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Abstract

Although multiplier bimonoids in general are not known to correspond
to comonoids in any monoidal category, we classify them in terms of maps
from the Catalan simplicial set to another suitable simplicial set; thus they
can be regarded as (co)monoids in something more general than a monoidal
category (namely, the simplicial set itself). We analyze the particular simpli-
cial maps corresponding to that class of multiplier bimonoids which can be
regarded as comonoids.

1 Introduction

The recent paper [6] showed that monoids, as well as many generalizations,
including monads, monoidal categories, skew monoidal categories [9], and in-
ternal versions of these, can be classified as simplicial maps from the Catalan sim-
plicial set C to appropriately chosen simplicial sets. For the constructions in the
current paper the most relevant observation in [6] is a bijective correspondence
between monoids in a monoidal categoryM and simplicial maps from C to the
nerve N(M) ofM.

Bialgebras — over a field or, more generally, in a braided monoidal category
C— can be defined as comonoids in the monoidal categoryM of monoids in C.
Thus applying the results of [6], they are classified by simplicial maps from C to
the nerve N(Mop) of the categoryM regarded with the opposite composition.

Classically, Hopf algebras over a field are defined as bialgebras with a further
property. Multiplier Hopf algebras [10] generalize Hopf algebras beyond the case
when the algebra has a unit. The typical motivating example of a multiplier Hopf
algebra consists of finitely supported functions on an infinite group with values
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in the base field. The analogous notion of multiplier bialgebra was introduced later,
in [2], together with its ‘weak’ generalization.

For many applications it is important to work with Hopf algebras and bial-
gebras not only over fields but, more generally, in braided monoidal categories
which are different from the symmetric monoidal category of vector spaces. The
formulation of multiplier bialgebras in braided monoidal categories is our longstanding
project initiated in [3].

Generalizing some constructions in [8] to any braided monoidal category C,
we described in [4] how certain multiplier bimonoids in C can be seen as certain
comonoids in an appropriately constructed monoidal categoryM. In light of the
findings of [6], this gives rise to a correspondence between these multiplier bial-
gebras and certain simplicial maps from the Catalan simplicial set C to N(Mop).

The aim of this paper is to go beyond that characterization and prove a bi-
jection between arbitrary multiplier bimonoids in C and arbitrary simplicial maps
from C to a suitable simplicial set M12. The simplicial maps C → N(Mop) that
correspond, via the results of [4] and [6], to nice enough multiplier bimonoids,
turn out to factorize through a canonical embedding of a simplicial subset of M12

into N(Mop).
Regular multiplier bimonoids constitute a distinguished class of multiplier bi-

monoids. In order to classify them as well, we also present a simplicial set M

with the property that simplicial maps C → M correspond bijectively to regular
multiplier bimonoids in C.

Notation

Throughout the paper, C denotes a braided monoidal category. We do not assume
that it is strict but — relying on coherence — we omit explicitly denoting the
associativity and unit isomorphisms. The monoidal unit is denoted by I and the
monoidal product is denoted by juxtaposition (we also use the power notation
for the iterated monoidal product of the same object). The braiding is denoted
by c. The composite of morphisms f : A → B and g : B → C in C is denoted by
g. f : : A→ C and we write 1 for the identity morphisms in C.
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2 Preliminaries on the Catalan simplicial set

In this section we briefly recall from [6] an explicit description of the Catalan
simplicial set and its role in the classification of monads in bicategories; thus in
particular of monoids in monoidal categories.

2.1 Simplicial sets

Consider the simplex category ∆ whose objects are non-empty finite ordinals and
whose morphisms are the order preserving functions. By definition, a simplicial
set is a presheaf on ∆. Explicitly, a simplicial set W is given by a collection {Wn}
of sets labelled by the natural numbers n — the sets of n-simplices — together
with the face maps di : Wn → Wn−1 and the degeneracy maps si : Wn → Wn+1, for
0 ≤ i ≤ n, obeying the simplicial relations:

didj = dj−1di if i < j sisj = sj+1si if i ≤ j

disj =





sj−1di if i < j
1 if i ∈ {j, j + 1}
sjdi−1 if i > j + 1.

An n-simplex is said to be degenerate if it belongs to the image of one of the de-
generacy maps, otherwise it is non-degenerate.

We often draw an n-simplex w as an n-dimensional oriented geometric sim-
plex whose n − 1 dimensional faces are di(w). For example, for n = 2 we draw
an oriented triangle

w1 := d0d2(w) = d1d0(w)
w12:=d0(w)

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱

w

w0 := d1d2(w) = d1d1(w)

w01:=d2(w)
44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

w02 :=d1(w)
// w2 := d0d1(w) = d0d0(w),

for n = 3 we draw an oriented tetrahedron, and so on.
A simplicial map is a natural transformation between such presheaves. Explic-

itly, a simplicial map W → V is a collection of functions { fn : Wn → Vn} labelled
by the natural numbers n which commute with the face and degeneracy maps in
the sense that si fn = fn+1si and di fn = fn−1di for all possible values of i.

