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Abstract

We study the existence of solutions for a new class of integral equations
involving a fractional integral with respect to another function. Our tech-
niques are based on the measure of non-compactness concept combined with
a generalized version of Darbo’s theorem. Some examples are presented to
illustrate the obtained results.

1 Introduction

Many problems in several branches of science such as engineering, physics,
biology and other disciplines can be modeled as an integral equation (see, for
example [10, 23, 32, 34, 35]). The most used techniques to study the existence of
solutions to an integral equation are based on fixed point arguments. For exam-
ple, Banach contraction principle was used by several authors in order to estab-
lish existence results for different kinds of integral equations (see, for example
[27, 29, 30, 33]). Similarly, many solvability results were derived via Schauder’s
fixed point theorem (see, for example [14, 25, 26]). On the other hand, in the
absence of compacity and the Lipschitz condition, the above mentioned theorems
cannot be applied. In such situation, the measure of non-compactness concept
can be useful in order to avoid the mentioned problems.

Several existence results for integral equations were established using fixed
point theorems involving measures of non-compactness. For more details, we

Received by the editors in May 2016 - In revised form in August 2016.
Communicated by E. Colebunders.
2010 Mathematics Subject Classification : 45G05, 26A33, 74H20.
Key words and phrases : Integral equation; fractional integral with respect to another function;
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refer the reader to [1, 3, 4, 5, 7, 8, 9, 12, 13, 15, 20, 21, 28] and the references therein.
On the other hand, due to the importance of fractional calculus in modelling
various problems from many fields of science and engineering, a great attention
has been focused recently on the study of fractional integral equations (see, for
example [2, 6, 11, 16, 17, 18, 24]).

In this paper, we deal with a new class of fractional integral equations involv-
ing a fractional integral with respect to another function. Using a fixed point the-
orem involving measures of non-compactness, an existence result is established.
Some numerical examples are also provided.

2 Problem formulation and preliminaries

The main purpose of this paper is to study the following integral equation

x(t) = f1(t, x(t)) +
f2(t, x(t))

Γ(α)

∫ t

a

g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α
dτ, t ∈ [a, T], (2.1)

where α ∈ (0, 1), 0 ≤ a < T, k : [a, T] × R → R, g : [a, T] → R and
fi : [a, T]× R → R (i = 1, 2), from the point of view of the theory of existence of
solutions. Eq.(2.1) can be written in the form

x(t) = f1(t, x(t)) + f2(t, x(t))Iα
a,gk(·, x(·))(t), t ∈ [a, T],

where Iα
a,g is the fractional integral of order α with respect to the function g

defined by

Iα
a,gψ(t) =

1

Γ(α)

∫ t

a

g′(τ)ψ(τ)
(g(t) − g(τ))1−α

dτ, t ∈ [a, T].

In the particular case g(τ) = τ, Eq.(2.1) models some problems in the queuing
theory and biology (see [19]). In such case, Iα

a,g is the Riemann-Liouville fractional
integral defined by

Iα
a ψ(t) =

1

Γ(α)

∫ t

a

ψ(τ)

(t − τ)1−α
dτ, t ∈ [a, T]. (2.2)

In the case g(τ) = τβ (β > 0), Iα
a,g is the Erdélyi-Kober fractional integral defined

by

Iα
a,βψ(t) =

β

Γ(α)

∫ t

a

τβ−1ψ(τ)

(tβ − τβ)1−α
dτ, t ∈ [a, T]. (2.3)

However, in the case g(τ) = ln τ and a > 0, Iα
a,g is the Hadamard fractional

integral defined by

Jα
a ψ(t) =

1

Γ(α)

∫ t

a

(
ln

t

τ

)α−1 ψ(τ)

τ
dτ, t ∈ [a, T]. (2.4)

For more details on fractional calculus, we refer the reader to [31].
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Using a measure of non-compactness in the set C([a, T]; R) of real continuous
functions in [a, T] introduced by Banaś and Goebel [8], we give sufficient con-
ditions for the existence of at least one solution to Eq.(2.1). To the best of our
knowledge, an integral equation of the type (2.1) has not been considered earlier.

Before presenting and proving the main results of this paper, we need to recall
some basic concepts and present some preliminaries results that will be useful
later.

Let (H, ‖ · ‖) be a given Banach space. We denote by BH the family of all
nonempty bounded subsets of H. A mapping η : BH → [0, ∞) is said to be a
measure of non-compactness (see [8]) if it satisfies the following axioms:
(A1) for all B ∈ BH, we have

η(B) = 0 =⇒ B is precompact;

(A2) for every pair (B1, B2) ∈ BH × BH, we have

B1 ⊆ B2 =⇒ η(B1) ≤ η(B2);

(A3) for every B ∈ BH,
η(B) = η(B) = η(coB),

where coB denotes the closed convex hull of B;
(A4) for every pair (B1, B2) ∈ BH × BH and λ ∈ (0, 1), we have

η(λB1 + (1 − λ)B2) ≤ λη(B1) + (1 − λ)η(B2);

(A5) if {Bn} is a sequence of closed and decreasing (w.r.t ⊆) sets in BH such that

η(Bn) → 0 as n → ∞, then B∞ :=
∞⋂

n=1

Bn is nonempty and compact.

