and Xα2 would have been unequivalent, as well as the associated unitary

representations, as soon as α1 6= α±1
2 . It would be interesting to prove, in this

context, analogs of Theorems 1.1 and 1.2, for α ∈ Q∗
+ \ {1}.

2 Proofs

2.1 Proof of the equidistribution theorem

For the proof of Theorem 1.1, let us denote

E :=

{

f : C(X × X) |
1

|Sn|
∑

γ∈Sn

f (γx0, γ−1x0) →
∫

X×X
f d(µx0 ⊗ µx0)

}

The subspace E is clearly closed in C(X × X) ; it remains only to show that it
contains a dense subspace of it.

Let us define a modified version of certain characteristic functions : for u ∈ Fr

we define

χu(x) :=







max{1 − dX(x, Cu), 0} if x ∈ X
0 if x ∈ B \ Bu

1 if x ∈ Bu

It is easy to check that he function χu is a continuous function which coincides
with χCu on Frx0 and B.

The proof of the following lemma is straightforward.

Lemma 2.1. Let u ∈ Fr and k ≥ |u|, then χu − ∑
γ∈Pru(k)

χγ has compact support

included in X.
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Proposition 2.2. The set χ := {χu | u ∈ Fr \ {e}} separates points of B, and the
product of two such functions of χ is either in χ, the sum of a function in χ and of a
function with compact support contained in X, or zero.

Proof. It is clear that χ separates points. It follows from Lemma 2.1 that χuχv =
χv if u is a proper prefix of v, that χ2

u − χu has compact support in X, and that
χuχv = 0 if none of u and v is a proper prefix of the other.

Proposition 2.3. The subspace E contains all functions of the form χu ⊗ χv.

Proof. Let n ≥ |u|+ |v|. We make the useful observation that

1

|Sn|
∑

γ∈Sn

(χu ⊗ χv)(γx0, γ−1x0) =
|Su,v

n |

|Sn|

where Su,v
n is the set of reduced words of length n with u as a prefix and v−1 as a

suffix. We easily see that this set is in bijection with the set of all reduced words
of length n − (|u|+ |v|) that do not begin by the inverse of the last letter of u, and
that do not end by the inverse of the first letter of v−1. So we have to compute, for

s, t ∈ {a±1
1 , ..., a±1

r } and m ∈ N, the cardinal of the set Sm(s, t) of reduced words
of length m that do not start by s and do not finish by t.

Now we have

Sm = Sm(s, t) ∪ {x | |x| = m and starts by s} ∪ {x | |x| = m and ends by t}.

Note that the intersection of the two last sets is the set of words both starting
by s and ending by t, which is in bijection with Sm−2(s

−1, t−1).
We have then the recurrence relation :

|Sm(s, t)| = 2r(2r − 1)m−1 − 2(2r − 1)m−1 + |Sm−2(s
−1, t−1)|

= 2(r − 1)(2r − 1)m−1 + 2(r − 1)(2r − 1)m−3 + |Sm−4(s, t)|

= (2r − 1)m 2(r − 1)
(

(2r − 1)2 + 1
)

(2r − 1)3
+ |Sm−4(s, t)|

.

We set C :=
2(r−1)((2r−1)2+1)

(2r−1)3 , n = 4k + j with 0 ≤ j ≤ 3 and we obtain

|Ss,t
4k+j| = C(2r − 1)4k+j + |Ss,t

4(k−1)+j
|

= C(2r − 1)4k+j + C(2r − 1)4(k−1)+j + |Ss,t
4(k−2)+j

|

= C
k

∑
i=1

(2r − 1)4i+j + |Ss,t
j |

= C(2r − 1)4+j (2r − 1)4k − 1

(2r − 1)4 − 1
+ |Sj(s, t)|

= (2r − 1)1+j (2r − 1)4k − 1

2r
+ |Sj(s, t)|

Now we can compute
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|Su,v
4k+j|

|S4k+j|
=

∣

∣

∣
S4k+j−(|u|+|v|)(u|u|, v−1

|v|
)
∣

∣

∣

|S4k+j|

=
(2r − 1)1+j (2r − 1)4k−(|u|+|v|) − 1

2r
+

∣

∣

∣
Sj(u|u|, v−1

|v|
)
∣

∣

∣

2r(2r − 1)4k+j−1

=
1

2r(2r − 1)|u|−1

1

2r(2r − 1)|v|−1
+ o(1)

= µx0(Bu)µx0(Bv) + o(1)

when k → ∞, and this proves the claim.