2.2 The Catalan simplicial set

The Catalan simplicial set C has a single 0-simplex ∗. It has two 1-simplices: s0(∗)
and a non-degenerate one to be called α. There are three degenerate 2-simplices
s0s0(∗) = s1s0(∗), s0(α) and s1(α) and two non-degenerate ones to be denoted by

∗
α

��❅
❅❅

❅❅
❅❅

τ

∗

α
??⑦⑦⑦⑦⑦⑦⑦

α
// ∗

∗
s0(∗)

  ❆
❆❆

❆❆
❆❆

❆

ε

∗

s0(∗)
??⑦⑦⑦⑦⑦⑦⑦

α
// ∗.
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All higher simplices are generated coskeletally, meaning that for any natural num-
ber n > 2, and for any n-boundary (that is, n + 1-tuple {w0, . . . , wn} of
n − 1-simplices such that dj(wi) = di(wj+1) for all 0 ≤ i ≤ j < n) there is a
unique filler (that is, an n-simplex w obeying di(w) = wi for all 0 ≤ i ≤ n). In this
situation we write w = (w0, . . . , wn).

From this property of the Catalan simplicial set one can deduce that there are
four non-degenerate 3-simplices

φ = (τ, τ, τ, τ), λ = (ε, s1(α), τ, s1(α)),

̺ = (s0(α), τ, s0(α), ε), κ = (ε, s1(α), s0(α), ε)

corresponding to the four tetrahedra drawn below.

∗ α //

α

��

α
❄❄

❄

τ
τ ��❄
❄❄

❄❄
❄❄

❄❄
❄

∗

α

��

τ
τ

⑧⑧
⑧⑧
⑧⑧
⑧

α⑧
⑧⑧

��⑧⑧⑧

∗ ∗α
oo

∗ α //

α

��

α
❄❄

❄

s1(α)

s1(α) ��❄
❄❄

❄❄
❄❄

❄❄
❄

∗

s0(∗)

��

τ
ε

⑧⑧
⑧⑧
⑧⑧
⑧

α⑧
⑧⑧

��⑧⑧⑧

∗ ∗
s0(∗)

oo

∗
s0(∗) //

α

��

α
❄❄

❄

ε
τ ��❄
❄❄

❄❄
❄❄

❄❄
❄

∗

s0(∗)

��

s0(α)

s0(α)

⑧⑧
⑧⑧
⑧⑧
⑧

α⑧
⑧⑧

��⑧⑧⑧

∗ ∗α
oo

∗
s0(∗) //

α

��

α
❄❄

❄

ε
s1(α) ��❄

❄❄
❄❄

❄❄
❄❄

❄

∗

s0(∗)

��

ε
s0(α)

⑧⑧
⑧⑧
⑧⑧
⑧

α⑧
⑧⑧

��⑧⑧⑧

∗ ∗
s0(∗)

oo

For some equivalent, more conceptual, descriptions of C consult [6].

2.3 The nerve of a bicategory

Any bicategory B determines a simplicial set N(B) known as the nerve of B. The
0-simplices of N(B) are the objects of B. The 1-simplices are the 1-cells of B,
with faces provided by the source and the target maps. For a given 2-boundary
{w12, w02, w01}, the 2-simplices

w1
w12

!!❈
❈❈

❈❈
❈❈

❈

w

w0

w01

==④④④④④④④④

w02

// w2

are 2-cells w : w12w01 → w02 in B. For a given 3-boundary {w123, w023, w013, w012},
there is precisely one filler if the diagram

(w23w12)w01
∼= //

w1231
��

w23(w12w01)
1w012 // w23w02

w023

��
w13w01 w013

// w03

commutes and there is no filler otherwise. If the filler exists then it is denoted by
(w123, w023, w013, w012). All higher simplices are determined coskeletally.

The degenerate 1-simplex on a 0-simplex A is the identity 1-cell 1 : A → A.
The degenerate 2-simplices s0(a) and s1(a) on a 1-simplex a are the coherence
isomorphism 2-cells a1 → a and 1a → a, respectively. On higher simplices
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the degeneracy maps are determined by the uniqueness of the filler for a given
boundary.

As was observed in [6], a simplicial map C → N(B) is the same thing as a
monad in B. The 1-cell underlying the monad is the image of α, with multiplica-
tion and unit provided by the images of τ and ε, respectively.