A function ϕ : [0, ∞) → [0, ∞) is said to be a comparison function if it satisfies
the following properties:
(i) ϕ is non-decreasing;

(ii) lim
n→∞

ϕ(n)(t) = 0, for all t > 0, where ϕ(n) denotes the n-iteration of ϕ.

Examples of comparison functions are

ϕ(t) = λ t, λ ∈ [0, 1); ϕ(t) = arctan t; ϕ(t) = ln(1 + t); ϕ(t) =
t

1 + t
.

Through this paper, we denote by Φ the set of comparison functions.
In [5], Aghajani et al. proved the following useful result in order to prove that

a function is a comparison function.

Lemma 2.1. Let ϕ : [0, ∞) → [0, ∞) be a non-decreasing and upper semi-continuous
function. Then the following conditions are equivalent:

(i) lim
n→∞

ϕ(n)(t) = 0 for all t > 0.

(ii) ϕ(t) < t for all t > 0.

In the same paper, the authors proved the following generalization of Darbo’s
theorem (see [1]).
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Lemma 2.2. Let C be a nonempty, bounded, closed and convex subset of a Banach space
H. Let U : C → C be a continuous mapping such that

η(UW) ≤ ϕ(η(W)), W ⊆ C,

where ϕ ∈ Φ and η is a measure of non-compactness in H. Then U has at least one fixed
point.

For given functions ϕ, ψ : [0, ∞) → R and a real number λ, define the opera-
tors Tmax and T by

Tmax(ϕ, ψ)(t) = max{ϕ(t), ψ(t)}, t ≥ 0

and
T(λ, ϕ)(t) = λϕ(t), t ≥ 0.

Denote by C([0, ∞); R) the set of real continuous functions in [0, ∞) and by Φ̃ the
set Φ ∩ C([0, ∞); R).

The following lemma is interesting for our purpose.

Lemma 2.3. The following properties hold:

(i) Tmax(Φ̃ × Φ̃) ⊆ Φ̃.
(ii) T([0, 1]× Φ̃) ⊆ Φ̃.

Proof. Let (ϕ, ψ) ∈ Φ̃ × Φ̃. We have to prove that Tmax(ϕ, ψ) : [0, ∞) → [0, ∞)

belongs to Φ̃. Since the maximum of a finite number of continuous functions is

continuous, we have Tmax(ϕ, ψ) ∈ C([0, ∞); R). Moreover, since (ϕ, ψ) ∈ Φ̃ ×
Φ̃ ⊆ Φ × Φ, then ϕ and ψ are non-decreasing functions, which yields Tmax(ϕ, ψ)
is also a non-decreasing function. From Lemma 2.1, we have

ϕ(t) < t, ψ(t) < t, t > 0.

Then
Tmax(ϕ, ψ)(t) < t, t > 0.

Again, by Lemma 2.1, we get

lim
n→∞

[Tmax(ϕ, ψ)](n)(t) = 0, t > 0.

Therefore, Tmax(ϕ, ψ) ∈ Φ. As consequence, Tmax(ϕ, ψ) ∈ Φ ∩ C([0, ∞); R) = Φ̃,
which proves (i). A similar argument can be used to prove (ii).

Let H = C([a, T]; R) be the set of real continuous functions in [a, T]. Such a
set is a Banach space with respect to the norm

‖v‖ = max{|v(t)| : t ∈ [a, T]}, v ∈ C([a, T]; R).

We will use the following notations through this paper. Let B ∈ BH. For v ∈ B
and ρ ≥ 0, set

ω(v, ρ) = sup{|v(t) − v(s)| : t, s ∈ [a, T], |t − s| ≤ ρ}.
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We define the mapping Ω : BH × [0, ∞) → [0, ∞) by

Ω(B, ρ) = sup{ω(v, ρ) : v ∈ B}, (B, ρ) ∈ BH × [0, ∞).

It was proved in [8] that the mapping η : BH → [0, ∞) defined by

η(B) = lim
ρ→0+

Ω(B, ρ), B ∈ BH

is a measure of non-compactness in the Banach space H.
Now, we are ready to present our main results. This is the aim of the next

section.

3 Main results

Our first existence result is obtained under the following hypotheses:
(H1) The functions fi : [a, T]× R → R (i = 1, 2) are continuous.
(H2) There exist functions ϕ1, ϕ2 : [0, ∞) → [0, ∞) such that
(i) ϕi(0) = 0, i = 1, 2.
(ii) ϕ1 is non-decreasing and continuous.

