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Abstract

We give a simple proof that (a generalization of) the complex of injective
words has vanishing homology in all except the top degree.

1 Introduction

Let A be a finite set. An injective word of length r > 0 is a sequence (a1, . . . , ar)
of pairwise distinct elements of A. Let K(A) be the semi-simplicial set whose
(r − 1)-simplices are the injective words of length r, for every r > 1. The face
maps of K(A) are defined by

di−1(a1, . . . , ar) := (a1, . . . , âi, . . . , ar) for i = 1, . . . , r,

where x̂ means that the entry x is omitted. In other words, K(A) is the semi-
simplicial set of ordered simplices of the abstract simplex whose set of vertices
is A. We write |K(A)| for the geometric realization of K(A). For example, if
A = {a, b}, then |K(A)| is homeomorphic to a circle:

•a • b

(a, b)

(b, a)

In a 1979 paper, Farmer [4, Theorem 5] shows that the reduced homology of
K(A) vanishes in all degrees 6= |A| − 1. Subsequently, a new proof was found
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by Björner and Wachs [2, Theorem 6.1] using their theory of CL-shellable posets.
A simpler proof of Farmer’s result was given by Kerz [6, Theorem 1] in 2004. Both
the proofs of Farmer and Kerz proceed by somewhat ad hoc calculations. More
recently, topological proofs of Farmer’s result are given by Bestvina [1, Claim in
the proof of Proposition 6] and Randal-Williams [9, Proposition 3.2]. We should
mention that Björner-Wachs and Randal-Williams actually proved the stronger
result that |K(A)| is homotopy equivalent to a wedge of spheres of dimension
|A| − 1.

The purpose of our present note is to give a simple and natural algebraic proof
of Farmer’s result; indeed, our proof is a straightforward exercise on the spectral
sequence of a filtered complex. Our interest in this result stems from the crucial
role it plays in Quillen’s method [8] for proving homological stability of the sym-
metric groups. Following Hatcher and Wahl [5], we shall formulate and prove a
slightly more general theorem so that it can be applied in the proof of homological
stability of wreath-product groups.

Notation 1. We write Sn for the symmetric group on {1, . . . , n}. For any group
G, we write Gn for the wreath-product group G ≀ Sn, that is, Gn := Sn ⋉ Gn. In
particular, G0 is the trivial group.

2 The main result

Recall that A denotes a finite set. Let Γ be a nonempty set. We define a chain
complex C∗(A) concentrated in degrees 0, . . . , |A| as follows. Let Cr(A) be the
free abelian group generated by the set ∆r(A) consisting of all elements of the
form (a1, . . . , ar, γ1, . . . , γr) where a1, . . . , ar are pairwise distinct elements of A,
and γ1, . . . , γr are any elements of Γ; in particular, Cr(A) = Z if r = 0. The
differential is defined by

d(a1, . . . , ar, γ1, . . . , γr) :=
r

∑
i=1

(−1)i−1(a1, . . . , âi, . . . , ar, γ1, . . . , γ̂i, . . . , γr).

In particular, d(a1, γ1) = 1.
For any chain complex C∗ and positive integer p, we shall write C∗−p for the

p-fold suspension of C∗.

Remark 2. If Γ is a singleton set, then C∗(A) is the augmented chain complex of
K(A) with degrees shifted up by 1. (Topologically, it is more natural to place a
word of length r in degree r − 1. Algebraically, it seems more natural for us to
place a word of length r in degree r.)

If Γ is a group G, then C∗(A) is the augmented chain complex of the semi-
simplicial set W|A|(∅, {1}) (defined by Randal-Williams and Wahl in [10, Defini-
tion 2.1]) with degrees shifted up by 1, associated to the category FIG (defined by
Sam and Snowden in [12]).
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Theorem 3. If r < |A|, then Hr(C∗(A)) = 0.

Proof. Set n = |A|. We use induction on n. The base case n = 0 is trivial.
Suppose n > 0. Choose and fix an element a ∈ A. For each r > 0, there

is an increasing filtration on Cr(A) defined by letting FpCr(A) be the subgroup
spanned by all elements (a1, . . . , ar, γ1, . . . , γr) such that none of ap+1, . . . , ar is
equal to a. This gives an increasing filtration on the complex C∗(A) and hence a
first-quadrant spectral sequence:

E1
p,q = Hp+q

(
FpC∗(A)/Fp−1C∗(A)

)
⇒ Hp+q(C∗(A)).

