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Abstract

We give a direct proof that if two string links have isotopic closures, then
there is a braid-special isomorphism between their n-level group diagrams,
for every n > 2. In the case of link-homotopy, we give an alternative proof
to our previous result that there is a braid-special isomorphism between the
group diagrams for the homotopy classes of two string links if and only if
they have link-homotopic closures.

1 Introduction

An approach to study links is to consider them as closures of string links (see
definition 1). String links are a generalization of pure braids. Although more
complicated than pure braids, string links still have a natural multiplication and
a kind of Artin representation (see [5]) and, contrary to braids, every link of k
components can be obtained as a closure of a string link of k components. That
simplifies the question of when two string links have the same closure, as com-
pared with the same question for braids that, despite the Theorem of Markov, is
very difficult to answer due to possible changes in the number of strings. Using
string links, Habbeger and Lin were able to classify links up to link-homotopy
(see [6]).

In our paper [1] we associated to a homotopy class of a string link a certain
group diagram and showed that two string links have the same closure, up to
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link-homotopy, if and only if there is a certain type of isomorphism between their
group diagrams. We called such type of isomorphism a braid-special isomor-
phism (there was a small mistake in the diagram which we corrected in [2, section
4]). In [2] we used our techniques to study the case of link concordance. In this
case we have n-level group diagrams, n > 2, and, not like for link-homotopy, we
get only that if the string links have the same closure, up to concordance, then
there is, for every n > 2, a n-level braid-special isomorphism between the string
links n-level group diagrams.

In this paper we consider first the case of ambient isotopy (see Theorem 4).
Despite the fact that our assumption (ambient isotopy) is stronger than that in
our paper [2] (concordance), we provide a different, more direct proof. The proof
is based in a result from Habegger-Lin [5] (see Theorem 3 below) different from
that used in [2]. We also provide an alternative proof for the main Theorem in [1]
(see Theorem 12 below), which allows some clear geometric interpretation of that
result.

In the case of string links f and g we show also that if we have a braid-
special isomorphism between the n-level group diagrams for f and g, then there
is a certain relation between f and g that depends on the kernel of the “Artin
representation” (Theorem 6). In particular, if f and g are concordant, we have
that relation between f and g (Corollary 7).

2 Ambient Isotopy

We will remember some results and notation from [2]. I is the interval [0, 1],
D is the unit disk

{
x ∈ R

2 | ‖x‖ 6 1
}

, k > 1 is an integer number, k is the set

{1, 2, . . . , k}, (∀i ∈ k) ai is the point
(
−1 + 2i

k+1 , 0
)
∈ D and j0 : k× I −→ D × I

is the map defined by (i, x)j0 = (ai , x). Note that, as above, if f is a map, we will
usually write (x) f instead of f (x).

Definition 1. A k-string link is a (smooth or piecewise linear) proper embedding
f : k× I −→ D× I such that f |k×∂I = j0|k×∂I (see Fig. 1).

Figure 1: Top and bottom meridians of a 2-string link.

The product of two k-string links f and g, denoted by f g, is given by stacking
f on the top of g and reparametrizing (see [1]). This product induces a monoid
structure on the set SL(k) of (ambient) isotopy classes of k-string links.
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Habegger-Lin (see [5]) introduced a left and a right action of the monoid
SL(2k) on the set SL(k) that we will call Habegger-Lin’s actions. We use a slightly
different notation (see Fig. 2 below).

Figure 2: A 4-string link β acts from the left and from the right on a 2-string link
f .

Definition 2. The reflection of a k-string link f is the k-string link f R obtained by
reflecting f in D× 1

2 .

The fundamental group of the complement of a string link f is called the group
of f and is denoted by π( f ).

For a group G, let {Gn}, n > 1, denote the lower central series of G, that is,
G1 = G and inductively Gn+1 = [G, Gn] (where for sets A, B ⊆ G, [A, B] denotes
the group generated by all commutators [a, b] = aba−1b−1, a ∈ A, b ∈ B.)

Let G̃ = lim
←−n

G
Gn

be the nilpotent completion of G.

