Complex of injective words revisited

Wee Liang Gan

Abstract

We give a simple proof that (a generalization of) the complex of injective
words has vanishing homology in all except the top degree.

1 Introduction

Let A be a finite set. An injective word of length r > 0 is a sequence (ay, ..., 4a,)
of pairwise distinct elements of A. Let K(A) be the semi-simplicial set whose
(r — 1)-simplices are the injective words of length r, for every r > 1. The face
maps of K(A) are defined by

di 1(ay,...,a;) = (ay,...,4,...,a,) fori=1,...,r,

where X means that the entry x is omitted. In other words, K(A) is the semi-
simplicial set of ordered simplices of the abstract simplex whose set of vertices
is A. We write |K(A)| for the geometric realization of K(A). For example, if
A = {a, b}, then |K(A)| is homeomorphic to a circle:

(a,b)
a o/\o b

~_ -
(b,a)

In a 1979 paper, Farmer [4, Theorem 5] shows that the reduced homology of
K(A) vanishes in all degrees # |A| — 1. Subsequently, a new proof was found
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by Bjorner and Wachs [2, Theorem 6.1] using their theory of CL-shellable posets.
A simpler proof of Farmer’s result was given by Kerz [6, Theorem 1] in 2004. Both
the proofs of Farmer and Kerz proceed by somewhat ad hoc calculations. More
recently, topological proofs of Farmer’s result are given by Bestvina [1, Claim in
the proof of Proposition 6] and Randal-Williams [9, Proposition 3.2]. We should
mention that Bjorner-Wachs and Randal-Williams actually proved the stronger
result that |K(A)| is homotopy equivalent to a wedge of spheres of dimension
|A| — 1.

The purpose of our present note is to give a simple and natural algebraic proof
of Farmer’s result; indeed, our proof is a straightforward exercise on the spectral
sequence of a filtered complex. Our interest in this result stems from the crucial
role it plays in Quillen’s method [8] for proving homological stability of the sym-
metric groups. Following Hatcher and Wahl [5], we shall formulate and prove a
slightly more general theorem so that it can be applied in the proof of homological
stability of wreath-product groups.

Notation 1. We write S, for the symmetric group on {1,...,n}. For any group
G, we write G, for the wreath-product group G S, thatis, G, := S, x G". In
particular, Gy is the trivial group.

2 The main result

Recall that A denotes a finite set. Let I' be a nonempty set. We define a chain
complex C,(A) concentrated in degrees 0,...,|A| as follows. Let C,(A) be the
free abelian group generated by the set A,(A) consisting of all elements of the
form (ay,...,ar,v1,...,7:) where ay,...,a, are pairwise distinct elements of A,
and 71,...,7, are any elements of I; in particular, C,(A) = Z if r = 0. The
differential is defined by

r .
d(ﬂlz---;ar/')’lr---/')’r) = 2(_1)1_1(a11"'Iﬁ\il'"Iai’lr)/ll"'lﬁl\lll"'lr)/r)'
i=1

In particular, d(a;, 1) = 1.
For any chain complex C, and positive integer p, we shall write C,_, for the
p-fold suspension of Ci.

Remark 2. If T is a singleton set, then C,(A) is the augmented chain complex of
K(A) with degrees shifted up by 1. (Topologically, it is more natural to place a
word of length r in degree r — 1. Algebraically, it seems more natural for us to
place a word of length r in degree r.)

If T is a group G, then C.(A) is the augmented chain complex of the semi-
simplicial set W|4/(©, {1}) (defined by Randal-Williams and Wahl in [10, Defini-
tion 2.1]) with degrees shifted up by 1, associated to the category Fl; (defined by
Sam and Snowden in [12]).
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Theorem 3. If r < |A|, then H,(C.(A)) = 0.

Proof. Set n = |A|. We use induction on n. The base case n = 0 is trivial.