(iii) ϕ2 ∈ Φ̃.

(iv) There exist δ ≥ 0 and θ ∈ Φ̃ such that

ϕ1(t) ≤ δθ(t), t ≥ 0.

(v) For all (t, u, v) ∈ [a, T]× R × R, we have

| fi(t, u)− fi(t, v)| ≤ ϕi(|u − v|), i = 1, 2.

(H3) The function k : [a, T]× R → R is continuous and it satisfies

|k(t, u)| ≤ ϕ(|u|), (t, u) ∈ [a, T]× R,

where ϕ : [0, ∞) → [0, ∞) is a non-decreasing function.
(H4) g ∈ C([a, T]; R) ∩ C1((a, T]; R) with g′(t) > 0, for all t ∈ (a, T].
(H5) There exists r0 > 0 such that

(ϕ1(r0) + f ∗1 )Γ(α + 1) + (ϕ2(r0) + f ∗2 )ϕ(r0)(g(T) − g(a))α ≤ r0Γ(α + 1)

and, moreover

δ +
ϕ(r0)

Γ(α + 1)
(g(T)− g(a))α ≤ 1,

where
f ∗i = max{| fi(t, 0)| : t ∈ [a, T]}, i = 1, 2.

Our main result is the following.



140 K. Sadarangani – B. Samet

Theorem 3.1. Under the assumptions (H1)-(H5), Eq.(2.1) has at least one solution
y∗ ∈ C([a, T]; R). Moreover, we have ‖y∗‖ ≤ r0.

Proof. Let us consider the operator U defined on H = C([a, T]; R) by

(Ux)(t) = f1(t, x(t)) +
f2(t, x(t))

Γ(α)

∫ t

a

g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α
dτ, (x, t) ∈ H × [a, T].

(3.1)
At first, we show that the operator U maps H into itself. Set

(Gx)(t) =
∫ t

a

g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α
dτ, (x, t) ∈ H × [a, T]. (3.2)

From assumption (H1), we have just to prove that G maps H into itself, that is,
Gx : [a, T] → R is continuous for every x ∈ H. Observe that Gx is well-defined.
In fact, for all t ∈ [a, T], from assumption (H3), we have

|(Gx)(t)| ≤ ϕ(‖x‖)
∫ t

a

g′(τ)
(g(t) − g(τ))1−α

dτ =
ϕ(‖x‖)

α
(g(t) − g(a))α

< ∞. (3.3)

Let us check the continuity of Gx at the point a. Let {tn} be a sequence in [a, T]
such that tn → a+ as n → ∞. Using (3.3), for all n ∈ N, we have

|(Gx)(tn)| ≤ ϕ(‖x‖)
∫ tn

a

g′(τ)
(g(tn)− g(τ))1−α

dτ =
ϕ(‖x‖)

α
(g(tn)− g(a))α .

Letting n → ∞ in the above inequality and using the continuity of g, we get

lim
n→∞

(Gx)(tn) = 0 = (Gx)(a),

which proves the continuity of Gx at the point a. Now, let t ∈ (a, T] be fixed and
{tn} be a sequence in (a, T] such that tn → t as n → ∞. Without restriction of the
generality, we may assume that tn ≥ t for n large enough. We have

|(Gx)(tn)− (Gx)(t)| =
∣∣∣∣
∫ tn

a

g′(τ)k(τ, x(τ))

(g(tn)− g(τ))1−α
dτ −

∫ t

a

g′(τ)k(τ, x(τ))

(g(t)− g(τ))1−α
dτ

∣∣∣∣ , n ∈ N.

For n large enough, we can write

|(Gx)(tn)− (Gx)(t)|

≤
∣∣∣∣
∫ t

a

(
g′(τ)k(τ, x(τ))

(g(tn)− g(τ))1−α
− g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α

)
dτ

∣∣∣∣

+

∣∣∣∣
∫ tn

t

g′(τ)k(τ, x(τ))

(g(tn)− g(τ))1−α
dτ

∣∣∣∣

≤ ϕ(‖x‖)
∫ t

a

(
g′(τ)

(g(t) − g(τ))1−α
− g′(τ)

(g(tn)− g(τ))1−α

)
dτ

+ϕ(‖x‖)
∫ tn

t

g′(τ)
(g(tn)− g(τ))1−α

dτ

=
ϕ(‖x‖)

α
((g(t) − g(a))α + (g(tn)− g(t))α − (g(tn)− g(a))α)

+
ϕ(‖x‖)