Let F(k) denote the free group in k generators α1, α2, . . . , αk.
Let f be a k-string link. We will denote by xi = xi( f ) ∈ π( f ), for all i ∈ k, the

top meridians of f and by yi = yi( f ) ∈ π( f ), for all i ∈ k, the bottom meridians
of f (see Fig. 1 and [3]).

For j = 0, 1, inclusions ij : D × {j} \ ∂j f → D× I\ f induce homomorphisms
µ0( f ) : F(k) = F(α1, α2, . . . , αk) → π( f ), (αi)µ0( f ) = xi( f ), and µ1( f ) : F(k) →
π( f ), (αi)µ1( f ) = yi( f ), called respectively, the top meridian map for f and the
bottom meridian map for f . By Stallings’ Theorem [11] (see also [5]), they also
induce isomorphisms on the lower central series quotients of fundamental groups:

F(k)

F(k)n

(µ0( f ))n
−→
∼=

π( f )

π( f )n

(µ1( f ))n
←−
∼=

F(k)

F(k)n
.

Therefore (µ0( f ))n (µ1( f ))−1
n is an element f n ∈ Aut

(
F(k)

F(k)n

)
, the group of auto-

morphisms of F(k)
F(k)n

.
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µ0( f ) and µ1( f ) also induce isomorphisms (see [8]):

F̃(k)
µ̃0( f )
−→
∼=

π̃( f )
µ̃1( f )
←−
∼=

F̃(k).

Thus we have f̃ = µ̃0( f ) µ̃1( f )
−1
∈ Aut(F̃(k)).

The associations f 7→ fn and f 7→ f̃ are monoid homomorphism from SL(k)

into Aut
(

F(k)
F(k)n

)
and Aut(F̃(k)), respectively.

Note also that, since µ0( f R) = µ1( f ) and µ1( f R) = µ0( f ), we have ( f R)n =

f
−1

n and also f̃ R = f̃−1.

f n is a braid-like automorphism of F(k)
F(k)n

, that is (i) it sends the class of each gener-

ator αi into a conjugate of itself and (ii) it sends the class of the product α1α2 . . . αn

into itself. An automorphism that satisfies (i) above is called special.
Let F(k) be the free group in k generators α1, α2, . . . , αk and F(2k) be the free

group in 2k generators α1, α2, . . . , αk, α̃k, . . . , α̃2, α̃1. We will denote by ξ the epi-

morphism ξ : F(2k) → F(k) given by (αi)ξ = αi and (α̃i)ξ = α−1
i for any i ∈ k.

The kernel of ξ is 〈αiα̃i | i ∈ k〉N , the normal subgroup of F(2k) generated by
{αi α̃i | i ∈ k}.

Let Sk(1)n = {β ∈ SL(2k) | β · 1n is the identity automorphism of F(k)
F(k)n
}.

Clearly Sk(1)n contains the stabilizer of 1 for Habegger-Lin’s action Sk(1) =
= {β ∈ SL(2k) | β · 1 = 1 ∈ SL(k)}.

Let Sk(1) = {β ∈ SL(2k) | β̃ · 1 is the identity automorphism of F̃(k)}. Then

Sk(1) ⊆ Sk(1) =
⋂
n

Sk(1)n.

If β ∈ SL(2k) and f ∈ SL(k) we have also a previously defined Habegger-

Lin’s action f · β. Thus we can consider kS(1)n = {β ∈ SL(2k) | 1 · βn is the

identity automorphism of F(k)
F(k)n
}. Then kS(1)n contains the stabilizer of 1 for

Habegger-Lin’s action kS(1) = {β ∈ SL(2k) | 1 · β = 1 ∈ SL(k)}. Similarly

we can define kS(1) = {β ∈ SL(2k) | 1̃ · β is the identity automorphism of

F̃(k)} =
⋂
n

kS(1)n.

Theorem 1. Let β ∈ SL(2k). β ∈ Sk(1)n

⋂
kS(1)n if and only if there exists an

automorphism βn :
F(k)

F(k)n
→ F(k)

F(k)n
such that the diagram

F(2k)

F(2k)n

ξn
��

βn // F(2k)

F(2k)n

ξn
��

F(k)

F(k)n

βn // F(k)

F(k)n

is commutative, where ξn is induced from ξ.