Suppose n > 0. Choose and fix an element a2 € A. For each r > 0, there
is an increasing filtration on C,(A) defined by letting F,C,(A) be the subgroup
spanned by all elements (ay,...,4,,71,...,7r) such that none of Api1,---,0r 18
equal to a. This gives an increasing filtration on the complex C,(A) and hence a
first-quadrant spectral sequence:

E; o= Hpiq (F,Co(A)/F,_1C(A)) = Hpiq(Ci(A)).

Observe that FyC.(A) = C«(A\ {a}). For each p > 1, there is an isomorphism
of chain complexes:

(al,...,ap,l,a,'yl,...,'yp)eAp(A)

where an element on the left hand side represented by (ay,...,a;,71,...,7r) €
F,C,(A) with a, = a is identified, on the right hand side, with the element
(@ps1,++ /81, Yps1,- -+, ) in the direct summand C, (A \ {ay,...,a,_1,a})
indexed by (a1,...,ap,71,...,7p) € Ap(A).

By the induction hypothesis, one has:

Ecll,q =0 whenever g<n-—1;
Ezlﬂ,q =0 whenever p>landp+g<n.

Therefore, it only remains to show that E5’, _; = 0.
We have:

Eou-1=Hn1(C(A\{a})),  Ei,1= @ Hu1(C(A\{a})).
1€l

The restriction of the differential d! : E},n_l — Eé/n_l to each direct summand in
the above decomposition of E%’n_l is the identity map on H,,_1(C«(A \ {a})); this
follows from the identity

d(a,az,..., 80,71, -, Yn) = (A2, -, Qn, Y2, -, Tn)

n—1 )
— Z(—l)‘_l(a,az,...,a/i:l,...,'yl,'yz,...,'yi+1,...).
i=1

In particular, the map dl . E%’n_l — E(l)’n_1 is surjective. It follows that E(z),n_1 =0,
and we are done. [

Remark 4. It was pointed out to us by the referee that the last step in the above
proof can be replaced by the following argument. Fixing an element e € I, the
map

(a,..., 4,71, -, ) — (a,a1,...,4r,,%1,---,7r)

gives a null-homotopy for the inclusion map C.(A — {a}) — Cy(A). Thus, the
edge map Eé/n_l — Eg, 1 C H, _1(C.(A)) is zero; hence, Eg, 1 =0.
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Remark 5. Let n = |A|. Since H,,(C«(A)) is a subgroup of the free abelian group
Cu(A), itis a free abelian group; we make the following observations on its rank.

(i) Suppose |I'| = oo. If n = |A| > 1, then H,(C«(A)) is a free abelian group
of infinite rank. This is clear if n = 1. For n > 1, it follows from noticing that by
induction, the kernel of d! : E} 1 E(1] 41 (in the spectral sequence in the proof
above) is a free abelian group of infinite rank, and which is ET, 1

(ii) Suppose |I'| = ¢ < o0. If n = |A| > 1, then it follows from Theorem [3land
the Euler-Poincaré principle that H,(C.(A)) is a free abelian group of rank d(¢),,
where

N1\l pn—i
d(l), == 2 %

i=0
For ¢ = 1, this observation is due to Farmer [4, Remark on page 613] and Reiner-
Webb [11} Proposition 2.1]. It is well known that d(1), is equal to the number of
derangements in the symmetric group S;. Let us give a similar interpretation of
d({), for any ¢ > 1. Fixing an element e € T, we claim that d(¢), is the number
of elements (77, v1,...,7n) € Sy X I such that: if 1 < a < nand 7r(a) = g, then
Ya # e. To see this, let

i

To :={(t,v1,--.,7n) €Sy xT" | t(a) =aand vy, =e} fora=1,...,n.

Then, forany 1 < a7 < --- < a; < n,one has [T,, N---NT,| = (n— i)!é”_i.
Hence, by the inclusion-exclusion principle, we have d(¢), = |S, x I'""| — |T; U
-+ UT,|, as claimed.