α
(g(tn)− g(t))α .
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Since g is continuous in [a, T], we have

lim
n→∞

ϕ(‖x‖)
α

((g(t) − g(a))α + (g(tn)− g(t))α − (g(tn)− g(a))α) +

ϕ(‖x‖)
α

(g(tn)− g(t))α = 0,

which yields lim
n→∞

|(Gx)(tn) − (Gx)(t)| = 0. Then Gx is continuous at t. As

consequence, Gx ∈ H, for all x ∈ H, and U : H → H is well-defined.
On the other hand, for an arbitrarily fixed x ∈ H and t ∈ [a, T], we have

|(Ux)(t)| ≤ | f1(t, x(t))| + | f2(t, x(t))|
Γ(α)

∫ t

a

g′(τ)|k(τ, x(τ))|
(g(t) − g(τ))1−α

dτ

≤ | f1(t, x(t)) − f1(t, 0)|+ | f1(t, 0)|

+
| f2(t, x(t)) − f2(t, 0)|+ | f2(t, 0)|

Γ(α)

∫ t

a

g′(τ)ϕ(|x(τ)|)
(g(t) − g(τ))1−α

dτ

≤ ϕ1(|x(t)|) + f ∗1 +
(ϕ2(|x(t)|) + f ∗2 )ϕ(‖x‖)

Γ(α + 1)
(g(t)− g(a))α

≤ ϕ1(‖x‖) + f ∗1 +
(ϕ2(‖x‖) + f ∗2 )ϕ(‖x‖)

Γ(α + 1)
(g(T)− g(a))α .

Then

‖Ux‖ ≤ ϕ1(‖x‖) + f ∗1 +
(ϕ2(‖x‖) + f ∗2 )ϕ(‖x‖)

Γ(α + 1)
(g(T)− g(a))α , x ∈ H.

From the above inequality, the fact that the functions ϕ1, ϕ2, ϕ : [0, ∞) → [0, ∞)
are non-decreasing, and assumption (H5), we infer that the operator U maps

B(0, r0) into itself, where

B(0, r0) = {x ∈ H : ‖x‖ ≤ r0}.

Now, we claim that the operator U : B(0, r0) → B(0, r0) is continuous. We
write U in the form

Ux = F1x +
1

Γ(α)
F2x + GX, x ∈ B(0, r0),

where
(Fi x)(t) = fi(t, x(t)), (x, t) ∈ B(0, r0)× [a, T], i = 1, 2

and G is defined by (3.2). In order to prove our claim, it is sufficient to show that

the operators Fi (i = 1, 2) and G are continuous on B(0, r0). Firstly, we show that

Fi are continuous operators on B(0, r0). To do this, we take a sequence {xn} ⊂
B(0, r0) and x ∈ B(0, r0) such that ‖xn − x‖ → 0 as n → ∞, and we have to prove
that ‖Fi xn − Fix‖ → 0 as n → ∞. In fact, for all t ∈ [a, T], we have

|(Fi xn)(t)− (Fi x)(t)| = | fi(t, xn(t))− fi(t, x(t))|
≤ ϕi(|xn(t)− x(t)|)
≤ ϕi(‖xn − x‖).
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Then

‖Fi xn − Fix‖ ≤ ϕi(‖xn − x‖), n ∈ N.

Letting n → ∞ in the above inequality, using the continuity of the functions ϕi

(i = 1, 2) and the fact that ϕi(0) = 0, we get

lim
n→∞

‖Fixn − Fix‖ ≤ ϕi

(
lim

n→∞
‖xn − x‖

)
= ϕi(0) = 0.

This proves that Fi is a continuous operator on B(0, r0), for all i = 1, 2. Next, we

show that G is a continuous operator on B(0, r0). To do this, we fix a real number

ε > 0 and we take arbitrary functions x, y ∈ B(0, r0) such that ‖x − y‖ < ε. For
all t ∈ [a, T], we have

|(Gx)(t) − (Gy)(t)| ≤
∫ t

a

g′(τ)|k(τ, x(τ)) − k(τ, y(τ))|
(g(t)− g(τ))1−α

dτ

≤ u(r0, ε)
∫ t

a

g′(τ)
(g(t) − g(τ))1−α

dτ

=
u(r0, ε)

α
(g(t) − g(a))α

≤ u(r0, ε)

α
(g(T)− g(a))α ,

where

u(r0, ε) = sup{|k(τ, v) − k(τ, w)| : τ ∈ [a, T], v, w ∈ [−r0, r0], |v − w| < ε}.

Therefore,

‖Gx − Gy‖ ≤ u(r0, ε)

α
(g(T) − g(a))α .

Since k is uniform continuous on the compact [a, T]× [−r0, r0], we have u(r0, ε) →
0 as ε → 0+ and, therefore, the last inequality gives us

lim
ε→0+

‖Gx − Gy‖ = 0.

Then G is continuous on B(0, r0) and U maps continuously the set B(0, r0) into
itself.