Proof. see [2].
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Corollary 2. β ∈ Sk(1)∩ kS(1) if and only if there exists an automorphism ˜̃β : F̃(k) −→

F̃(k) such that the diagram

F̃(2k)
β̃

//

ξ̃
��

F̃(2k)

ξ̃
��

F̃(k)
˜̃β

// F̃(k)

is commutative, where ξ̃ is induced from ξ.

Proof. see [2].

Definition 3. A k-link (or a link of k components) is an embedding of a disjoint

union of ordered oriented circles
k⊔

i=1
S1 into S3.

To a k-string link f it is associated a k-link f̂ called its closure (see [1]).

Definition 4. If L is a link, the fundamental group of the complement of L is
called the group o f L and is denoted by G(L).

Let f × 1 denote the 2k-string link obtained from a k-string link f by adding k
straight strings at its end (see [2]).

By [8], the natural homomorphism p f : π( f ) −→ G( f̂ ) is onto with kernel
normally generated by the commutators [xi( f ), λi( f )], for any i ∈ k, where xi( f )
are the top meridians of f and λi( f ) are the correspondent longitudes of f . Thus

we have, for every n > 2, an induced epimorphism (p f )n :
π( f )

π( f )n
−→ G( f̂ )

G( f̂ )n
. Let

(q f )n = (µ0( f )n)(p f )n :
F(k)

F(k)n
−→

G( f̂ )

G( f̂ )n
. Then (q f )n is an epimorphism that

sends αiF(k)n to uiG( f̂ )n, where ui ∈ G( f̂ ) is a meridian for the link f̂ arising
from xi( f ).

As we saw in [2], since f n conjugates the classes of the meridians αiF(k)n

by the classes of the correspondent longitudes (see [5]), and remembering that
µ0( f )n is an isomorphism, we have that ker(q f )n =

=
〈
(αiF(k)n) f nα−1

i F(k)n | i ∈ k
〉N

and that ker(ξn(q f )n) =

=
〈
(αiF(2k)n) f × 1nα−1

i F(2k)n , αiα̃iF(2k)n | i ∈ k
〉N

.

Definition 5. Given a k-string link f , the n-level group diagram for f , n > 2, is the
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commutative diagram

F(2k)

F(2k)n

ξn
��

f×1n // F(2k)

F(2k)n

ξn
��

F(k)

F(k)n

(q f )n   ❇
❇❇

❇❇
❇❇

❇

F(k)

F(k)n

(q f )n~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

G( f̂ )

G( f̂ )n

That the previous diagram is commutative follows from [10].

Given n-level group diagrams for all n and taking inverse limits, we have the
group diagram for f :

F̃(2k)

ξ̃
��

f̃×1
// F̃(2k)

ξ̃
��

F̃(k)

q̃ f ""❊
❊❊

❊❊
❊❊

❊
F̃(k)

q̃ f||②②
②②
②②
②②

G̃( f̂ )

Definition 6. Given n-level group diagrams for k-string links f and g, an n-level
braid-special isomorphism between them is a commutative diagram

F(2k)

F(2k)n

ξn

��

bn // F(2k)

F(2k)n

ξn

��

F(2k)

F(2k)n

f×1n

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
an //

ξn

��

F(2k)

F(2k)n

g×1n

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

ξn

��

F(k)

F(k)n

(q f )n

✌✌
✌✌
✌✌
✌

��✌✌
✌
✌
✌
✌

dn // F(k)

F(k)n

(qg)n

��✌✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌

F(k)

F(k)n

(q f )n
!!❇

❇❇
❇❇

cn // F(k)

F(k)n

(qg)n
!!❇

❇❇
❇❇

G( f̂ )

G( f̂ )n

en // G(ĝ)

G(ĝ)n

where an, bn are braid-like isomorphisms and cn, dn, en are special isomorphisms
(see [7] for the meaning of en being special).
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Definition 7. Given group diagrams for k-string links f and g, a braid-special
isomorphism between them is a commutative diagram

F̃(2k)

ξ̃

��

b // F̃(2k)