Observe that F0C∗(A) = C∗(A \ {a}). For each p > 1, there is an isomorphism
of chain complexes:

FpC∗(A)/Fp−1C∗(A) ∼=
⊕

(a1,...,ap−1,a,γ1,...,γp)∈∆p(A)

C∗−p(A \ {a1, . . . , ap−1, a})

where an element on the left hand side represented by (a1, . . . , ar, γ1, . . . , γr) ∈
FpCr(A) with ap = a is identified, on the right hand side, with the element
(ap+1, . . . , ar, γp+1, . . . , γr) in the direct summand Cr−p(A \ {a1, . . . , ap−1, a})
indexed by (a1, . . . , ap, γ1, . . . , γp) ∈ ∆p(A).

By the induction hypothesis, one has:

E1
0,q = 0 whenever q < n − 1;

E1
p,q = 0 whenever p > 1 and p + q < n.

Therefore, it only remains to show that E∞
0,n−1 = 0.

We have:

E1
0,n−1 = Hn−1(C∗(A \ {a})), E1

1,n−1 =
⊕

γ1∈Γ

Hn−1(C∗(A \ {a})).

The restriction of the differential d1 : E1
1,n−1 → E1

0,n−1 to each direct summand in

the above decomposition of E1
1,n−1 is the identity map on Hn−1(C∗(A \ {a})); this

follows from the identity

d(a, a2, . . . , an, γ1, . . . , γn) = (a2, . . . , an, γ2, . . . , γn)

−
n−1

∑
i=1

(−1)i−1(a, a2, . . . , âi+1, . . . , γ1, γ2, . . . , γ̂i+1, . . .).

In particular, the map d1 : E1
1,n−1 → E1

0,n−1 is surjective. It follows that E2
0,n−1 = 0,

and we are done.

Remark 4. It was pointed out to us by the referee that the last step in the above
proof can be replaced by the following argument. Fixing an element e ∈ Γ, the
map

(a1, . . . , ar, γ1, . . . , γr) 7→ (a, a1, . . . , ar, e, γ1, . . . , γr)

gives a null-homotopy for the inclusion map C∗(A − {a}) → C∗(A). Thus, the
edge map E1

0,n−1 −→ E∞
0,n−1 ⊂ Hn−1(C∗(A)) is zero; hence, E∞

0,n−1 = 0.
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Remark 5. Let n = |A|. Since Hn(C∗(A)) is a subgroup of the free abelian group
Cn(A), it is a free abelian group; we make the following observations on its rank.

(i) Suppose |Γ| = ∞. If n = |A| > 1, then Hn(C∗(A)) is a free abelian group
of infinite rank. This is clear if n = 1. For n > 1, it follows from noticing that by
induction, the kernel of d1 : E1

1,n−1 → E1
0,n−1 (in the spectral sequence in the proof

above) is a free abelian group of infinite rank, and which is E∞
1,n−1.

(ii) Suppose |Γ| = ℓ < ∞. If n = |A| > 1, then it follows from Theorem 3 and
the Euler-Poincaré principle that Hn(C∗(A)) is a free abelian group of rank d(ℓ)n,
where

d(ℓ)n :=
n

∑
i=0

(−1)in!ℓn−i

i!
.

For ℓ = 1, this observation is due to Farmer [4, Remark on page 613] and Reiner-
Webb [11, Proposition 2.1]. It is well known that d(1)n is equal to the number of
derangements in the symmetric group Sn. Let us give a similar interpretation of
d(ℓ)n for any ℓ > 1. Fixing an element e ∈ Γ, we claim that d(ℓ)n is the number
of elements (π, γ1, . . . , γn) ∈ Sn × Γn such that: if 1 6 a 6 n and π(a) = a, then
γa 6= e. To see this, let

Ta := {(π, γ1, . . . , γn) ∈ Sn × Γn | π(a) = a and γa = e} for a = 1, . . . , n.

Then, for any 1 6 a1 < · · · < ai 6 n, one has |Ta1
∩ · · · ∩ Tai

| = (n − i)!ℓn−i.
Hence, by the inclusion-exclusion principle, we have d(ℓ)n = |Sn × Γn| − |T1 ∪
· · · ∪ Tn|, as claimed.

We note that for any group G, the wreath-product group Gn (see Notation 1)
acts on {1, . . . , n} × G by (π; g1, . . . gn) · (a, γ) := (π(a), gaγ), where (π; g1, . . . ,
gn) ∈ Gn and (a, γ) ∈ {1, . . . , n} × G. When G is a finite group of order ℓ, the
integer d(ℓ)n is equal to the number of elements of Gn which has no fixed point
in {1, . . . , n} × G.