Further, let W be a nonempty subset of B(0, r0). Let ρ > 0 be fixed, x ∈ W and
t1, t2 ∈ [a, T] be such that |t1 − t2| ≤ ρ. Without restriction of the generality, we
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may assume t1 ≥ t2. We have

|(Ux)(t1)− (Ux)(t2)|
≤ | f1(t1, x(t1))− f1(t2, x(t2))|

+

∣∣∣∣
f2(t1, x(t1))

Γ(α)

∫ t1

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ − f2(t2, x(t2))

Γ(α)

∫ t2

a

g′(τ)k(τ, x(τ))

(g(t2)− g(τ))1−α
dτ

∣∣∣∣

≤ | f1(t1, x(t1))− f1(t2, x(t2))|

+

∣∣∣∣
f2(t1, x(t1))

Γ(α)

∫ t1

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ − f2(t2, x(t2))

Γ(α)

∫ t1

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ

∣∣∣∣

+
| f2(t2, x(t2))|

Γ(α)

∣∣∣∣
∫ t1

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ −

∫ t2

a

g′(τ)k(τ, x(τ))

(g(t2)− g(τ))1−α
dτ

∣∣∣∣

≤ | f1(t1, x(t1))− f1(t1, x(t2))|+ | f1(t1, x(t2))− f1(t2, x(t2))|

+
| f2(t1, x(t1))− f2(t1, x(t2))|+ | f2(t1, x(t2))− f2(t2, x(t2))|

Γ(α)

∫ t1

a

g′(τ)|k(τ, x(τ))|
(g(t1)− g(τ))1−α

dτ

+
| f2(t2, x(t2))− f2(t2, 0)|+ | f2(t2, 0)|

Γ(α)

∣∣∣∣
∫ t1

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ −

∫ t2

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ

∣∣∣∣

+
| f2(t2, x(t2))− f2(t2, 0)|+ | f2(t2, 0)|

Γ(α)

∣∣∣∣
∫ t2

a

g′(τ)k(τ, x(τ))

(g(t1)− g(τ))1−α
dτ −

∫ t2

a

g′(τ)k(τ, x(τ))

(g(t2)− g(τ))1−α
dτ

∣∣∣∣

≤ ϕ1(|x(t1)− x(t2)|) + ω f1
(r0, ρ) +

ϕ2(|x(t1)− x(t2)|) + ω f2
(r0, ρ)

Γ(α + 1)
ϕ(r0)(g(t1)− g(a))α

+
(ϕ2(r0) + f ∗2 )ϕ(r0)

Γ(α)

∫ t1

t2

g′(τ)
(g(t1)− g(τ))1−α

dτ

+
(ϕ2(r0) + f ∗2 )ϕ(r0)

Γ(α + 1)
((g(t2)− g(a))α + (g(t1)− g(t2))

α − (g(t1)− g(a))α)

≤ ϕ1(ω(x, ρ)) + ω f1
(r0, ρ) +

ϕ2(ω(x, ρ)) + ω f2
(r0, ρ)

Γ(α + 1)
ϕ(r0)(g(T)− g(a))α

+
2(ϕ2(r0) + f ∗2 )ϕ(r0)

Γ(α + 1)
(g(t1)− g(t2))

α

≤ ϕ1(Ω(W, ρ)) + ω f1
(r0, ρ) +

ϕ2(Ω(W, ρ)) + ω f2
(r0, ρ)

Γ(α + 1)
ϕ(r0)(g(T)− g(a))α

+
2(ϕ2(r0) + f ∗2 )ϕ(r0)

Γ(α + 1)
[ω(g, ρ)]α,

where

ω fi
(r0, ρ) = sup{| fi(t, y)− fi(s, u)| : u ∈ [−r0, r0], t, s ∈ [a, T], |t− s| ≤ ρ}, i = 1, 2.

Therefore,

ω(Ux, ρ) ≤ ϕ1(Ω(W, ρ)) + ω f1
(r0, ρ)+

ϕ2(Ω(W, ρ)) + ω f2
(r0, ρ)

Γ(α + 1)
ϕ(r0)(g(T)− g(a))α +

2(ϕ2(r0) + f ∗2 )ϕ(r0)

Γ(α + 1)
[ω(g, ρ)]α .

Passing to the limit as ρ → 0+, we obtain

η(UW) ≤ ϕ1(η(W)) +
ϕ2(η(W))

Γ(α + 1)
ϕ(r0)(g(T) − g(a))α .
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Taking in consideration assumption (H2)-(iv), we get

η(UW) ≤
(

δ +
ϕ(r0)(g(T) − g(a))α

Γ(α + 1)

)
Tmax(θ, ϕ2)(η(W))

= T(λ, Tmax(θ, ϕ2))(η(W)),

where

λ = δ +
ϕ(r0)(g(T) − g(a))α

Γ(α + 1)
.

Since λ ∈ [0, 1] (see (H5)), from Lemma 2.3, T(λ, Tmax(θ, ϕ2)) ∈ Φ. Finally, by

Lemma 2.2, the operator U has at least one fixed point y∗ ∈ B(0, r0), which is a
solution to Eq.(2.1) satisfying ‖y∗‖ ≤ r0. This completes the proof.

