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Introduction

Finite-dimensional Hopf algebras H have an elusive nature. On one hand they
resemble finite groups in many aspects, while on the other, elementary facts about
finite groups are either hard to translate or even false. In fact, Kaplansky’s famous
conjectures from 1975[?], are all attempts to generalize results from groups to
Hopf algebras. Some of his conjectures are still open.

Even the naive translation of normal subgroups to normal Hopf subalgebras
is problematic. There exist semisimple Hopf algebras of dimension 36 that have
no nontrivial normal Hopf subalgebras [?], yet Burnside’s theorem on solvable
groups assures the existence of normal subgroups for groups of order 36. A more
suitable translation of subgroups are left coideal subalgebras. When N is a sub-
group of a group G then kN can be considered as a left coideal subalgebra of
the Hopf algebra kG. Normal left coideal subalgebras correspond to normal sub-
groups in this way.

Explicitly, a Hopf algebra H is an algebra over a field k endowed with a couni-
tal coassociative coalgebra structure map ∆ : H → H ⊗ H, compatible with the
algebra structure of H, an augmentation algebra map ε : H → k and an antipode
S : H → H. A left coideal subalgebra N of H is a subalgebra of H such that
∆(N) ⊂ H ⊗ N. There exists also an appropriate notion of normality.

Just as normal subgroups for groups, normal left coideal subalgebras give rise
to Hopf quotients. Explicitly, if N is a normal left coideal subalgebra of H then the
Hopf quotient related to N is H/HN+ where N+ = N ∩ ker ε and HN+ = N+H
is then a Hopf ideal. On the level of groups, Hopf quotients and group algebras
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of quotient groups coincide. For if N is a normal subgroup of G then the group
algebra k(G/N) is precisely the Hopf quotient kG/(kG)(kN)+ .

However, while group quotients are always of the form G/N, N a normal
subgroup, Hopf quotients arise from normal left coideal subalgebras which are
not necessarily Hopf subalgebras. This is the cause for a major difference between
general Hopf algebras and group algebras. We avoid this problem by using inte-
grals.

The existence of integrals for finite dimensional Hopf algebras is one of the
first major achievements in their structure theory, due to Larson and Sweedler
from the late 60’s [12]. Integrals play the role of the averaging elements ∑g∈G g for
finite groups G. Since the 90’s the existence of integrals for left coideal subalgebras
was established as well (e.g [11, ?, 13, 14]). Using integrals for the Hopf algebra
H, for its dual Hopf algebra H∗ and for left coideal subalgebras of both, enable
us to generalize results from groups to Hopf algebras.

In this survey we describe conjugacy classes, character tables, commutators,
nilpotency and solvability for semisimple Hopf algebras. At each stage we show
how our general approach coincides with the classical notions for groups.

1 Preliminaries and notations

Throughout H is a d-dimensional semisimple Hopf algebra over an algebraically
closed field k of characteristic 0 and H∗ is its dual which is a semisimple Hopf
algebra as well. In several of the following we assume that k = C. Let ε : H → k
denote the augmentation map. We use the Sweedler notation for the coalgebra
structure

∆(h) = ∑ h1 ⊗ h2 ∈ H ⊗ H

An element h ∈ H is cocommutative if ∑ h1 ⊗ h2 = ∑ h2 ⊗ h1. for all h ∈ H.
We denote by S and s the antipodes of H and H∗ respectively. It is known that

when H is semisimple then S2 = Id .
We denote by Λ and λ the integrals of H and H∗ respectively. Recall,

hΛ = Λh = 〈ε, h〉 Λ for all h ∈ H and similarly pλ = λp = 〈p, 1〉 λ for all
p ∈ H∗. We choose Λ to be idempotent and λ to satisfy 〈λ, Λ〉 = 1.

The Hopf algebra H∗ becomes a right and left H-module by the hit actions ↼
and ⇀ defined for all a ∈ H, p ∈ H∗,

〈

p ↼ a, a′
〉

=
〈

p, aa′
〉 〈

a ⇀ p, a′
〉

=
〈

p, a′a
〉

H becomes a left and right H∗ module analogously.
It is known that Λ is a free generator for H as a left and a right H∗-module.