Corollary 2.4. The subspace E is dense in C(X × X).

Proof. Let us consider E′, the subspace generated by the constant functions, the
functions which can be written as f ⊗ g where f , g are continuous functions on X
and such that one of them has compact support included in X, and the functions
of the form χu ⊗ χv. By Proposition 2.2, it is a subalgebra of C(X × X) containing
the constants and separating points, so by the Stone-Weierstraß theorem, E′ is
dense in C(X × X). Now, by Proposition 2.3, we have that E′ ⊆ E, so E is dense
as well.

2.2 Proof of the ergodic theorem

The proof of Theorem 1.2 consists in two steps:

Step 1: Prove that the sequence Mn is bounded in L(C(X),B(L2(B))).

Step 2: Prove that the sequence converges on a dense subset.

2.2.1 Boundedness

In the following 1X denotes the constant function 1 on X. Define

Fn := [Mn(1X)] 1B.

We denote by Ξ(n) the common value of Ξ on elements of length n.

Proposition 2.5. The function ξ 7→ ∑
γ∈Sn

(P(γ, ξ))
1
2 is constant equal to |Sn| × Ξ(n).

Proof. This function is constant on orbits of the action of the group of automor-
phisms of X fixing x0. Since it is transitive on B, the function is constant.
By integrating, we find
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∑
γ∈Sn

(P(γ, ξ))
1
2 =

∫

B
∑

γ∈Sn

(P(γ, ξ))
1
2 dµx0(ξ)

= ∑
γ∈Sn

∫

B
(P(γ, ξ))

1
2 dµx0(ξ)

= ∑
γ∈Sn

Ξ(n)

= |Sn|Ξ(n),

Lemma 2.6. The function Fn is constant and equal to 1B.

Proof. Because Ξ depends only on the length, we have that

Fn(ξ) :=
1

|Sn|
∑

γ∈Sn

(P(γ, ξ))
1
2

Ξ(γ)

=
1

|Sn|Ξ(n)
∑

γ∈Sn

(P(γ, ξ))
1
2

= 1,

and the proof is done.

It is easy to see that Mn( f ) induces continuous linear transformations of L1

and L∞, which we also denote by Mn( f ).

Proposition 2.7. The operator Mn(1X), as an element of L(L∞, L∞), has norm 1; as an
element of B(L2(B)), it is self-adjoint.

Proof. Let h ∈ L∞(B). Since Mn(1X) is positive, we have that
∥

∥[Mn(1X)] h
∥

∥

∞
≤

∥

∥[Mn(1X)] 1B

∥

∥

∞
‖h‖∞

= ‖Fn‖∞ ‖h‖∞

= ‖h‖∞

so that ‖Mn(1X)‖L(L∞,L∞) ≤ 1.

The self-adjointness follows from the fact that π(γ)∗ = π(γ−1) and that the
set of summation is symmetric.

Let us briefly recall one useful corollary of Riesz-Thorin’s theorem :
Let (Z, µ) be a probability space.

Proposition 2.8. Let T be a continuous operator of L1(Z) to itself such that the restric-
tion T2 to L2(Z) (resp. T∞ to L∞(Z)) induces a continuous operator of L2(Z) to itself
(resp. L∞(Z) to itself).

Suppose also that T2 is self-adjoint, and assume that ‖T∞‖L(L∞(Z),L∞(Z)) ≤ 1.

Then ‖T2‖L(L2(Z),L2(Z)) ≤ 1.

Proof. Consider the adjoint operator T∗ of (L1)∗ = L∞ to itself. We have that

‖T∗‖L(L∞,L∞) = ‖T‖L(L1(Z),L1(Z)).

Now because T2 is self-adjoint, it is easy to see that T∗ = T∞. This implies

1 ≥ ‖T∗‖L(L∞,L∞) = ‖T‖L(L1(Z),L1(Z)).

Hence the Riesz-Thorin’s theorem gives us the claim.
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Proposition 2.9. The sequence (Mn)n∈N is bounded in L(C(X),B(L2(B))).