We note that for any group G, the wreath-product group G, (see Notation [I)
actson {1,...,n} x Gby (7r;81,...8n) - (a,7) := (7(a),gay), where (71;41,...,
n) € Gpand (a,7) € {1,...,n} x G. When G is a finite group of order /, the
integer d(¢), is equal to the number of elements of G,, which has no fixed point
in{l,...,n} xG.

3 Application to homological stability

Nakaoka [7, Corollary 6.7] proved that the natural inclusion map S,_1 — Sy
induces an isomorphism in homology H,;(S,—1) — Hn(S,) if n > 2m. His
result was generalized by Hatcher and Wahl [5} Proposition 1.6] to wreath-product
groups (although as they noted in their paper the generalization might have been
known for a long time).

Corollary 6. Let G be a group. The natural inclusion map G1S,_1 — G S, induces
an isomorphism in homology Hy (G1Sy—1) — Hm(G1Sy) if n > 2m.

Corollary [6 follows from Theorem 3] by a standard argument of Quillen; see
[5, Section 5]. We give the details of this argument below since our injectivity
range n > 2m is better than the one stated in [5} Proposition 1.6] by 1.

From now on, weset A = {1,...,n} and I = G, where n is an integer > 1 and G is
a group.

There is a natural action of G, (see Notation[I)) on C,(A) defined by

(;81,---,8n) - (a1, .. e, 71, ) o= (7(a1), ..., 70(ar), §ay Y1/ - -+ §ayYr),
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where (77;81,...,81n) € Gy and (a1,...,a;,71,-..,7) € C-(A). Define the map
di—l : Cr(A) — Cr_l(A) fori = 1,...,r,

by
di 1(ar, .. a1, 0r) = (1, B O, Y1 e oo Yir e oo Yr)-

Since the map d;_; is Gy-equivariant, there is an induced map
(di—l)* : H*(Gn} Cr(A)) — H*(Gn; Cr—l(A))-

The group G, acts transitively on the basis A,(A) of C,(A). Forany x € A,(A),
we write Stab(x) for its stabilizer in G,,. By Shapiro’s lemma, the natural inclusion
map Stab(x) — G, and the map Z — C,(A), A — Ax induce an isomorphism

Denote by e € G the identity element. Let
xpi=m—r+1,...,ne...,e) € C,(A).

Then Stab(x,) = G,—r < Gy,. In particular, xo = 1 € Z and Stab(xp) = G,. We
write ¢ : Stab(x,) — Stab(x,_1) for the natural inclusion map.

Lemma 7. Foreveryi =1,...,r, the following diagram commutes:

Ly

H, (Stab(x,)) H.(Stab(x, 1)) .
tx(xr)*l llx(xr_l)*
H*(Gn} Cr(A)) i)- H*(Gn} Cr—l(A))

Proof. The diagram clearly commutes for i = 1 because dy(x,) = x,_1.
Supposei > 1. Lety :=d;_1(x;), so

—

y=m-r+1,....n—r+i,...,ne,...,e) € C,_1(A).

Write j : Stab(x,) — Stab(y) for the natural inclusion map. Then there is a com-
muting diagram:

H,(Stab(x,)) I H,.(Stab(y)) . (1)
a(xn*l lwy)*
Ho (G Cr(A)) — ) HL(Gs Cy1(A))

Let u be the cyclic permutation (n —r+1,...,n —r+1) € S, and let
t:= (we,...,e) € Gy.
Then t has the properties that t - y = x,_; and

tut™! = u  for each u € Stab(x;,). (2)



132 W. L. Gan

We have a commuting diagram

H. (Stab(y)) = H,(Stab(x,_1)) 3)

“(]/)*l l“(xrl)*
H.(Gu; Cr1(A)) —— H.(Gy; Cr-1(A))

where the top arrow x, is induced by the homomorphism x : Stab(y) —
Stab(x,_1), u + tut™! and the bottom arrow J, is induced by the inner auto-
morphism G, — Gy, u + tut~! and the map C, _1(A) — C,_1(A), x>t - x.