Monoidal categories can be seen as bicategories with a single object. Thus the
above considerations apply in particular to them. In particular, the above used
symbol N(M) stands for the monoidal nerve of a monoidal category M (rather
than the nerve of the underlying ordinary category). Since a monad in a one-
object bicategory is the same as a monoid in the corresponding monoidal cate-
gory, simplicial maps C→ N(M) classify the monoids inM.

3 A simplicial description of multiplier bimonoids

Multiplier bimonoids in braided monoidal categories are defined as compatible
pairs of counital fusion morphisms [3]. Thus it is not too surprising that the
first step in our simplicial characterization of multiplier bimonoids is a simplicial
treatment of counital fusion morphisms. In Section 3.2 we shall associate to the
braided monoidal category C a simplicial set M12 such that a simplicial map C→
M12 is the same thing as a multiplier bimonoid in C. As a preparation for that,
first we construct in Section 3.1 a simplicial set M1 and analyze the relation of
simplicial maps C→ M1 to counital fusion morphisms in C. The simplicial set M1

and its symmetric counterpart M2 will be used as building blocks of M12.

3.1 Counital fusion morphisms

Recall that a fusion morphism on an object A of C is a morphism t : A2 → A2

making commutative the first diagram of

A3 t1 //

1t
��

A3 1t // A3

A3
c1
// A3

1t
// A3

c−11
// A3

t1

OO A2 t //

1e !!❈
❈❈

❈❈
❈❈

❈ A2

1e
��

A.

(3.1)

The morphism e : A → I is a counit of t if it makes commutative the second dia-
gram of (3.1).

The simplicial set M1 has a single 0-simplex ∗. Its 1-simplices are the semi-
groups in C; that is, objects A equipped with an associative multiplication
m : A2 → A. The 2-simplices with given 2-boundary {A12, A02, A01} are
morphisms ϕ : A02A12 → A01A12 in C rendering commutative the diagrams

A02A12A12
ϕ1
//

1m12
��

A01A12A12

1m12
��

A02A12 ϕ
// A01A12

A02A02 A12

1ϕ
��

m021 // A02A12
ϕ

// A01 A12

A02A01 A12 c1
// A01A02 A12 1ϕ

// A01A01A12
c−11

// A01A01A12.

m011

OO
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For a given 3-boundary {ϕ123, ϕ023, ϕ013, ϕ012} there is precisely one filler if the
fusion equation

A03A13A23

1ϕ123
��

ϕ0131
// A01A13 A23

1ϕ123 // A01A12A23

A03A12A23 c1
// A12A03 A23 1ϕ023

// A12 A02A23
c−11

// A02A12A23

ϕ0121

OO
(3.2)

commutes — in which case we write (ϕ123, ϕ023, ϕ013, ϕ012) for the filler — and
there is no filler otherwise. All higher simplices are generated coskeletally.

The action of the face maps should be clear from the above presentation. The
unique degenerate 1-simplex is the monoidal unit I of C (regarded as a trivial
semigroup), while for a 1-simplex (A, m) the degenerate 2-simplices s0(A, m) and
s1(A, m) are given by

∗
A

��❅
❅❅

❅❅
❅❅

m

∗

I
??⑦⑦⑦⑦⑦⑦⑦

A
// ∗

and

∗
I

��❅
❅❅

❅❅
❅❅

1

∗

A
??⑦⑦⑦⑦⑦⑦⑦

A
// ∗

respectively. On higher simplices the degeneracy maps are determined by the
uniqueness of the filler for a given boundary.

Remark 3.1. If the simplicial set M1 looks contrived, we can motivate it as fol-
lows, based on the fusion equation (3.2). Suppose we were to try to define a
simplicial set with a unique 0-simplex, with objects of C as 1-simplices, with
morphisms of the form ϕ : A02A12 → A01A12 as 2-simplices, and with 4-tuples
(ϕ123, ϕ023, ϕ013, ϕ012) of 2-simplices satisfying the fusion equation as 3-simplices,
and with higher simplices defined coskeletally. Then we can define the last
degeneracy map in each degree as in the definition of M1, but the other degen-
eracy maps will not exist. For a 1-simplex A, the degenerate 2-simplex s0(A)
should be a morphism AA → IA in C, so it will be available if we require that,
instead of being mere objects A of C, each 1-simplex be equipped with a mor-
phism m : A2 → A. For a 2-simplex ϕ as above, the existence of 3-simplices with
the boundary appropriate for s0(ϕ) and s1(ϕ) amounts to the commutativity of
the two diagrams in the definition of 2-simplices in M1. Furthermore the mor-
phism AA → IA induced by m will satisfy these equations if and only if m is
associative. Thus in this sense, the form of the simplicial set M1 is forced upon us
by the fusion equation.

More formally, we could proceed as follows. Any morphism in the simplex
category ∆ has an epi-mono factorization. Considering only those morphisms in
∆ in whose factorization only the last fibre of the epimorphism has more than
one element, we obtain a subcategory to be denoted by ∇. The construction of
the previous paragraph determines a presheaf PC on ∇.