3 Application to homological stability

Nakaoka [7, Corollary 6.7] proved that the natural inclusion map Sn−1 → Sn

induces an isomorphism in homology Hm(Sn−1) → Hm(Sn) if n > 2m. His
result was generalized by Hatcher and Wahl [5, Proposition 1.6] to wreath-product
groups (although as they noted in their paper the generalization might have been
known for a long time).

Corollary 6. Let G be a group. The natural inclusion map G ≀ Sn−1 → G ≀ Sn induces
an isomorphism in homology Hm(G ≀ Sn−1) → Hm(G ≀ Sn) if n > 2m.

Corollary 6 follows from Theorem 3 by a standard argument of Quillen; see
[5, Section 5]. We give the details of this argument below since our injectivity
range n > 2m is better than the one stated in [5, Proposition 1.6] by 1.

From now on, we set A = {1, . . . , n} and Γ = G, where n is an integer > 1 and G is
a group.

There is a natural action of Gn (see Notation 1) on Cr(A) defined by

(π; g1, . . . , gn) · (a1, . . . , ar, γ1, . . . , γr) := (π(a1), . . . , π(ar), ga1
γ1, . . . , gar γr),
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where (π; g1, . . . , gn) ∈ Gn and (a1, . . . , ar, γ1, . . . , γr) ∈ Cr(A). Define the map

di−1 : Cr(A) −→ Cr−1(A) for i = 1, . . . , r,

by
di−1(a1, . . . , ar, γ1, . . . , γr) := (a1, . . . , âi, . . . , ar, γ1, . . . , γ̂i, . . . , γr).

Since the map di−1 is Gn-equivariant, there is an induced map

(di−1)∗ : H∗(Gn; Cr(A)) → H∗(Gn; Cr−1(A)).

The group Gn acts transitively on the basis ∆r(A) of Cr(A). For any x ∈ ∆r(A),
we write Stab(x) for its stabilizer in Gn. By Shapiro’s lemma, the natural inclusion
map Stab(x) → Gn and the map Z → Cr(A), λ 7→ λx induce an isomorphism

α(x)∗ : H∗(Stab(x)) −→ H∗(Gn; Cr(A)).

Denote by e ∈ G the identity element. Let

xr := (n − r + 1, . . . , n, e, . . . , e) ∈ Cr(A).

Then Stab(xr) = Gn−r 6 Gn. In particular, x0 = 1 ∈ Z and Stab(x0) = Gn. We
write ι : Stab(xr) → Stab(xr−1) for the natural inclusion map.

Lemma 7. For every i = 1, . . . , r, the following diagram commutes:

H∗(Stab(xr))
ι∗ //

α(xr)∗
��

H∗(Stab(xr−1))

α(xr−1)∗
��

H∗(Gn; Cr(A))
(di−1)∗

// H∗(Gn; Cr−1(A))

.

Proof. The diagram clearly commutes for i = 1 because d0(xr) = xr−1.
Suppose i > 1. Let y := di−1(xr), so

y = (n − r + 1, . . . , ̂n − r + i, . . . , n, e, . . . , e) ∈ Cr−1(A).

Write  : Stab(xr) → Stab(y) for the natural inclusion map. Then there is a com-
muting diagram:

H∗(Stab(xr))
∗

//

α(xr)∗
��

H∗(Stab(y))

α(y)∗
��

H∗(Gn; Cr(A))
(di−1)∗

// H∗(Gn; Cr−1(A))

. (1)

Let µ be the cyclic permutation (n − r + 1, . . . , n − r + i) ∈ Sn and let

t := (µ; e, . . . , e) ∈ Gn.

Then t has the properties that t · y = xr−1 and

tut−1 = u for each u ∈ Stab(xr). (2)
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We have a commuting diagram

H∗(Stab(y))
κ∗ //

α(y)∗
��

H∗(Stab(xr−1))

α(xr−1)∗
��

H∗(Gn; Cr−1(A))
δ∗ // H∗(Gn; Cr−1(A))

(3)

where the top arrow κ∗ is induced by the homomorphism κ : Stab(y) →
Stab(xr−1), u 7→ tut−1 and the bottom arrow δ∗ is induced by the inner auto-
morphism Gn → Gn, u 7→ tut−1 and the map Cr−1(A) → Cr−1(A), x 7→ t · x.