By (2), we have x 0] = 1, s0 Ky © ], = 14. By [3] Proposition II1.8.1], the homo-
morphism J, is the identity map on H,(Gy; C,—1(A)). Therefore, it follows from
our two commuting diagrams (1) and (3) that

0(Xp—1)s © L = (Xp_1)+ 0Ky 0 Jx = dr 0 a(y)« 0 ]
=dx0(di—1)so(xr)e = (di—1)s o(Xr)s. m

We are now ready to prove Corollary [6l

Proof of Corollaryl6l We use induction on m. The base case m = 0 is trivial.

Suppose m > 1. Let n > 2m.

Choose any free resolution --- — F; — Fy — Z of Z over ZG,. By taking
the tensor product over G, of the two chain complexes C,(A) and F,, we obtain
a first-quadrant double complex D with D, := F; ®¢, C;(A). Let Tot.(D) be
the total complex of D. From Theorem [3 and the spectral sequence associated
to the horizontal filtration of Tot. (D), we deduce that H;(Tot.(D)) = 0 for each
i<n-—1.

We now consider the spectral sequence associated to the vertical filtration of
Tot. (D). Since H;(Tot.(D)) = 0 for each i < n — 1, this spectral sequence has:

EfX=0 if r+s<n—1 4)
The E!-terms of the spectral sequence are:
E%,s = Hy(F. ®g, Cr(A)) = Hs(Gy; Cr(A)).

The differential ' : E},S — E!

y_1 18 the map

d, = i(—ni—l(di_l)* . Ho(G; Cr(A)) — Hy(Gu; Cr_1(A)).
i=1

Recall that G,_, = Stab(x,). We shall identify E}; with H;(G,—,) via the iso-
morphism a(x; )« : Hs(Gy—;) = Hs(Gy; Cr(A)). Under this identification, we see
from Lemma [/ that the differential d! : E},S — E! . s

r—1,s
e the map i, : Hs(Gn—r) — Hs(Gy—p11) if r is odd;

o the zero map if 7 is even.
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Therefore, row s on the E'-page of the spectral sequence is:

L

Hs(Gn) L Hs(Gn—l) <0— Hs(Gn—Z) _ Hs(Gn—3) <O— HS(GTZ—4) L Tty

where the leftmost term is in column 0.
Our goal is to show that 1, : Hy(G,—1) = Hu(Gy) is an isomorphism, or
equivalently, that the differential d' : E},m — E(l)’m is an isomorphism. Note that

Eim is the kernel of d! : E%,m — E(l)’m, and E%’m is the cokernel of d! : E%,m —
Eé/m. Therefore, we have to show that Eim = 0 and Eam = 0. We shall use the

following;:

Claim. Ifr+ 2s < 2m+ land s < m, then EZ; = 0.
Proof of Claim. We have:
2s<2m+1—r<n—r—+1.
When r is even, we have the stronger inequality:
2s < 2m—r<mn-—r.

Hence, it follows by the induction hypothesis that in row s of the E'-page of the
spectral sequence, we have:

1 1
r+1,s

dl, d
A Hs(Gn—r+1) ~ Hs(Gn—r) <~ Hs(Gn—r—l) <~

where

1

. d}ls is an isomorphism and d;_;

is the zero map if r is odd;

1

e d! . is the zero map and dy g

is an isomorphism if r is even.

Hence, E%S =0.
We have proven the Claim. n

The above Claim implies that E%m = Ei’f’m and E(Z),m = ng’m. Indeed, for k > 2,

k
k+1,m—k+1

or Ellg,m—k 1 Tespectively, but the Claim implies that Ef im_ki and Ellé,m—k 4 are
both zero.
Finally, since n > 2m + 1 > 3 and so

a differential on the E¥-page has target Elf,m or Elé,m only if it starts at E

m+1< ntl <n-—1,
2
it follows from () that EY, =0and EG, =0, s0 E%,m = 0and E(z),m =0. [

Remark 8. As the last step in the proof above shows, we only need to use the
vanishing of H,(C«(A)) for |A| > 3 and r < ‘A‘Tﬂ.
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