The inclusion functor J : ∇ → ∆ induces a functor J∗ : [∆op, Set] → [∇op, Set]
between the presheaf categories, possessing a right adjoint given by the right
Kan extension RanJ . Explicitly, J∗ takes a simplicial set to the presheaf on ∇
obtained by forgetting all but the last degeneracy map; and RanJ takes a presheaf
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X on ∇ to the simplicial set whose n-simplices are families {x f ∈ Xj} labelled by
morphisms f : j → n in ∆ such that for all morphisms w of codomain j in ∇, the
identity w∗(x f ) = w f .w holds (where w∗ denotes the image of w under the functor
X : ∇op → Set).

The value of RanJ at the presheaf PC on ∇ is precisely M1.

Proposition 3.2. For any braided monoidal category C, consider the associated simplicial
set M1 above. To give a simplicial map C→ M1 is the same as specifying an object A in C
equipped with both a semigroup structure with multiplication m : A2 → A and a fusion
morphism t : A2 → A2 with counit e : A → I, subject to the following compatibility
relations.

A3 t1 //

1m
��

(a)

A3

1m
��

A2
t

// A2

A3 m1 //

1t
��

(b)

A2 t // A2

A3
c1
// A3

1t
// A3

c−11
// A3

m1

OO A2 e1 //

m
��

(c)

A

e
��

A e
// I

A3 m1 //

1m
��

(d)

A2

m
��

A2
t
// A2

e1
// A

Proof. A simplicial map C → M1 is given by the images of the non-degenerate
1-simplex α and of the non-degenerate 2-simplices τ and ε. This means, respec-
tively, a semigroup (A, m), a morphism t : A2 → A2 in C making the diagrams
(a) and (b) in the claim commute, and a morphism e : A→ I making diagram (c)
commute. The simplicial map can be defined on the non-degenerate 3-simplex
φ of C if and only if t obeys the fusion equation in the first diagram of (3.1). It
can be defined on the 3-simplex λ if and only if the counitality condition in the
second diagram of (3.1) holds. It can be defined on ̺ if and only if diagram (d) of
the claim commutes, while for κ we get the same condition encoded in diagram
(c).

Remark 3.3. If t : A2 → A2 is a fusion morphism with counit e : A → I in C, then
we have a semigroup (A, m := e1.t) in C for which all diagrams of Proposition 3.2
commute: (a), (b) and (c) can be found in (3.6), (3.5) and (3.4) of [5], respectively,
and (d) follows by the associativity of m = e1.t. Hence there is a corresponding
simplicial map C→ M1.

However, there may be more general simplicial maps C → M1 for which the
multiplication of the corresponding semigroup (A, m) is different from the mul-
tiplication e1.t coming from the counital fusion morphism (A, t, e).

Let us consider the particular kind of simplicial maps C → M1 for which the
multiplication m happens to be non-degenerate in the sense that both maps

C(X, AY) → C(AX, AY) f 7→ m1.1 f

C(X, YA) → C(XA, YA) g 7→ 1m.g1

are injective, for any objects X and Y. Since by identities (a) and (d) in Proposition
3.2

m.e11.t1 = e1.1m.t1 = e1.t.1m = m.m1,

we conclude that in this case m = e1.t.
By the associativity of m and commutativity of (d), m = e1.t also follows if

1m : A3 → A2 is an epimorphism.
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By the same construction as above, we can associate a simplicial set to the
monoidal category Crev, obtained from C by reversing the monoidal product and
using the same braiding c. The opposite of this simplicial set is called M2. Explic-
itly, M2 also has a single 0-simplex ∗ and the semigroups in C as 1-simplices. The
2-simplices of a given 2-boundary {A12, A02, A01} are now morphisms
ψ : A01 A02 → A01 A12 in C making the diagrams

A01A01A02
1ψ
//

m011
��

A01A01A12

m011
��

A01A02 ψ
// A01A12

A01A02A02

ψ1
��

1m02 // A01A02
ψ

// A01A12

A01A12A02 1c
// A01A02 A12 ψ1

// A01A12A12
1c−1

// A01A12A12

1m12

OO

commute. For a given 3-boundary {ψ123, ψ023, ψ013, ψ012} there is precisely one
filler if

A01A02 A03

ψ0121
��

1ψ023 // A01A02A23
ψ0121

// A01 A12A23

A01A12 A03 1c
// A01 A03A12 ψ0131

// A01A13A12
1c−1

// A01 A12A13

1ψ123

OO

commutes — in which case we write (ψ123, ψ023, ψ013, ψ012) for the filler — and
there is no filler otherwise. All higher simplices are generated coskeletally. The
unique degenerate 1-simplex is again the monoidal unit I of C (regarded as a triv-
ial semigroup), while for a 1-simplex (A, m) the degenerate 2-simplices s0(A, m)
and s1(A, m) are given by

∗
A

��❅
❅❅

❅❅
❅❅

1

∗

I
??⑦⑦⑦⑦⑦⑦⑦

A
// ∗

and

∗
I

��❅
❅❅

❅❅
❅❅

m

∗

A
??⑦⑦⑦⑦⑦⑦⑦

A
// ∗

respectively; note that the roles of s0 and s1 have been interchanged. As before,
on the higher simplices the degeneracy maps are determined by the uniqueness
of the filler for a given boundary.