That is, H∗
⇀ Λ = Λ ↼ H∗ = H.

Denote by ȧd the left adjoint action of H on itself, that is, for all a, h ∈ H,

hȧda = ∑ h1aS(h2).

A left coideal subalgebra of H is a subalgebra N so that ∆(N) ⊂ H ⊗ N. It is
called normal if it is stable under the left adjoint action of H.
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Every left coideal subalgebra of H is semisimple as an algebra and equipped
with a 1-dimensional ideal of integrals, we denote by ΛN the unique idempotent
integral of N.

The most basic example of a semisimple Hopf algebra is H = kG, G a finite
group, we keep this assumption throughout.

Example 1.1. Recall, kG is a Hopf algebra with ∆(g) = g ⊗ g, S(g) = g−1 and
〈ε, g〉 = 1 for all g ∈ G. Clearly kG is a cocommutative Hopf algebra. We have,

Λ =
1

|G| ∑
g∈G

g

is an idempotent integral for kG. The dual Hopf algebra kG∗ has a linear basis
{pg} where

〈

pg, g′
〉

= δg,g′, that is, a dual basis for the basis {g}g∈G of kG. We
have λ = |G|p1.

It can be checked that

∆(pg) = ∑
t∈G

pt ⊗ pt−1g.

The semisimple Hopf algebra kG∗ is commutative and the elements {pg} form
a set of primitive idempotents for it. We have,

pg ⇀ g′ = δg,g′g g ⇀ pg′ = pg′g−1

and thus

pg ⇀ Λ =
1

|G|
g g ⇀ λ = |G|pg−1 .

2 Conjugacy classes, Class sums and Character tables

The representation theories of semisimple Hopf algebras and of finite groups are
closely related in the sense that they both give rise to fusion categories (that is,
k-linear semisimple rigid tensor categories with finitely many simple objects and
finite dimensional spaces of morphisms). These categories are tensor categories
due to the fact that the tensor product of two representations is a representation
as well via the coproduct structure. As a result their characters form an algebra.

Explicitly, for a finite-dimensional left H-module V denote its structure map
H → Endk(V) by ρV . Then the character χV of V is defined by

〈χV , h〉 = Trace(ρV(h))

for all h ∈ H. Let d = dim H and {k = V0, . . . Vn−1} be a complete set of non-
isomorphic irreducible H-modules. We set Irr(H) = {χi}, the corresponding
characters where χi = χVi

and 〈χ1, 1〉 = di, the dimension of the irreducible
module Vi. Then we have

χVχW = χV⊗W ,
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where the product on the left coincide with the product in the Hopf algebra H∗.
We have also that λ is the character of the left (right) regular representation of H,
that is,

λ =
n−1

∑
i=0

diχi, 〈λ, 1〉 = ∑ d2
i = d.

Denote by R(H) ⊂ H∗ the k-span of Irr(H). It is in fact an algebra which
coincides with the algebra of cocommutative elements of H∗. By ([?, 15]) it is a
semisimple algebra. Let { 1

d λ = F0, . . . Fm−1} be a complete set of central primitive
idempotents of R(H), and let { f0, . . . , fm−1} be primitive orthogonal idempotents
in R(H) so that fiFj = δij fi.

In what follows we give the initial definitions that allow us to generalize
results from group theory to the structure theory of Hopf algebras. We define
a conjugacy class as follows:

Ci = Λ ↼ Fi H
∗ (1)

We generalize also the notions of a Class sum and of a representative of a
conjugacy class:

Ci = Λ ↼ dFi ηi =
Ci

dim( fi H∗)
. (2)

We refer to ηi as a normalized class sum. By results in [?], the elements Ci are
central in H.

When H = kG, G a finite group, the definition of conjugacy classes, class
sums and representatives reduce to the usual definitions. To see this we continue
with Example 1.1

Example 2.1. Let H = kG, G a finite group. Since kG∗ is a commutative algebra,
so is R(H). It can be checked that if Ci is the ith conjugacy class of G, then the
element Fi ∈ kG∗,

Fi = ∑
g∈Ci

pg

is cocommutative, hence belongs to R(H). In fact {Fi} is the set of (central)
primitive idempotents of R(H). In particular Fi = fi in our notations.