ξ̃

��

F̃(2k)

f̃×1
55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ a //

ξ̃

��

F̃(2k)

g̃×1
66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

ξ̃

��

F̃(k) d //

q̃ f

☛
☛
☛☛
☛☛
☛

��☛☛
☛☛
☛☛

F̃(k)

q̃g

��☛☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

F̃(k) c //

q̃ f
""❊

❊❊
❊❊

❊❊
F̃(k)

q̃g ""❊
❊❊

❊❊
❊❊

G̃( f̂ ) e // G̃(ĝ)

where a, b are braid-like isomorphisms and c, d, e are special isomorphisms.

Given k–string links f and g, it is geometrically clear that if there is a 2k-string

link β such that 1 · β is isotopic to f and β · 1 is isotopic to g, then f̂ and ĝ are
isotopic. The converse was proved by Habegger-Lin [5, Proposition 2.1]. Thus
we have

Theorem 3. (Habegger-Lin) Let f , g be k-string links. Then f̂ is isotopic to ĝ if and only
if there is a 2k-string link β such that 1 · β is isotopic to f and β · 1 is isotopic to g.

Theorem 4. If f and g are k-string links with the same closure then, for every n > 2,
there exists a n-level braid-special isomorphism between the n-level group diagrams of f
and g.

Proof. If f and g have the same closure then their reflections f R and gR also have
the same closure. By Theorem 3, there is a 2k-string link β such that β · 1 = f R

and 1 · β = gR.

Note that 1 · βR = (β · 1)R, therefore β · 1 = f R and 1 · β = gR is equivalent to
1 · βR = f and βR · 1 = g.

We have that, for each n > 2,

(i) β · 1 = f R ⇒ f × 1 β · 1 = 1⇒ f × 1 β ∈ Sk(1)n;

(ii) 1 · β = gR ⇒ β g× 1 · 1 = 1⇒ β g× 1 ∈ Sk(1)n;

(iii) 1 · βR = f ⇒ βR f R × 1 · 1 = 1⇒ βR f R × 1 ∈ Sk(1)n;

(iv) βR · 1 = g ⇒ gR × 1 βR · 1 = 1⇒ gR × 1 βR ∈ Sk(1)n.

It follows that f × 1 β ∈ Sk(1)n ∩ kS(1)n and β g× 1 ∈ Sk(1)n ∩ kS(1)n.
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By Theorem 1 we have commutative diagrams

F(2k)

F(2k)n

ξn
��

f×1nβn // F(2k)

F(2k)n

ξn
��

F(k)

F(k)n

( f×1 β)n // F(k)

F(k)n

and

F(2k)

F(2k)n

ξn
��

βng×1n // F(2k)

F(2k)n

ξn
��

F(k)

F(k)n

(β g×1)n // F(k)

F(k)n

where ( f × 1 β)n and (β g× 1)n are special automorphisms.
Therefore we have a commutative diagram

G( f̂ )

G( f̂ )n

G(ĝ)

G(ĝ)n

F(k)

F(k)n

(q f )n

OO

(βg×1)n // F(k)

F(k)n

(qg)n

OO

F(2k)

F(2k)n

ξn

OO

βng×1n // F(2k)

F(2k)n

ξn

OO

F(2k)

F(2k)n

f×1n

OO

f×1nβn //

ξn
��

F(2k)

F(2k)n

g×1n

OO

ξn
��

F(k)

F(k)n

( f×1β)n //

(q f )n ��

F(k)

F(k)n

(qg)n
��

G( f̂ )

G( f̂ )n

G(ĝ)

G(ĝ)n

Since ( f × 1β)n and (βg× 1)n are induced automorphisms and ker ξn =

= 〈αiαiF(2k)n | i ∈ k〉N, we know that

1. 〈αiα̃iF(2k)n | i ∈ k〉N f × 1nβn = 〈αiα̃iF(2k)n | i ∈ k〉N, and

2. 〈αiα̃iF(2k)n | i ∈ k〉N βng× 1n = 〈αiα̃iF(2k)n | i ∈ k〉N.