Proof. If f is real-valued, we have, for every positive g ∈ L2(B), the pointwise
inequality

−‖ f‖∞[Mn(1X)]g ≤ [Mn( f )]g ≤ ‖ f‖∞[Mn(1X)]g

from which we deduce, for every g ∈ L2(B)

‖[Mn( f )]g‖L2 ≤ ‖ f‖∞‖[Mn(1X)]g‖L2

≤ ‖ f‖∞ ‖Mn(1X)‖B(L2) ‖g‖L2

which allows us to conclude that

‖Mn( f )‖B(L2) ≤ ‖Mn(1X)‖B(L2)‖ f‖∞.

This proves that ‖Mn‖L(C(X),B(L2)) ≤ ‖Mn(1X)‖B(L2).

Now, it follows from Proposition 2.7 and Proposition 2.8 that the sequence
(Mn(1X))n∈N is bounded by 1 in B(L2), so we are done.

2.2.2 Estimates for the Harish-Chandra function

The values of the Harish-Chandra are known (see for example [FTP82, Theorem
2, Item (iii)]). We provide here the simple computations we need.

We will calculate the value of

〈π(γ)1B, 1Bu〉 =
∫

Bu

P(γ, ξ)
1
2 dµx0(ξ).

Lemma 2.10. Let γ = s1 · · · sn ∈ Fr. Let l ∈ {1, ..., |γ|}, and u = s1 · · · sl−1tltl+1 · · ·
tl+k

1, with tl 6= sl and k ≥ 0, be a reduced word. Then

〈π(γ)1B, 1Bu〉 =
1

2r(2r − 1)
|γ|
2 +k

and

〈π(γ)1B, 1Bγ〉 =
2r − 1

2r(2r − 1)
|γ|
2

Proof. The function ξ 7→ βξ(x0, γx0) is constant on Bu equal to 2(l − 1)− |γ|.
So 〈π(γ)1B, 1Bu〉 is the integral of a constant function:

∫

Bu

P(γ, ξ)
1
2 dµx0(ξ) = µx0(Bu) (2r − 1)

(

(l−1)− |γ|
2

)

=
1

2r(2r − 1)
|γ|
2 +k

·

The value of 〈π(γ)1B, 1Bγ〉 is computed in the same way.

1For l = 1, s1 · · · sl−1 is e by convention.
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Lemma 2.11. (The Harish-Chandra function)
Let γ = s1 · · · sn in Sn written as a reduced word. We have that

Ξ(γ) =

(

1 +
r − 1

r
|γ|

)

(2r − 1)−
|γ|
2 .

Proof. We decompose B into the following partition:

B =
⊔

u1 6=s1

Bu1
⊔











|γ|
⊔

l=2

⊔

u=s1···sl−1tl

tl 6∈{sl ,(sl−1)
−1}

Bu











⊔ Bγ

and Lemma 2.10 provides us the value of the integral on the subsets forming
this partition. A simple calculation yields the announced formula.

The proof of the following lemma is then obvious :

Lemma 2.12. If γ, w ∈ Fr are such that w is not a prefix of γ, then there is a constant
Cw not depending on γ such that

〈π(γ)1B, 1Bw〉

Ξ(γ)
≤

Cw

|γ|
.

2.2.3 Analysis of matrix coefficients

The goal of this section is to compute the limit of the matrix coefficients 〈Mn(χu)1Bv ,
1Bw〉.

Lemma 2.13. Let u, w ∈ Fr such that none of them is a prefix of the other
(i.e. Bu ∩ Bw = ∅). Then

lim
n→∞

〈Mn(χu)1B, 1Bw〉 = 0

Proof. Using Lemma 2.12, we get

〈Mn(χu)1B, 1Bw〉 =
1

|Sn|
∑

γ∈Sn

χu(γx0)
〈π(γ)1B, 1Bw〉

Ξ(γ)

=
1

|Sn|
∑

γ∈Cu∩Sn

〈π(γ)1B, 1Bw〉

Ξ(γ)

(Lemma 2.12) ≤
1

|Sn|
∑

γ∈Cu∩Sn

Cw

|γ|

= O

(

1

n

)
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Lemma 2.14. Let u, v ∈ Fr. Then

lim sup
n→∞

〈Mn(χu)1Bv , 1B〉 ≤ µx0(Bu)µx0(Bv)

Proof.