The classical notions of conjugacy classes Ci and corresponding class sums Ci

are given respectively by:

Ci = {x−1gix, x ∈ G} and Ci = ∑
g∈Ci

g,

where gi is an arbitrary representative of Ci.
By using the notations and the formulas in Example 1.1, they can be realized

exactly as in (1) and (2). That is, since Λ = 1
|G| ∑g∈G g, |G| = dim(H) = d, we

obtain

Spk{x−1gix, x ∈ G} = Λ ↼ Fi H
∗ and ∑

g∈Ci

g = Λ ↼ dFi.
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Note also that
dim(Fi H

∗) = |Ci|.

For general Hopf algebras we can not choose a representative gi from the
conjugacy class Ci. We replace it by an ”average” - the normalized class sum ηi

defined in (2). For groups it boils down to

ηi =
1

|Ci|
∑

g∈Ci

g.

The following result describes, in a certain sense, the ”essence” of conjugacy
classes. Given a Hopf algebra H, its Drinfel’d double D(H) defined in [9] is a
Hopf algebra structure defined on H∗ ⊗ H, the tensor product of H and its dual
H∗. From a categorical point of view, the category of representations of D(H) is
the center of the category of H-representations. We have shown in [6] that:

Proposition 2.2. Each conjugacy class Ci is an irreducible left D(H)-module and more-
over,

H ∼= ⊕m−1
i=0 C

⊕mi
i

as D(H)-modules, where mi = dim fiR(H).

We are ready now to define the character table for Hopf algebras. Recall, the
(i, j)-th entry in the character table for G is

〈

χi, gj

〉

where gj is an element of Cj.
Since this value does not depend on the representative, we can replace gj by the
’average’ representative ηj. We thus define a generalized character table for H as
follows:

Definition 2.3. The generalized character table (ξij) of a semisimple Hopf algebra
H over C is given by:

ξij =
〈

χi, ηj

〉

,

for all irreducible characters χi and generalized class sums ηj of H.

When R(H) is commutative then {Fi} forms a basis of R(H) and fi = Fi for all

i. In this case, H ∼= ⊕m−1
i=0 Ci and the character table is a square matrix. Moreover,

many other properties of character tables for groups can be generalized in this
case.

The common family of Hopf algebras for which R(H) is a commutative
algebra consists of quasitriangular Hopf algebras introduced by Drinfel’d[9] in
the context of quantum groups. They can be described as quotients of Drinfel’d
doubles. Alternatively, they can be described as Hopf algebras whose category of
representations is also braided. Group algebras are always quasitriangular. Fac-
torizable Hopf algebras are special kind of quasitriangular Hopf algebras. Drin-
fel’d doubles are the basic examples of factorizable Hopf algebras.

In [4] we listed properties of groups related to their character tables and
showed how they can be generalized to Hopf algebras for which R(H) is a com-
mutative algebra. We summarize:
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Theorem 2.4. Let H be a semisimple Hopf algebra over C and assume R(H) is commu-
tative. Then the following hold.

1. The entries of the character table ξij are algebraic integers.

2. In each row i, ξi0 = 〈χi, 1〉 is maximal amongst all absolute values of the entries
in this row. That is, |ξij| ≤ 〈χi, 1〉 for all 0 ≤ i ≤ n − 1.

3. For groups, the product of two class sums is an integral sum of class sums. The
structure constants of this product are obtained from the character table.

For Hopf algebras, if Ci, Cj are any conjugacy sums, then

CiCj = ∑
t

cijtCt

where for any t,

cijt =
dim(H∗Fi)(dim(H∗Fj)

d ∑
k

ξkiξkjξkt

dk
.

If H is quasitriangular then we have integral coefficients {cijt} up to a factor of

d−3. If H is factorizable then these coefficients are integral up to a factor of d−1.