Since the simplicial set C is isomorphic to its opposite, Proposition 3.2 then
characterizes the simplicial maps C → M2 as objects A carrying the compatible
structures of a semigroup, and a counital fusion morphism in Crev; once again,
the roles of λ and ρ have been interchanged relative to the case of M1.

As a further possibility, we can use the above construction to associate a sim-
plicial set M3 to the monoidal category C, obtained from C by keeping the same
monoidal product but replacing the braiding c with c−1, and using the twisted
multiplication m.c−1 for a 1-simplex (that is, semigroup) (A, m), so that in partic-
ular the degenerate 2-simplex s0(A, m) is given by m.c−1. Proposition 3.2 can also
be used to describe the simplicial maps C→ M3.

Finally, applying the above construction to the braided monoidal category
(C)rev = Crev we obtain a simplicial set M4.
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3.2 Multiplier bimonoids

A multiplier bimonoid [3] in a braided monoidal category C consists of a fusion
morphism t1 in C and a fusion morphism t2 in Crev with a common counit
e : A→ I such that the diagrams

A3 t21 //

1t1
��

A3

1t1
��

A3
t21

// A3

A2 t2 //

t1
��

A2

1e
��

A2
e1

// A

(3.3)

commute. Thus by Remark 3.3, it can be thought of as a pair of simplicial maps
C → M1 and C → M2 subject to compatibility conditions expressing the fact that
the underlying semigroups and the counits are equal, and the diagrams in (3.3)
commute, with the common diagonal of the second of these given by the mul-
tiplication. Guided by this fact, we construct below a simplicial set M12 whose
simplices are suitably compatible pairs consisting of a simplex in M1 and a sim-
plex in M2. We prove that a simplicial map C → M12 is the same thing as a
multiplier bimonoid in C.

The simplicial set M12 has a single 0-simplex ∗ and the semigroups of C as 1-
simplices. The 2-simplices are pairs (ϕ|ψ) consisting of a 2-simplex ϕ of M1 and a
2-simplex ψ of M2 with common boundary {A12, A02, A01}, such that the diagram

A01A02 A12
1ϕ

//

ψ1
��

A01A01 A12

m011
��

A01A12 A12 1m12

// A01A12

(3.4)

commutes. The 3-simplices are pairs (ϕ123, ϕ023, ϕ013, ϕ012|ψ123, ψ023, ψ013, ψ012)
consisting of a 3-simplex (ϕ123, ϕ023, ϕ013, ϕ012) in M1 and a 3-simplex (ψ123, ψ023,
ψ013, ψ012) in M2 such that (φijk|ψijk) is a 2-simplex in M12 for each ijk, and the
diagram

A01A03 A23
1ϕ023 //

ψ0131
��

A01A02 A23

ψ0121
��

A01A13 A23 1ϕ123

// A01A12 A23

(3.5)

commutes. The face and degeneracy maps act on the pairs componentwise, and
higher simplices are defined coskeletally.

Remark 3.4. We explained in Remark 3.1 a sense in which the simplicial set M1 is
dictated by the fusion equation; in particular, the associativity of the multiplica-
tions in the 1-simplices and the commutativity of the diagrams in the definition of
the 2-simplices are required in order for various degenerate 3-simplices to satisfy
the fusion equation.

The case of M12 is similar: it has the same 1-simplices as M1, and once we
impose commutativity of (3.5) on the 3-simplices, any 2-simplex (ϕ|ψ) must obey
(3.4) in order to have a 3-simplex with the boundary of s1(ϕ|ψ).
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Theorem 3.5. There is a bijection between simplicial maps C → M12 and multiplier
bimonoids in C.