We know from [2] that ker(ξn(q f )n) =
〈
(αiF(2k)n) f × 1nα̃iF(2k)n ,

αiα̃iF(2k)n | i ∈ k〉N and that ker(q f R)n = ker(q f )n. From (1) we have

3.
〈
(αiF(2k)n) f × 1nα̃iF(2k)n | i ∈ k

〉N
βn = 〈αiα̃iF(2k)n | i ∈ k〉N and from (2)

we have
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4. 〈αiα̃iF(2k)n | i ∈ k〉N βn = 〈αiα̃iF(2k)n | i ∈ k〉N g× 1
−1
n .

From (3) and (4) we have

(ker(ξn(q f )n)) f × 1nβn =

= (ker(ξn(q f R)n)) f × 1nβn =

=
〈
(αiF(2k)n) f R × 1nα̃iF(2k)n , αiα̃iF(2k)n | i ∈ k

〉N
f × 1nβn =

=
〈

αiα̃iF(2k)n , (αiF(2k)n) f × 1nα̃iF(2k)n | i ∈ k
〉N

βn =

=
〈
(αiF(2k)n)gR × 1nα̃iF(2k)n , αiα̃iF(2k)n | i ∈ k

〉N
=

= ker(ξn(qgR)n) = ker(ξn(qg)n).

From (2) and (3) we have

(ker(ξn(q f )n))βng× 1n =

=
〈
(αiF(2k)n) f × 1nα̃iF(2k)n , αiα̃iF(2k)n | i ∈ k

〉N
βng× 1n =

=
〈
(αiF(2k)n)g× 1nα̃iF(2k)n , αiα̃iF(2k)n | i ∈ k

〉N
= ker(ξn(qg)n).

Therefore we have a commutative diagram

G( f̂ )

G( f̂ )n

an // G(ĝ)

G(ĝ)n

F(k)

F(k)n

(q f )n

OO

(βg×1)n // F(k)

F(k)n

(qg)n

OO

F(2k)

F(2k)n

ξn

OO

βng×1n // F(2k)

F(2k)n

ξn

OO

F(2k)

F(2k)n

f×1n

OO

f×1nβn //

ξn
��

F(2k)

F(2k)n

g×1n

OO

ξn
��

F(k)

F(k)n

( f×1β)n //

(q f )n ��

F(k)

F(k)n

(qg)n
��

G( f̂ )

G( f̂ )n

bn // G(ĝ)

G(ĝ)n

We can show, as in [2, Theorem 21], that an = bn and so we have a n-level
braid-special isomorphism as stated.

Corollary 5. If f and g are k-string links with the same closure, then there exists a
braid-special isomorphism between the group diagrams of f and g.
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Theorem 6. Let f and g be k-string links. If there is a braid-special isomorphism between
the n-level group diagrams of f and g, then there exists a 2k-string link β such that
β · gn = 1 and f · βn = 1.

Proof. Suppose there is a braid-special isomorphism

F(2k)

F(2k)n

ξn

��

b // F(2k)

F(2k)n

ξn

��

F(2k)

F(2k)n

f×1n

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
a //

ξn

��

F(2k)

F(2k)n

g×1n

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

ξn

��

F(k)

F(k)n

(q f )n

✌✌
✌✌
✌✌
✌

��✌✌
✌
✌
✌
✌

d // F(k)

F(k)n

(qg)n

��✌✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌

F(k)

F(k)n

(q f )n
!!❇

❇❇
❇❇

c // F(k)

F(k)n

(qg)n
!!❇

❇❇
❇❇

G( f̂ )

G( f̂ )n

e // G(ĝ)

G(ĝ)n

between the n-level group diagrams of f and g.

Let γn = b g× 1
−1
n = f × 1

−1

n a. Since γn is braid-like, by [5], there is a 2k-

string link β such that βn = γn. By Theorem 1, f × 1 β ∈ Sk(1)n ∩ kS(1)n and

β g × 1 ∈ Sk(1)n ∩ kS(1)n, since f × 1nβn = a and βn g× 1n = b. Therefore

f · βn = 1 · f × 1βn = 1 and β · gn = β g× 1 · 1n = 1.