4. For groups, different columns are orthogonal, while the square of the norm of each

column j equals |G|
|Cj)|

. Different rows satisfy generalized orthogonality relations.

The same result for Hopf algebras takes the following form.

(a) ∑
j

dim(Fj H
∗)ξnjξmj = δmnd.

(b) ∑
m

ξmiξmj = δij
d

dim(H∗Fi)

As a result, the size of each conjugacy class can be determined from the norm of the
corresponding column.

5. For groups, the kernel of the irreducible representation Vi is the union of all conju-
gacy classes Cj for which

〈

χi, ηj

〉

= 〈χi, 1〉 = dim Vi.

For Hopf algebras we use the term Left kernel defined in [1] that generalizes
kernels of group representations to left kernels of H-representations. While kernels
of group representations are normal subgroups, left kernels of H-representations
are normal left coideal subalgebras. We have:

Let Vi be an irreducible representation of H, then

LkerVi =
⊕

j∈J

Cj, where J = {j |
〈

χi, ηj

〉

= 〈χi, 1〉}.
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6. For groups, a collection of conjugacy classes forms a normal subgroup if and only if
it is an intersection of kernels of some irreducible representations. As a result, the
order of all the normal subgroups and the inclusion relations among them can be
determined from their character tables.

Similar result holds for normal left coideal subalgebras. We have,

Let L =
⊕

j∈J Cj, for some set J ⊂ {0, . . . , n − 1}. Then L is a subalgebra

(necessarily normal left coideal) of H if and only if there exists I ⊂ {0, . . . , n − 1}
so that J = JI, where

JI = {j | χiFj = 〈χi, 1〉 Fj for all i ∈ I}.

As a result, the dimensions of all the normal left coideal subalgebras of H, and the
inclusion relations among them can be determined from its character table.

When R(H) is not commutative, generalizing results from groups is more
complicated. The character tables are no longer square matrices and the central
idempotents Fi in R(H) are sums of primitive idempotents fij

. As a result, class

sums Ci do not belong to a unique conjugacy class, but to a sum of isomorphic
conjugacy classes. Explicitly, set

C
i = Λ ↼ Fi H

∗ =
⊕

j

Cij
.

If we choose arbitrarily fi = fij
, for some j, then we have,

Ci ∈ C
i ∼= C

⊕mi
i ,

where mi = dim fiR(H).
In [5] we extended as possible the results in Theorem 2.4 to the general case

where R(H) is not necessarily commutative. We summarize:

Theorem 2.5. Let H be a d-dimensional semisimple Hopf algebra over C , then

• Integrability: All entries of the character table are algebraic integers.

• Absolute maximality: (i) Each entry of the i-th row of the character table satisfies:

|〈χi, ηj〉| ≤ mj〈χi, 1〉.

(ii) Equality holds if and only if right multiplication by χi, rχi
acts on f jR(H) as

αi Id f jR(H), where |αi| = 〈χi, 1〉.

(iii) 〈χi, ηj〉 = mj〈χi, 1〉 if and only if rχi
acts on f jR(H) as 〈χi, 1〉 Id f jR(H) .

• Orthogonality of columns:

∑
k

ξkiξkj = δij
d dim( fiR(H))

dim( fi H∗)
.
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• Analogues of characterizations of kernels. Let {Fj} be the set of central primitive
idempotents of R(H) and let {Vi} be the set of irreducible representations of H.
Then the following are equivalent:

(i) Fjχi = 〈χi, 1〉 Fj

(ii)
〈

χi, ηj

〉

= mj 〈χi, 1〉 .

(iii) Cj ⊂ LKerVi
.

3 Commutators, nilpotency and solvability

The commutator subalgebra H′ of a semisimple Hopf algebra H was first defined

in [1]. It is a normal left coideal subalgebra of H for which H/HH′+ is commu-
tative and is minimal with respect to this property.

It is not hard to see that

H′ = {h ∈ H | σ ⇀ h = h ∀σ ∈ G(H∗)}. (3)

Here G(H∗) denotes the group of group-like elements of H∗, that is, the 1-dimen-
sional (and thus multiplicative) characters on H.