Proof. Again, a simplicial map C→ M12 is given by the images (A, m) of the non-
degenerate 1-simplex α, (t1|t2) of the non-degenerate 2-simplex τ and (e1|e2) of
the non-degenerate 2-simplex ε. By Proposition 3.2 (t1, e1) is a counital fusion
morphism in C obeying conditions (a)-(d); and (t2, e2) is a counital fusion mor-
phism in Crev obeying symmetric counterparts of conditions (a)-(d). Furthermore,
there are compatibility conditions between them: (t1|t2) is a 2-simplex of M12 if
and only if diagram (e) in

A3 1t1 //

t21
��

(e)

A3

m1
��

A3
1m

// A2

A
e1 //

e2

��
(f)

I

I I

A3 1t1 //

t21
��

(g)

A3

t21
��

A3
1t1

// A3

A2

t2
��

(h)

A2

m
��

A2
1e1

// A

A2 t1 //

(i)

A2

e21
��

A2
m

// A

commutes and (e1|e2) is a 2-simplex of M12 if and only if (f) does so. The simplicial
map is well-defined on the non-degenerate 3-simplices φ, λ, ̺ and κ if and only
if the respective diagrams (g), (h), (i) and (f) again commute.

From (f) we infer that the counits e1 and e2 are equal so we will denote them
simply by e. Then (h) and (i) take the equivalent form in the second diagram
of (3.3), with common diagonal m. As observed in Remark 3.3, from this it fol-
lows that all identities (a)-(d), as well as their symmetric counterparts, hold true.
Diagram (g) is identical to the first diagram of (3.3); this implies (e) upon post-
composing by 1e1.

Summarizing, a simplicial map C→ M12 is the same thing as a pair of counital
fusion morphism (t1, e) in C and a counital fusion morphism (t2, e) in Crev (with
common counit e) rendering commutative the diagrams of (3.3).

Applying the construction of this section to the braided monoidal category C,
and using the reversed multiplications m.c−1 of the semigroups (A, m), we obtain
a simplicial set M34.

3.3 Regular multiplier bimonoids

A regular multiplier bimonoid [3] in a braided monoidal category C is a tuple
(A, t1, t2, t3, t4, e) such that (A, t1, t2, e) is a multiplier bimonoid in C and
(A, t3, t4, e) is a multiplier bimonoid in C, and such that the following diagrams
commute, where m stands for the common diagonal of the first diagram.

A2 t1 //

c
��

A2

e1

��

A3 1t1 //

c1
��

A3

c1
��

A3 1t1 //

t41

��

A3

t41

��

A3 t21 //

1c
��

A3

1c
��

A3 t21 //

1t3

��

A3

1t3

��

A2

t3
��

A3

t31
��

A3

1m
��

A3

1t4
��

A3

m1
��

A2
e1

// A A3
1m

// A2 A3
1t1

// A3 A3
m1

// A2 A3
t21

// A3

(3.6)
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We shall classify regular multiplier bimonoids via simplicial maps from C to a
simplicial set M which we now describe.

The simplicial set M has a single 0-simplex ∗, and its 1-simplices are the semi-
groups in the braided monoidal category C. The 2-simplices are pairs (ϕ|ψ||ϕ′|ψ′)
consisting of a 2-simplex (ϕ|ψ) of M12 and a 2-simplex (ϕ′|ψ′) of M34 with com-
mon boundary (A, B, C), obeying the compatibility conditions

CBA
1ϕ

//

ψ′1

��

C2A

c−11
��

C2A

m1
��

CA2
1m

// CA

CBA
ψ1

//

1ϕ′

��

CA2

1c−1

��

CA2

1m
��

C2A
m1

// CA

ABA
1ϕ

//

c1
��

ACA

c1
��

BA2

ϕ′1
��

CA2

1m
��

CA2
1m

// CA

CBC
ψ1

//

1c
��

CAC

1c
��

C2B

1ψ′

��

C2A

m1
��

C2 A
m1

// CA.

The 3-simplices are pairs

(ϕ123, ϕ023, ϕ013, ϕ012|ψ123, ψ023, ψ013, ψ012||ϕ
′
123, ϕ′023, ϕ′013, ϕ′012|ψ

′
123, ψ′023, ψ′013, ψ′012)

consisting of a 3-simplex (ϕ123, ϕ023, ϕ013, ϕ012|ψ123, ψ023, ψ013, ψ012) of M12 and a
3-simplex (ϕ′123, ϕ′023, ϕ′013, ϕ′012|ψ

′
123, ψ′023, ψ′013, ψ′012) of M34 for which

(ϕijk|ψijk||ϕ
′
ijk|ψ

′
ijk) is a 2-simplex in M for every 0 ≤ i < j < k ≤ 3 and the

diagrams

A01A03 A23
1ϕ023 //

ψ′0131
��

A01A02 A23

ψ′0121
��

A01A13 A23 1ϕ123

// A01A12 A23

A01A03 A23
ψ0131

//

1ϕ′023
��

A01A13A23

1ϕ′123
��

A01A02 A23 ψ0121
// A01A12A23

(3.7)

commute. The higher simplices are generated coskeletally and the face and the
degeneracy maps act on the pairs memberwise.