If in Theorem 3.1 we add the following assumptions:
(H6) For i = 1, 2, fi([a, T]× [0, ∞)) ⊆ [0, ∞) and fi is non-decreasing with respect
to each variable on [a, T]× [0, ∞).
(H7) k([a, T] × [0, ∞)) ⊆ [0, ∞) and k is non-decreasing with respect to each vari-
able on [a, T]× [0, ∞).
Then we obtain the following result.

Theorem 3.2. Under the assumptions (H1)-(H7), Eq.(2.1) has at least one solution
y∗ ∈ C([a, T]; R) which is non-negative and non-decreasing on the interval [a, T].

Proof. Let us consider the operator U defined on H = C([a, T]; R) by (3.1). Fol-
lowing the proof of Theorem 3.1, we know that the operator U maps H into itself,
and that, for x ∈ H, we have the estimate

‖Ux‖ ≤ ϕ1(‖x‖) + f ∗1 +
(ϕ2(‖x‖) + f ∗2 )ϕ(‖x‖)

Γ(α + 1)
(g(T)− g(a))α , x ∈ H,

which yields U(B(0, r0)) ⊆ B(0, r0). Now, we consider the subset B+
r0

of B(0, r0)
defined by

B+
r0
= {x ∈ B(0, r0) : x(t) ≥ 0, t ∈ [a, T]}.

In virtue (H6) and (H7), we may infer that the operator U maps B+
r0

into itself.
Following the same argument used in the proof of Theorem 3.1, we obtain that U
is a continuous operator on B+

r0
. Next, we take the subset Q of B+

r0
defined by

Q = {x ∈ B+
r0

: x is non-decreasing}.

Obviously, the set Q is nonempty, bounded, closed and convex. Let us prove that
the operator U maps Q into itself. To do this, let x ∈ Q be fixed and (t, s) be a
pair of elements in [a, T]× [a, T] such that t ≥ s. By assumption (H6), we have

fi(t, x(t)) ≥ fi(s, x(s)), i = 1, 2.

So we have just to prove that

∫ t

a

g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α
dτ ≥

∫ s

a

g′(τ)k(τ, x(τ))

(g(s)− g(τ))1−α
dτ. (3.4)
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We have

∫ t

a

g′(τ)k(τ, x(τ))

(g(t) − g(τ))1−α
dτ −

∫ s

a

g′(τ)k(τ, x(τ))

(g(s)− g(τ))1−α
dτ

=
∫ s

a

(
g′(τ)

(g(t) − g(τ))1−α
− g′(τ)

(g(s)− g(τ))1−α

)
k(τ, x(τ)) dτ

+
∫ t

s

g′(τ)k(τ, x(τ))

(g(t)− g(τ))1−α
dτ.

Using assumption (H7), we obtain

∫ t

a

g′(τ)k(τ, x(τ))

(g(t)− g(τ))1−α
dτ −

∫ s

a

g′(τ)k(τ, x(τ))

(g(s)− g(τ))1−α
dτ

≥ k(s, x(s))
∫ s

a

(
g′(τ)

(g(t) − g(τ))1−α
− g′(τ)

(g(s)− g(τ))1−α

)
dτ

+k(s, x(s))
∫ t

s

g′(τ)
(g(t)− g(τ))1−α

dτ

= k(s, x(s))

(∫ t

a

g′(τ)
(g(t) − g(τ))1−α

dτ −
∫ s

a

g′(τ)
(g(s) − g(τ))1−α

dτ

)

=
k(s, x(s))

α
((g(t) − g(a))α − (g(s)− g(a))α) ≥ 0.

Then (3.4) holds and Ux is a non-decreasing function. Therefore, u maps Q into
itself. Finally, using the same argument of the proof of Theorem 3.1, we obtain

η(UW) ≤ T(λ, Tmax(θ, ϕ2))(η(W)), W ⊆ Q,

where

λ = δ +
ϕ(r0)(g(T) − g(a))α

Γ(α + 1)
∈ [0, 1].

An application of Lemma 2.2 gives us the desired result.

4 Particular cases and examples

In this section, using Theorem 3.1, we give some existence results for some func-
tional equations involving various types of fractional integrals. We present also
some illustrative examples.

4.1 A functional equation involving Riemann-Liouville fractional integral

Let us consider the integral equation

x(t) = f1(t, x(t)) +
f2(t, x(t))

Γ(α)

∫ t

a

k(τ, x(τ))

(t − τ)1−α
dτ, t ∈ [a, T], (4.1)
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where α ∈ (0, 1), 0 ≤ a < T, k : [a, T]× R → R and fi : [a, T]× R → R (i = 1, 2).
Eq.(4.1) can be written as

x(t) = f1(t, x(t)) + f2(t, x(t))Iα
a k(·, x(·))(t), t ∈ [a, T],

where Iα
a is the Riemann-Liouville fractional integral of order α defined by (2.2).