Corollary 7. If f and g are concordant k-string links, then, for each n > 2, there is a
2k-string link β such that β · gn = 1 and f · βn = 1.

Proof. If f and g are concordant, it follows from [2] that there is a braid-special
isomorphism between the n-level group diagrams of f and g.

3 Link-Homotopy

Definition 8. k-string links f and g are link-homotopic if there is a homotopy of the
strings in D× I, fixing the endpoints and deforming f to g, such that the images
of different strings remain disjoint during the deformation.

We will denote by H(k) the group of link-homotopy classes of k-string links
and by 1k its neutral element.

Habegger-Lin actions induce actions from the group H(2k) on the set H(k).

Definition 9. k-links Lo, L1 :
k⊔

i=1
S1

i −→ S3 are link-homotopic if there is a homotopy

Lt :
k⊔

i=1
S1

i −→ S3, 0 6 t 6 1, such that (S1
i )Lt and (S1

j )Lt are disjoint for any i 6= j

and 0 6 t 6 1.
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Alternatively, two links are link-homotopic if they are related by a sequence
of isotopies and same-component crossing changes (see [6]).

By using Corollary 2.4 and Lemma 2.5 of [6] one can adapt the proof of Theo-
rem 3 above, given in [5], to show that

Theorem 8. Let f , g be k-string links. Then f̂ is link-homotopic to ĝ if and only if there
is a 2k-string link β such that 1k · β is link-homotopic to f and β · 1k is link-homotopic to
g.

Definition 10. Let F(k) be the free group in k generators α1, α2, . . . , αk, and RF(k)
the quotient group obtained from F(k) by adding relations which say that each
αi commutes with all of its conjugates. RF(k) is called the reduced free group in k
generators.

Let f be a k-string link and xi = xi( f ), ∀i ∈ k, its top meridians, then Rπ( f )
denotes the quotient group obtained from π( f ) by adding relations which say
that each xi( f ) commutes with all of its conjugates.

Habegger-Lin [6] introduced an Artin-type theorem for H(k); they showed
that if f is a k-string link, µ0( f ) and µ1( f ) induce isomorphisms

RF(k)
∼=
−→
µ′0( f )

Rπ( f )
∼=
←−
µ′1( f )

RF(k)

that provide an automorphism f = µ′0( f )µ′1( f )−1. f is called the Artin automor-
phism associated to f .

If αi denotes also the class of αi in RF(k), we have (1) (αi) f is a conjugate of αi

and (2) (α1α2 . . . αk) f = α1α2 . . . αk, that is f is a braid-like automorphism of RF(k).
Automorphisms satisfying condition (1) above are called special.

The association f 7→ f is an isomorphism between the group H(k) and the
subgroup A0(RF(k)) of all braid-like automorphisms of RF(k).

According to Habegger-Lin [5] the stabilizer of 1k for both actions of H(2k) on
H(k) is the same. Let S(1k) = {β ∈ H(2k) | β · 1k = 1k ∈ H(k)} =
= {β ∈ H(2k) | 1k · β = 1k ∈ H(k)} be such stabilizer of 1k.

Let RF(k) be the reduced free group in k generators α1, α2, . . . , αk and RF(2k)
be the reduced free group is 2k generators α1, α2, . . . , αk,
α̃k, . . . , α̃2, α̃1. Let ξ′ : RF(2k) −→ RF(k) be the epimorphism given by, ∀i ∈ k,

(αi)ξ
′ = αi and (α̃i)ξ = α−1

i .
We have shown in [1] that

Theorem 9. Let β ∈ H(2k). β ∈ S(1k) if and only if there exists a special automorphism
¯̄β : RF(k) −→ RF(k) such that the diagram

RF(2k)

ξ ′

��

β
// RF(2k)

ξ ′

��
RF(k)

β
// RF(k)

is commutative.
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Theorem 10. The association β 7→ β from S(1k) into the group A(RF(k)), of all special
automorphisms of RF(k), is an epimorphism.

Proof. It is clearly a homomorphism. On the other side, let αij ∈ A(RF(k)) be

defined by αi 7→ αj αi α−1
j , αs 7→ αs for s 6= i. Then A(RF(k)) is generated by

{αij}, for 1 6 i 6= j 6 k (see [7]). It follows from [3, Proposition 6] that our map is
onto.