Theorem 3.6. There is a bijection between simplicial maps C → M and regular multi-
plier bimonoids in C.

Proof. For a simplicial map C→ M, denote the image of the 2-simplex α by (A, m),
and denote the images of the 3-simplices τ and ε by (t1|t2||t3|t4) and (e|e||e′|e′),
respectively. By Theorem 3.5, (t1, t2, e) is a multiplier bimonoid in C for which
m = e1.t1 = 1e.t2, and (t3, t4, e′) is a multiplier bimonoid in Crev for which
m.c−1 = e′1.t3 = 1e′.t4. Furthermore, from the requirements that (t1|t2||t3|t4)
and (e|e||e′ |e′) be 2-simplices of M we obtain the following identities.

A3 1t1 //

t41

��

(j)

A3

c−11
��

A3

m1
��

A3
1m

// A2

A3 t21 //

1t3

��

(k)

A3

1c−1

��

A3

1m
��

A3
m1

// A2

A3 1t1 //

c1
��

(l)

A3

c1
��

A3

t31
��

A3

1m
��

A3
1m

// A2

A3 t21 //

1c
��

(m)

A3

1c
��

A3

1t4
��

A3

m1
��

A3
m1

// A2

A
e //

e′

��

(n)

I

I I.
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The boundaries of the images of the 3-simplices φ, λ, ̺ and κ under a simplicial
map are determined. The fillers to be their images exist if and only if the diagrams

A3 1t1 //

t41

��
(o)

A3

t41

��

A3
1t1

// A3

A3 t21 //

1t3

��
(p)

A3

1t3

��

A3
t21

// A3

A2 t1 //

t2

��

m
❇❇
❇

(q)

(r) !!❇
❇❇

❇❇
❇❇

A2

e′1

��
A

1e′
// A

A2 t3 //

t4

��

m.c−1
❇❇

(s)

(t) !!❇
❇❇

❇❇
❇

A2

e1

��
A

1e
// A

commute (in the case of κ the same condition (n) occurs again).

Conditions (l), (o), (m) and (p) are identical to the last four diagrams of (3.6).
In light of (n), conditions (q), (r), (s) and (t) are redundant. Conditions (j) and
(k) are also redundant: they follow from (o) and (p), respectively, postcomposing
them with 1e1 = 1e′1. Finally (n) implies the commutativity of the first diagram
of (3.6), with common diagonal m.

Remark 3.7. We discussed in Remark 3.1 and Remark 3.4 a sense in which the
definitions of 2-simplices in M1 and M12 are dictated by the definitions of the
respective 3-simplices.

When it comes to M, however, this property breaks down. While commuta-
tivity of the first two diagrams in the definition of 2-simplices in M is needed in
order for degenerate 3-simplices to exist in M, commutativity of the other two
diagrams is not. Commutativity of these last two diagrams would be needed,
though, if we were to modify the definition of 3-simplices so as to require that, in
addition to the diagrams of (3.7), also

A13A03 A23
1ϕ023//

c1
��

A13 A02A23
c1 // A02A13A23

1ϕ123// A02 A12A23

ϕ′0121
��

A03A13 A23
ϕ′0131

// A01A13A23 1ϕ123

// A01 A12A23

A01A03 A02
ψ0131

//

1c
��

A01 A13A02
1c // A01A02A13

ψ0121
// A01 A12A13

1ψ′123
��

A01A02 A03
1ψ′023

// A01A02A23 ψ0121
// A01 A12A23

commute.

Simplicial maps from C to the resulting simplicial set would now correspond
to a stronger notion of regular multiplier bimonoid, in which the second diagram
of (3.6) is replaced by the fusion equation in the second diagram of
[3, Remark 3.10], and with an analogous change to the fourth diagram of (3.6).
Although in general this would result in a stronger notion of regular multiplier
bimonoid, the difference would disappear in the case where the multiplication is
non-degenerate, and it was already anticipated in [3, Remark 3.10] that in the not
necessarily non-degenerate case such strengthenings might be needed.
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3.4 Multiplier bimonoids which are comonoids

In our paper [4], following some ideas in [8], we associated to any braided
monoidal category C a monoidal category M, and we described a correspon-
dence between certain multiplier bimonoids in C and certain comonoids in
M [4, Theorem 5.1]. In this section, we explain this correspondence in terms
of simplicial maps and the Catalan simplicial set.

A comonoid in the monoidal category M is the same as a monoid in the
monoidal categoryMop. We now form the nerve N(Mop) of the monoidal cate-
gory Mop, as in Section 2.3; this is not to be confused with the nerve of the un-
derlying category ofMop. As explained in [6], simplicial maps c : C → N(Mop)
can be identified with monoids inMop, and so in turn with comonoids inM.