Take
g(t) = t, t ∈ [a, T]

in Theorem 3.1, we obtain the following existence result.

Corollary 4.1. Suppose that all the assumptions (H1)-(H3) are satisfied. Moreover,
suppose that there exists r0 > 0 such that

(ϕ1(r0) + f ∗1 )Γ(α + 1) + (ϕ2(r0) + f ∗2 )ϕ(r0)(T − a)α ≤ r0Γ(α + 1)

and

δ +
ϕ(r0)

Γ(α + 1)
(T − a)α ≤ 1.

Then (4.1) has at least one solution y∗ ∈ C([a, T]; R). Moreover, we have ‖y∗‖ ≤
r0.

We present the following example to illustrate the above result.

Example 4.2. Consider the integral equation

x(t) =
t

2
+

√
π

8

(
t

3
+ |x(t)|

) ∫ t

0

x(τ)

(τ2 + 1)
√

t − τ)
dτ, t ∈ [0, 1]. (4.2)

The above equation can be written in the form (4.1) with a = 0, T = 1, α = 1
2 ,

f1(t, u) =
t

2
, (t, u) ∈ [0, 1]× R,

f2(t, u) =

√
π

8

(
t

3
+ |u|

)
, (t, u) ∈ [0, 1]× R,

k(t, u) =

√
π

2

u

(t2 + 1)
, (t, u) ∈ [0, 1]× R.

We can check easily that all the assumptions (H1)-(H3) are satisfied with ϕ1(t) =

θ(t) = δ = 0, ϕ2(t) =
√

π
8 t and ϕ(r) =

√
π

2 r. Moreover, in this case, we have

f ∗1 = 1
2 and f ∗2 =

√
π

24 . Observe that for r0 = 1, we have

δ +
ϕ(r0)

Γ(α + 1)
(T − a)α = 1.

Moreover,

(ϕ1(r0) + f ∗1 )Γ(α + 1) + (ϕ2(r0) + f ∗2 )ϕ(r0)(T − a)α =√
π

4
+

π

12
≤

√
π

2
= r0Γ(α + 1).

Then all the required assumptions of Corollary 4.1 are satisfied. As consequence,
Eq.(4.2) has at least one solution y∗ ∈ C([0, 1]; R) satisfying ‖y∗‖ ≤ 1.
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4.2 A functional equation involving Erdélyi-Kober fractional integral

Let us consider the integral equation

x(t) = f1(t, x(t)) +
β f2(t, x(t))

Γ(α)

∫ t

a

τβ−1k(τ, x(τ))

(tβ − τβ)1−α
dτ, t ∈ [a, T], (4.3)

where α ∈ (0, 1), β > 0, 0 ≤ a < T, k : [a, T] × R → R and fi : [a, T] × R → R

(i = 1, 2). Eq.(4.3) can be written as

x(t) = f1(t, x(t)) + f2(t, x(t))Iα
a,βk(·, x(·))(t), t ∈ [a, T],

where Iα
a,β is the Erdélyi-Kober fractional integral defined by (2.3).

Take

g(t) = tβ, t ∈ [a, T]

in Theorem 3.1, we obtain the following existence result.

Corollary 4.3. Suppose that all the assumptions (H1)-(H3) are satisfied. Moreover,
suppose that there exists r0 > 0 such that

(ϕ1(r0) + f ∗1 )Γ(α + 1) + (ϕ2(r0) + f ∗2 )ϕ(r0)
(

Tβ − aβ
)α

≤ r0Γ(α + 1)

and

δ +
ϕ(r0)

Γ(α + 1)

(
Tβ − aβ

)α
≤ 1.

Then (4.3) has at least one solution y∗ ∈ C([a, T]; R). Moreover, we have
‖y∗‖ ≤ r0.

We present the following example to illustrate the above result.

Example 4.4. We consider the integral equation

x(t) =
e−1t

10
+

βe
37
19

76Γ(α)
(t+ 1+ arctan |x(t)|)

∫ t

0

τβ−1x(τ)
(
tβ − τβ

)1−α √
τ + 1

dτ, t ∈ [0, 1],

(4.4)
where α ∈ (0, 1) and β > 0. The above equation can be written in the form (4.3)
with a = 0, T = 1,

f1(t, u) =
e−1t

10
, (t, u) ∈ [0, 1]× R,

f2(t, u) =
t + 1 + arctan |u|

2
, (t, u) ∈ [0, 1]× R,

k(t, u) =
e

37
19 u

38
√

t + 1
, (t, u) ∈ [0, 1]× R.
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We can check easily that all the assumptions (H1)-(H3) are satisfied with ϕ1(t) =

θ(t) = δ = 0, ϕ2(t) =
t
2 and ϕ(r) = e

37
19

38 r. Moreover, in this case, we have f ∗1 = e−1

10
and f ∗2 = 1. On the other hand, we have [22]

e
37
19

76
= 0.0922... ≤ 0.8856 ≤ Γ(α + 1), for α ∈ (0, 1).