〈Mn(χu)1Bv , 1B〉 = 〈Mn(χu)
∗1B, 1Bv〉

=
1

|Sn|
∑

γ∈Sn

χu(γ
−1x0)

〈π(γ)1B, 1Bv〉

Ξ(γ)

≤
1

|Sn|
∑

γ∈Sn
γ∈Cv

χu(γ
−1x0)

〈π(γ)1B, 1Bv〉

〈π(γ)1B, 1B〉
+

1

|Sn|
∑

γ∈Sn
γ 6∈Cv

χu(γ
−1x0)

〈π(γ)1B, 1Bv〉

Ξ(γ)

≤
1

|Sn|
∑

γ∈Sn

χu(γ
−1x0)χv(γx0)

+
1

|Sn|
∑

γ∈Sn
γ 6∈Cv

χu(γ
−1x0)

〈π(γ)1B, 1Bv〉

Ξ(γ)

(Lemma 2.12) ≤
1

|Sn|
∑

γ∈Sn

χu(γ
−1x0)χv(γx0) +

1

|Sn|
∑

γ∈Sn
γ 6∈Cv

χu(γ
−1x0)

Cw

|γ|

=
1

|Sn|
∑

γ∈Sn

χu(γ
−1x0)χv(γx0) + O

(

1

n

)

Hence, by taking the lim sup and using Theorem 1.1, we obtain the desired
inequality.

Proposition 2.15. For all u, v, w ∈ Fr, we have

lim
n→∞

〈Mn(χu)1Bv , 1Bw〉 = µx0(Bu ∩ Bw)µx0(Bv)

Proof. We first show the inequality

lim sup
n→∞

〈Mn(χu)1Bv , 1Bw〉 ≤ µx0(Bu ∩ Bw)µx0(Bv).

If none of u and w is a prefix of the other, we have nothing to do according to
Lemma 2.13. Let us assume that u is a prefix of w (the other case can be treated
analogously). According to Lemma 2.1,

lim sup
n→∞

〈Mn(χu)1Bv , 1Bw〉 ≤ ∑
γ∈Pru(|w|)

lim sup
n→∞

〈Mn(χγ)1Bv , 1Bw〉,

and according to Lemma 2.13, for all γ ∈ Pru(|w|) \ {w}, lim supn→∞〈Mn(χγ)1Bv ,
1Bw〉 = 0.
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µx0(Bw)µx0(Bv) ≥ lim sup
n→∞

〈Mn(χw)1Bv , 1B〉

≥ lim sup
n→∞

〈Mn(χw)1Bv , 1Bw〉

≥ lim sup
n→∞

〈Mn(χw)1Bv , 1Bw〉+

∑
γ∈Pru(|w|)\{w}

lim sup
n→∞

〈Mn(χγ)1Bv , 1Bw〉

≥ lim sup
n→∞

〈Mn(χu)1Bv , 1Bw〉

We now compute the expected limit. Let us define

Su,v,w := {(u′ , v′, w′) ∈ Fr | |u| = |u′|, |v| = |v′|, |w| = |w′|}

so that

〈Mn(1X)1B, 1B〉 = ∑
(u′,v′,w′)∈Su,v,w

〈Mn(χu)1Bv , 1Bw〉.

To simplify the calculation, let us denote

A := lim infn→∞〈Mn(χu)1Bv , 1Bw〉
B := lim supn→∞〈Mn(χu)1Bv , 1Bw〉
C := µx0(Bu ∩ Bw)µx0(Bv)
D := ∑

(u′,v′,w′)∈Su,v,w\{u,v,w}

lim sup
n→∞

〈Mn(χu′)1Bv′
, 1Bw′ 〉

E := ∑
(u′,v′,w′)∈Su,v,w\{u,v,w}

µx0(Bu′ ∩ Bw′)µx0(Bv′)

.
It is obvious that A ≤ B ; we have that B ≤ C and D ≤ E because of the

inequality we just proved. We also have that C + E = 1 (it is the sum of the mea-
sures of members of a partition), and finally, we have that 1 = lim inf〈Mn(1X)1B,
1B〉 ≤ A + D, because lim infn→∞(an + bn) ≤ lim infn→∞ an + lim supn→∞ bn for
every bounded real sequences (an)n and (bn)n.

In conclusion, we have that 1 ≤ A + D ≤ C + E ≤ 1, A ≤ B ≤ C and D ≤ E,
from which we deduce A = B = C.

Proof of Theorem 1.2. Because of the boundedness of the sequence (Mn)n∈N proved
in Proposition 2.9, it is enough to prove the convergence for all ( f , h1, h2) in a
dense subset of C(X)× L2 × L2, which is what Proposition 2.15 asserts.
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