On the other hand, we have shown that simplicial maps a : C → M12 can be
identified with multiplier bimonoids in C. In order to compare these, we con-
struct a simplicial set Q which is contained in both M12 and N(Mop). Now a
multiplier bimonoid in C corresponds to a comonoid in M just when there is a
common factorization of the corresponding simplicial maps as in the following
diagram.

C a

$$

c

##

$$
Q //

��

M12

N(Mop)

We now turn to the details. To define the monoidal category M, in [4] we
fixed a class Q of regular epimorphisms in C which is closed under composition
and monoidal product, contains the isomorphisms, and is right-cancellative in
the sense that if s : A → B and t.s : A → C are in Q, then so is t : B → C. Since
each q ∈ Q is a regular epimorphism, it is the coequalizer of some pair of mor-
phisms. Finally we suppose that this pair may be chosen in such a way that the
coequalizer is preserved by taking the monoidal product with any fixed object.

The objects of the associated category M are those semigroups in C whose
multiplication is non-degenerate and belongs to Q. The morphisms f : A 9 B
are pairs ( f1 : AB → B ← BA : f2) of morphisms in Q such that the first two,
equivalently, the last two diagrams in

A2B
1 f1 //

m1
��

AB

f1
��

AB
f1

// B

BAB
1 f1 //

f21
��

B2

m
��

B2
m

// B

BA2 f21
//

1m
��

BA

f2

��
BA

f2

// B

commute. The composite g • f of morphisms f : A 9 B and g : B 9 C is defined
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by universality of the coequalizer in the top row of the following diagrams

ABC
1g1 //

f11
��

AC

(g• f )1
��

BC g1

// C

CBA
g21

//

1 f2
��

CA

(g• f )2
��

CB g2

// C.

The identity morphism A 9 A is the pair (m : A2 → A← A2 : m).
This categoryM is monoidal. The monoidal product of semigroups A and C

is

(AC)2 1c1 // A2C2 mm // AC

and the monoidal product of morphisms f : A 9 B and g : C 9 D is the pair

ACBD
1c1 // ABCD

f1g1 // BD BADC
f2g2oo BDAC.

1c1oo

If C is a closed braided monoidal category with pullbacks, then for any semi-
group B with non-degenerate multiplication one can define its multiplier monoid
M(B), see [4]. It is a monoid in C and a universal object characterized by the
property that morphisms ( f1, f2) : A 9 B inM correspond bijectively to multi-
plicative morphisms f : A→M(B) in C such that

AB
f 1

// M(B)B
i1 // B and BA

1 f
// BM(B)

i2 // B

are in Q, where i : M(B) → M(B) is the identity morphism in C; regarded as
a morphism (i1, i2) : M(B) 9 B in M. In the category of vector spaces M(B)
reduces to the multiplier algebra of B as defined in [7].

Take a multiplier bimonoid (A, t1, t2, e) in C for which

• the underlying semigroup has a non-degenerate multiplication m := e1.t1 =
1e.t2

• m, e, and the morphisms d1 and d2 defined by

A3 c1 // A3 1t1 // A3 c−11 // A3 m1 // A2

A3 1c // A3 t21 // A3 1c−1
// A3 1m // A2

all belong to Q.

The correspondence in [4, Theorem 5.1] associated a multiplier bimonoid of this
type to the comonoid inM with underlying object (A, m), with comultiplication
A 9 A2 having components d1 and d2, and with counit A 9 I whose compo-
nents are both e.

The simplicial set M12 has a simplicial subset Q as follows. The only 0-simplex
∗ of M12 is a 0-simplex also in Q. The 1-simplices of Q are those semigroups (A, m)
in C whose multiplication is non-degenerate and belongs to Q. The 2-simplices
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of Q are those 2-simplices (ϕ|ψ) of M12 whose faces belong to Q and for which the
morphisms

ϕ̂ : A02A01A12
1c−1

// A02 A12A01
ϕ1

// A01A12 A01
1c // A01A01 A12

m011 // A01A12

ψ̂ : A01 A12A02
c−11 // A12 A01A02

1ψ
// A12A01 A12

c1 // A01A12 A12
1m12 // A01A12

are inQ. The 3-simplices of Q are all those 3-simplices of M12 whose faces belong
to Q. Clearly a simplicial map from C to Q is the same thing as a multiplier
bimonoid in C having the properties listed above.

The desired simplicial map Q → N(Mop) sends the 0-simplex ∗ to the single
0-simplex of the nerve N(Mop). It sends the 1-simplex (A, m) in Q to its under-
lying object A. It sends a 2-simplex (ϕ|ψ) to the morphism A02 9 A01A12 inM
whose components are ϕ̂ and ψ̂. On the higher simplices it is unambiguously de-
fined by the uniqueness of the filler of any boundary in N(Mop). This assignment
is injective by non-degeneracy of the relevant multiplications.
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