Then for r0 = 1
2 , we have

δ +
ϕ(r0)

Γ(α + 1)

(
Tβ − aβ

)α
=

e
37
19

76

Γ(α + 1)
≤ 1.

Next, we have

(ϕ1(r0) + f ∗1 ) +
(ϕ2(r0) + f ∗2 )ϕ(r0)

(
Tβ − aβ

)α

Γ(α + 1)

=
e−1

10
+

5e
37
19

304Γ(α + 1)
≤ 0.16698... ≤ 1

2
= r0.

Then all the required assumptions of Corollary 4.3 are satisfied. As consequence,
Eq.(4.4) has at least one solution y∗ ∈ C([0, 1]; R) satisfying ‖y∗‖ ≤ 1

2 .

4.3 A functional equation involving Hadamard fractional integral

We consider the integral equation

x(t) = f1(t, x(t)) +
f2(t, x(t))

Γ(α)

∫ t

a

(
ln

t

τ

)α−1 k(τ, x(τ))

τ
dτ, t ∈ [a, T], (4.5)

where 0 < a < T, α ∈ (0, 1), k : [a, T]× R → R and fi : [a, T]× R → R (i = 1, 2).
Eq.(4.5) can be written as

x(t) = f1(t, x(t)) + f2(t, x(t))Jα
a k(·, x(·))(t), t ∈ [a, T],

where Jα
a is the Hadamard fractional integral of order α defined by (2.4).

Take
g(t) = ln t, t ∈ [a, T]

in Theorem 3.1, we obtain the following existence result.

Corollary 4.5. Suppose that all the assumptions (H1)-(H3) are satisfied. Moreover,
suppose that there exists r0 > 0 such that

(ϕ1(r0) + f ∗1 )Γ(α + 1) + (ϕ2(r0) + f ∗2 )ϕ(r0)

(
ln

T

a

)α

≤ r0Γ(α + 1) (4.6)

and

δ +
ϕ(r0)

Γ(α + 1)

(
ln

T

a

)α

≤ 1. (4.7)

Then (4.5) has at least one solution y∗ ∈ C([a, T]; R). Moreover, we have ‖y∗‖ ≤
r0.
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We end the paper with the following example that illustrates the above result.

Example 4.6. Let us consider the integral equation

x(t) = e−2t + 2αe−3x(t)
∫ t

1

(
ln

t

τ

)α−1

x(τ) dτ, t ∈ [1, e1], (4.8)

where α ∈ (0, 1). Eq.(4.8) can be written in the form (4.5) with a = 1, T = e1,

f1(t, u) = e−2t, (t, u) ∈ [1, e1]× R,

f2(t, u) =
u

2
, (t, u) ∈ [1, e1]× R,

k(t, u) = 4e−3
Γ(α + 1)tu, (t, u) ∈ [1, e1]× R.

We can check easily that all the assumptions (H1)-(H3) are satisfied with ϕ1(t) =
θ(t) = δ = 0, ϕ2(t) =

t
2 and ϕ(r) = 4e−2

Γ(α + 1)r. In this case, we have f ∗1 = e−1

and f ∗2 = 0. Moreover, for r0 = e2

4 , the inequalities (4.6) and (4.7) are satisfied.

Therefore, by Corollary 4.5, Eq.(4.8) has at least one solution y∗ ∈ C([1, e1]; R)

such that ‖y∗‖ ≤ e2

4 .

Acknowledgements. The first author was partially supported by the project
MTM-2013-44357-P. The second author would like to extend his sincere apprecia-
tion to the Deanship of Scientific Research at King Saud University for its funding
of this research through the International Research Group Project No. IRG14-04.

References

[1] R. Agarwal, M. Meehan, D. O’Regan, Fixed Point Theory and Applications,
Cambridge University Press, 2004.

[2] R.P. Agarwal, B. Samet, An existence result for a class of nonlinear integral
equations of fractional orders, Nonlinear Analysis: Modelling and Control.
21 (5) (2016) 616–629.

[3] A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo’s the-
orem with application to the solvability of systems of integral equations,
J. Comput. Appl. Math. 260 (2014) 68–77.
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[8] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Space. Lecture
Notes in Pure and Applied Mathematics, Vol. 60. Dekker, New York, 1980.
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[17] M.A. Darwish, On Erdélyi-Kober fractional Urysohn-Volterra quadratic in-
tegral equation, Appl. Math. Comput. 273 (2016) 562–569.

[18] M.A. Darwish, K. Sadarangani, On a quadratic integral equation with supre-
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