Generalizing from groups we described H′ in terms of Hopf algebraic commu-
tators [6]. Let H be any Hopf algebra over k. For a, b ∈ H, define their commutator
{a, b} as:

{a, b} = ∑ a1b1Sa2Sb2. (4)

Define
Com = spank{{a, b} | a, b ∈ H}. (5)

Then Com is a left coideal of H. In [6] We showed:

Proposition 3.1. Let H be a semisimple Hopf algebra then the commutator subalgebra
H′ of H is the algebra generated by Com.

Example 3.2. Let G be a finite group and G′ its commutator subgroup. Then G/G′

is an abelian group and G′ is minimal with respect to this property. Moreover, all
1-dimensional characters of G, are trivial (that is, act as 1) when restricted to G′.
This is the analogue of the commutator subalgebra H′ of H and of (3).

Since ∆(g) = g ⊗ g, we find that the definition of the commutator given in
(4), boils down to the group commutator [a, b] = aba−1b−1 for all a, b ∈ G. The
commutator group G′ is the group generated by all commutators and is normal
in G. Proposition 3.1 is a generalization of this fact.

Another concept which appears in the literature for group algebras is the com-
mutator space of kG

K = Spk{xy − yx, x, y ∈ kG}.

The ideal generated by K is in fact kG(kG′)+, which is the kernel of the alge-
bra map kG → kG′. Moreover, it is contained in the kernel of any algebra map
kG → kG when G is commutative. For general Hopf algebras, the corresponding

Hopf ideal is HH′+.
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In [6] we introduced a family of elements in H′ denoted by zn, n > 1, which
arise from the idempotent integral of H. This family consists of powers of the
S-fixed central invertible element z2,

z2 = {Λ, Λ′} = ∑ Λ1Λ′
1SΛ2SΛ′

2

where Λ, Λ′ are two copies of the idempotent integral of H. We refer to z2 as an
extensive commutator.

The extensive commutator z2 has a very nice form which is the key for deter-
mining commutativity. We showed

Theorem 3.3. Let H be a semisimple Hopf algebra over an algebraically closed field k of
characteristic 0, then H is commutative if and only if z2 ∈ k.

Let {Ei} be the set of central orthogonal idempotents of H. Then

z2 = {Λ, Λ′} = ∑
i

1

d2
i

Ei ∈ Z(H).

The element z2 generates H′ in the following sense. H′ is the algebra generated by the
left coideal z2 ↼ H∗.

What is the role played by the extensive commutator z2 inside kG?

Example 3.4. Recall for groups Λ = 1
|G| ∑g∈G g. Hence

{Λ, Λ′} =
1

|G|2 ∑
a,b∈G

aba−1b−1 =
1

|G|2 ∑
g∈G

f (g)g,

where f is the Frobenius counting function. That is, f (g) counts the number of
times g can be obtained as a commutator aba−1b−1. Clearly, if ∑a,b∈G aba−1b−1 ∈
k, then all commutators are trivial which means that G is abelian. This fact is
expressed in the first statement of Theorem 3.3.

The group elements {g} that appear in {Λ, Λ} with a nonzero coefficient, (that
is f (g) 6= 0), are precisely those that generate G′. This fact is expressed in the last
part of Theorem 3.3 since z2 ↼ pg = f (g)g for all g ∈ G.

The fact that di||G| is a famous property of groups. Frobenius has shown that
the counting function f has the form

f = ∑
i

|G|

di
χi,

meaning that f is a character on G. It can be seen that f and the extensive com-
mutator z2 are related by:

f = λ ↼ dz2.

For general Hopf algebras, Kaplansky’s 6th conjecture states that the dimen-
sion of any irreducible H-module divides dim H. This conjecture is still open.
However, in [7] we refer to the function fcom = λ ↼ dz2 and to some other count-
ing functions as distribution functions.
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Nilpotent groups can be defined in terms of upper central series of normal
subgroups,

1 = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ · · · ⊂ Zt(G) = G,

where Z1(G) = Z(G), the center of the group G, and

Zi+1(G)/Zi(G) = Z(G/Zi (G)).