We have determined its kernel in [4]

Definition 11. A braid-like automorphism ψ of RF(2k) is a stabilizing automor-
phism if (ker ξ′)ψ ⊆ ker ξ′.

As we saw earlier g× 1 represents the 2k-string link obtained from a k-string
link g by adding k straight strings at its end. The Artin automorphism g× 1
associated to g× 1 will be denoted by g ∗ 1.

Theorem 11. k-string links f and g have link-homotopic closures if and only if there is
a braid-like automorphism θ of RF(2k) such that we have commutative diagrams

RF(2k)

ξ ′

��

f ∗1 θ
// RF(2k)

ξ ′

��
RF(k) // RF(k)

and

RF(2k)

ξ ′

��

θ g∗1
// RF(2k)

ξ ′

��
RF(k) // RF(k)

where the bottom maps are special automorphisms.

Proof. If f̂ and ĝ are link-homotopic, then f̂−1 and ĝ−1 are link-homotopic. By
Theorem 8, there is a 2k-string link β such that β · 1k link-homotopic to f−1 and
β−1 · 1k = (1k · β)−1 is link-homotopic to g. Then we have f × 1 β · 1k link-
homotopic to f × 1 · f−1 that is link-homotopic to 1k and, similarly, g−1 × 1 β−1 ·
1k link-homotopic to 1k. Therefore f × 1 β ∈ S(1k) and β g × 1 = (g−1 ×
1 β−1)−1 ∈ S(1k). By Theorem 9 we have commutative diagrams as stated, where
θ = β.

Conversely, suppose we have commutative diagrams

RF(2k)

ξ ′

��

f∗1 θ
// RF(2k)

ξ ′

��
RF(k) // RF(k)

and

RF(2k)

ξ ′

��

θ g∗1
// RF(2k)

ξ ′

��
RF(k) // RF(k)

with θ braid-like. Let β be the 2k-string link such that β = θ. By Theorem 9,
f × 1 β ∈ S(1k) and g−1× 1 β−1 ∈ S(1k). Then f × 1 β · 1k is link-homotopic to
1k and g−1 × 1 β−1 · 1k is link homotopic to 1k. Then β · 1k is link-homotopic to
f−1 and 1k · β = (β−1 · 1k)

−1 is link-homotopic to g−1. Therefore, by Theorem 8,
f−1 and g−1 have homotopic closures, thus f and g have homotopic closures.
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Note that Theorem 11 could be restated as “k-string links f and g have
link-homotopic closures if and only if there is a braid-like automorphism θ of

RF(2k) such that f ∗ 1 θ and θ g ∗ 1 are stabilizing automorphisms of RF(2k).”
Given a homotopy class of a k-string link f we have a diagram

RF(2k)

ξ
��

f ∗1
// RF(2k)

ξ
��

RF(k)

q f %%❏
❏❏

❏❏
❏❏

❏❏
RF(k)

q fyyttt
tt
tt
tt

RG( f̂ )

That the above diagram is commutative follows from [9]. Such diagram will be
called a group diagram for the homotopy class of f .

A braid-special isomorphism between group diagrams for homotopy classes of
k-string links can be defined (see [2, section 4]).

Applying our previous results in the case of link-homotopy we get an alter-
native proof to the final result of [1] (see also [2, section 4] for a correction), that
is

Theorem 12. Let f and g be k-string links. Then f̂ and ĝ are link-homotopic if and only
if there exists a braid-special isomorphism between the group diagrams for the homotopy
classes of f and g.

Proof. If f and g have link-homotopic closures, from Theorem 8, there is a
2k-string link β such that β · 1k is link-homotopic to f−1 and 1k · β is link-homoto-
pic to g−1. As in Theorem 4, we obtain a braid-special isomorphism between the
group diagrams for the homotopy classes of f and g.

Conversely given a braid-special isomorphism between the group diagrams
for the homotopy classes of f and g, we have diagrams as in Theorem 11 for f−1

and g−1 therefore f and g have link-homotopic closures.
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