By (2), we have κ ◦  = ι, so κ∗ ◦ ∗ = ι∗. By [3, Proposition III.8.1], the homo-
morphism δ∗ is the identity map on H∗(Gn; Cr−1(A)). Therefore, it follows from
our two commuting diagrams (1) and (3) that

α(xr−1)∗ ◦ ι∗ = α(xr−1)∗ ◦ κ∗ ◦ ∗ = δ∗ ◦ α(y)∗ ◦ ∗

= δ∗ ◦ (di−1)∗ ◦ α(xr)∗ = (di−1)∗ ◦ α(xr)∗.

We are now ready to prove Corollary 6.

Proof of Corollary 6. We use induction on m. The base case m = 0 is trivial.
Suppose m > 1. Let n > 2m.
Choose any free resolution · · · → F1 → F0 → Z of Z over ZGn. By taking

the tensor product over Gn of the two chain complexes C∗(A) and F∗, we obtain
a first-quadrant double complex D with Dr,s := Fs ⊗Gn

Cr(A). Let Tot∗(D) be
the total complex of D. From Theorem 3 and the spectral sequence associated
to the horizontal filtration of Tot∗(D), we deduce that Hi(Tot∗(D)) = 0 for each
i 6 n − 1.

We now consider the spectral sequence associated to the vertical filtration of
Tot∗(D). Since Hi(Tot∗(D)) = 0 for each i 6 n − 1, this spectral sequence has:

E∞
r,s = 0 if r + s 6 n − 1. (4)

The E1-terms of the spectral sequence are:

E1
r,s = Hs(F∗ ⊗Gn Cr(A)) = Hs(Gn; Cr(A)).

The differential d1 : E1
r,s → E1

r−1,s is the map

d∗ =
r

∑
i=1

(−1)i−1(di−1)∗ : Hs(Gn; Cr(A)) −→ Hs(Gn; Cr−1(A)).

Recall that Gn−r = Stab(xr). We shall identify E1
r,s with Hs(Gn−r) via the iso-

morphism α(xr)∗ : Hs(Gn−r) → Hs(Gn; Cr(A)). Under this identification, we see
from Lemma 7 that the differential d1 : E1

r,s → E1
r−1,s is:

• the map ι∗ : Hs(Gn−r) → Hs(Gn−r+1) if r is odd;

• the zero map if r is even.
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Therefore, row s on the E1-page of the spectral sequence is:

Hs(Gn) Hs(Gn−1)
ι∗oo Hs(Gn−2)

0oo Hs(Gn−3)
ι∗oo Hs(Gn−4)

0oo · · · ,
ι∗oo

where the leftmost term is in column 0.
Our goal is to show that ι∗ : Hm(Gn−1) → Hm(Gn) is an isomorphism, or

equivalently, that the differential d1 : E1
1,m → E1

0,m is an isomorphism. Note that

E2
1,m is the kernel of d1 : E1

1,m → E1
0,m, and E2

0,m is the cokernel of d1 : E1
1,m →

E1
0,m. Therefore, we have to show that E2

1,m = 0 and E2
0,m = 0. We shall use the

following:

Claim. If r + 2s 6 2m + 1 and s < m, then E2
r,s = 0.

Proof of Claim. We have:

2s 6 2m + 1 − r < n − r + 1.

When r is even, we have the stronger inequality:

2s 6 2m − r < n − r.

Hence, it follows by the induction hypothesis that in row s of the E1-page of the
spectral sequence, we have:

· · · Hs(Gn−r+1)oo Hs(Gn−r)
d1

r,s
oo Hs(Gn−r−1)

d1
r+1,s

oo · · ·oo

where

• d1
r,s is an isomorphism and d1

r+1,s is the zero map if r is odd;

• d1
r.s is the zero map and d1

r+1,s is an isomorphism if r is even.

Hence, E2
r,s = 0.

We have proven the Claim.

The above Claim implies that E2
1,m = E∞

1,m and E2
0,m = E∞

0,m. Indeed, for k > 2,

a differential on the Ek-page has target Ek
1,m or Ek

0,m only if it starts at Ek
k+1,m−k+1

or Ek
k,m−k+1 respectively, but the Claim implies that Ek

k+1,m−k+1 and Ek
k,m−k+1 are

both zero.
Finally, since n > 2m + 1 > 3 and so

m + 1 6
n + 1

2
6 n − 1,

it follows from (4) that E∞
1,m = 0 and E∞

0,m = 0, so E2
1,m = 0 and E2

0,m = 0.

Remark 8. As the last step in the proof above shows, we only need to use the

vanishing of Hr(C∗(A)) for |A| > 3 and r 6 |A|+1
2 .
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