Equivalently, it is defined in terms of lower central series of commutators,

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ 1,

where G1 = [G, G], Gi = [G, Gi−1], the ith commutator subgroup.

Hopf commutators on one hand and integrals of certain left coideal subalge-
bras enable us to define nilpotent Hopf algebras as a natural generalization of
nilpotent groups. The generalization of upper central series is not trivial though.
While the set {Zi(G)} are all normal subgroups of G, it makes sense to consider
quotients of successive subgroups, this is no longer the case for Hopf algebras.
Though we can replace normal subgroups with normal left coideal subalgebras,
we do not have a meaningful replacement for quotients.

We overcome this problem by using integrals for left coideal subalgebras.
Observe that Zi+1(G)/Zi(G) is the image of Zi+1(G) under the group projection
πi : G → G/Zi(G). In [8], we showed that if πi : H → H/HZ+

i is a Hopf algebra
projection, and ΛZi

is the integral of Zi, then πi |HΛZi
is an algebra (and H-module)

isomorphism. In particular, if Zi+1 ⊃ Zi, then we have an algebra isomorphism

πi(Zi+1) ≡ Zi+1ΛZi
.

This observation enables us to replace quotients with subalgebras and thus
suggest a definition for an upper central series for Hopf algebras as follows:

Definition 3.5. An ascending (upper) series for H is a series of normal left coideal
subalgebras

k = Z0 ⊂ Z1 ⊂ · · · ⊂ Zt ⊂

so that
Zi+1ΛZi

= Z(HΛZi
),

for all 1 ≤ i ≤ t, where ΛZi
is the integral of Zi and Z(HΛZi

) is the center of
HΛZi

.

The lower series for H are described via Hopf commutators as follows.

Definition 3.6. A descending lower series for H is a series of iterated commuta-
tors,

H = N0 ⊃ N1 ⊃ · · · ⊃ Nt ⊃,

so that N0 = H, Ni = the normal left coideal subalgebra generated by {Ni−1, Λ}.

As for groups, when H is nilpotent the first series ends with H while the sec-
ond one ends with k. They are also interrelated. Based on [7, Th. 3.7] and [8, Prop.
3.8] we have,
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Theorem 3.7. Let H be a semisimple Hopf algebra over an algebraically closed field of
characteristic 0, let {Zi} be an ascending central series and {Ni} be a descending central
series. Then

Nt = k1 ⇐⇒ Zt = H.

In this case H is nilpotent and we have: Nt−i ⊆ Zi for all 0 ≤ i ≤ t.

Iterated commutators of the extensive commutator z2 yield another criterion
for nilpotency of H. Define an operator T : Z(H) −→ Z(H) by

T(z) = {z, Λ}.

We have:

Proposition 3.8. (i) The matrix of T with respect to the basis {E0

d2
0
, . . . ,

En−1

d2
n−1

} is A, where

Aij =
〈χis(χi)s(χj), Λ〉

dj
, 0 ≤ i, j ≤ n − 1. (6)

(ii) A has non-negative rational entries and the first column of A has all entries equal 1.

(iii) The first row of Am is (1, 0, . . . , 0) for all m ≥ 0.

(iv) In the first column of Am we have:

(Am)i0 = ∑
j

(Am−1)ij,

For all m > 0, 0 ≤ i ≤ n − 1. In particular, The first column of Am consists of positive
rational numbers.

We refer to A as the Commutator matrix of H. Observe that this matrix
depends only on the structure constants of the ring of characters on H. Eigen-
values of A are related to nilpotancy of H.

Theorem 3.9. Let H be a semisimple Hopf algebra over an algebraically closed field of
characteristic 0 and assume χis(χi) ∈ Z(R(H)) for each irreducible character χi. Then
H is nilpotent if and only if its commutator matrix A has eigenvalues {1, 0} where the
algebraic multiplicity of 1 is 1.

The condition χis(χi) ∈ Z(R(H)) is satisfied by an abundance of semisimple
H. In particular by all quasitriangular Hopf algebras, but also by H = kG∗, even
though R(H) = kG is not necessarily commutative.

We next define an important family of central iterated commutators .

γ0 = Λ, γ1 = T(Λ) = {Λ, Λ}, . . . , γm = Tm(Λ) = {γm−1, Λ}. (7)

We can describe the central iterated commutators γn in terms of the coeffi-
cients of A. In particular, they are all positive rational numbers.
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Proposition 3.10. Let γm be defined as in (7) and the matrix A be defined as in Propo-
sition 3.8. Then

γm = ∑
i

(Am)i0
Ei

d2
i

= ∑
i

(

∑
j

(Am−1)ij

)

Ei

d2
i

for all m ≥ 1. Moreover, the coefficient of each Ei in γm is a non-zero rational number, in
particular γm is invertible.

Proposition 3.10 yields another criterion for nilpotency of H.

Theorem 3.11. Let H be a semisimple Hopf algebra over an algebraically closed field of
characteristic 0, and let γt be defined as in (7). Assume χis(χi) ∈ Z(R(H)) for each
irreducible character χi. Then H is nilpotent if and only if γm = 1 for some m ∈ ZZ

+.
Its index of nilpotency is the least integer m so that γm = 1.

The last concept we wish to discuss is solvability. On the level of category
theory there exists a notion of solvability [10] and it is customary to define
solvable Hopf algebras H as those for which Rep(H) is a solvable category. How-
ever, this non-intrinsic definition is unsatisfactory as it contradicts our intuition
from group theory. Commutative or nilpotent Hopf algebras are not always solv-
able in this sense [10, Prop. 4.5(ii),Remark 4.6(i)]. We suggested in [8] an intrinsic
definition of solvability which is consistent with solvability for finite groups and
as desired, commutative or nilpotent Hopf algebras are indeed solvable.

A solvable group has a subnormal series of subgroups. That is,

1 = G0 ⊂ G1 ⊂ · · · ⊂ G,

so that Gi is normal in Gi+1. G is solvable if it has a subnormal series so that
Gi+1/Gi is an abelian group. Generalizing this definition to Hopf algebras re-
quires an appropriate translation for subnormal series in addition to abelian quo-
tients. This is done using integrals as follows:

Definition 3.12. Let H be a semisimple Hopf algebra. A subnormal series of left
coideal subalgebras of H

k = N0 ⊂ N1 ⊂ · · · ⊂ Nt = H

is a series satisfying:

ΛNi
∈ Z(Ni+1)

for all 0 ≤ i ≤ t − 1, where ΛNi
is the integral of Ni. H is solvable if for all

a, b ∈ Ni+1,

(aȧdb)ΛNi
= 〈ε, a〉bΛNi

.

Example 3.13. For finite groups, the definition of solvable Hopf algebras boils
down to the usual definition of solvability for groups.



From finite groups to finite-dimensional Hopf algebras 13

To see this, let G1 ⊂ G and ΛG1
= 1

|G1|
∑x∈G1

x. If ΛG1
is central in G, then for

g ∈ G we have,

1

|G1|
∑

x∈G1

xg = ΛG1
g = gΛG1

=
1

|G1|
∑

x∈G1

gx.

It follows that for x ∈ G1, xg = gy for some y ∈ G1. Thus G1 is normal in G.
We claim now that G/G1 is abelian if and only if (a ˙adb)ΛG1

= bΛG1
, for all

a, b ∈ G. Indeed, assume ab = ba for all a, b ∈ G/G1. Then aba−1 = by for some
y ∈ G1. This implies that

aba−1 ∑
x∈G1

x = by ∑
x∈G1

x = b ∑
x∈G1

x.

Conversely, if aba−1 ∑x∈G1
x = b ∑x∈G1

x then aba−1 = by for some y ∈ G1.
This shows our claim.

We showed in [8] that many properties of solvable groups can be generalized
to solvable Hopf algebras. In particular, any nilpotent Hopf algebra is solvable.
We proved also an analogue of Burnside’s paqb theorem for semisimple quasitri-
angular Hopf algebras.

Theorem 3.14. Let H be a quasitriangular semisimple Hopf algebra of dimension paqb

over a field k of characteristic 0, p, q primes. Then H is solvable.
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