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Abstract

The connection between categorical and differential Galois theories estab-
lished by the author (published in 1989) is extended to the context that
includes difference Galois theory.

Introduction

In this paper “ring” means “commutative ring with 1” and the same applies to algebras
over rings; homomorphisms of rings and algebras over rings are supposed to preserve 1.

Let us begin with what is usually called Grothendieck’s formulation of the fun-
damental theorem of Galois theory:

Theorem 0.1. If K ⊆ E is a finite Galois field extension and G is its Galois group, then
the opposite category of K-algebras A with E⊗K A ≈ En for some natural n is equivalent
to the category of finite G-sets.
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This theorem has a number of counterparts and generalizations, including
Magid’s most general such theorem for arbitrary (commutative) rings [18] (the
first edition of that book was published in 1974). The first purely-categorical gen-
eralization, where Magid’s theorem was considered as the main example, was
proposed in [6], with several different versions later published as [7], [9], and [10]
(see also [1] and [11]). Let us mention here the following one, which was already
in [6], except that one of its requirements was simplified a bit in 1991:

Theorem 0.2. Let I : C → X be a functor between categories with pullbacks that admits
a right adjoint H, and let (A, f ) be an I-normal extension of B, which means f : A → B
be a morphism in C satisfying the following conditions:

(a) A is I-admissible, which means that the functor IA : (C ↓ A) → (X ↓ I(A)) has
a fully faithful right adjoint;

(b) the change-of-base functor (C ↓ B) → (C ↓ A) is monadic;

(c) (A ×B A, pr1) ≈ HA IA(A ×B A, pr1) canonically in (C ↓ A) (or, equivalently

under (a), (A ×B A, pr1) belongs to the replete image of HA), where HA is the

right adjoint of IA.

Then the I-image I(A ×B A) of the internal equivalence relation A ×B A on A in the
category C is an internal groupoid in X, and there is a canonical category equivalence

SplI(A, f ) ∼ XI(A×B A),

in which SplI(A, f ) is the full subcategory of (C ↓ B) with objects all S → A such that
(A ×B S, pr1) ≈ HA IA(A ×B S, pr1) (canonically or not) in (C ↓ A).

Being so much more general than Theorem 0.1, this theorem has many non-trivial
examples far away from what A. Grothendieck considered, some of which are
discussed in the above-mentioned papers and in many others they refer to. One
such example was found as an answer to a question asked by S. Mac Lane:

Actually Mac Lane simply asked me whether differential Galois theory can be
obtained as a special case of the categorical one, and while the complete answer
would be a very long story, the first most interesting step would be to find out
whether Picard-Vessiot extensions of differential fields are I-normal for some nat-
urally chosen functor I, and to find out what kind of Galois groupoids does this
present as I(A ×B A). It turned out [8] that:

• The “naturally chosen functor” I is nothing but the functor from the oppo-
site category of differential rings to the opposite category of rings sending
differential rings to their rings of constants.

• Picard-Vessiot extensions are not I-normal in general.

• If K ⊆ E is a Picard-Vessiot extension for a (linear homogeneous) differen-
tial equation L(y) = 0 of degree n, and u1, . . . , un are linearly independent
solutions of that equation, then the differential subring of E generated by K
and these solutions is still not an I-normal extension of K in general.
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• However, in the situation above, the differential subring A of E generated
by K, these solutions, and the inverse of their Wronski determinant always
is an I-normal extension of K.

• According to Theorem 2, the Galois groupoid of that normal extension
should be defined as the ‘Hopf algebroid’ of the constants of A ⊗K A (since
pullbacks in the opposite category of differential rings are constructed as
tensor products). The study of these Galois groupoids and their relation-
ship with the classically defined algebraic Galois groups of Picard-Vessiot
extensions has been postponed. . .

The paper [8] has been recommended for publication by Mac Lane himself, and
some years later A. R. Magid mentioned it in [17]. Nevertheless, as far as I know
no further results had been obtained in this direction.

The present paper can be considered as a difference-algebraic counterpart of [8],
with many arguments copied from there. It actually introduces a generalized-
differential-algebraic context in an attempt to unify the differential-algebraic and
the difference-algebraic ones, although there are three important places where I
was not able to find unified proofs in time (see Remark 2.2); I think it can be done
though.

I am grateful to the anonymous referee for pointing out to me that the generalized
differential rings I am using were originally defined by L. Guo and W. Keigher in
[4] (see also [5] and references therein).

Apart from this introduction the paper has six sections, the first of which defines
generalized differential algebras whose special cases are both differential and dif-
ference algebras over rings, starting from a naive motivation for that definition.
Section 2 is devoted to easy adaptations of the notions of Wronski and Casorati
determinants and of their relation with linear independence over constants to our
context, while Section 3 calculates their derivatives/‘difference’. In fact the last
result of Section 3 is not used later, and it is mentioned only for those readers
who might be interested in improving what I have done for the above-mentioned
unification (see Remark 2.2 again). Sections 4 and 5 are devoted to two lemmas,
respectively, needed to prove the main result, which is Theorem 6.2 of the last
section. This theorem extends Theorem 2.4 of [8] that is the main result of that
paper, first of all to include the case of difference algebras. The formulations look
slightly different, but in fact Theorem 6.2 fully generalizes Theorem 2.4 of [8]
due to the simplification mentioned above Theorem 0.2; the details are omitted
though.

Finally, let us mention some of many further comparisons to be made:

• The next step would be to extend the categorical approach from the Picard-
Vession theory to the strongly normal theory due to E. Kolchin [14] (see also
[17]). Unfortunately my discussion with Kolchin in Novosibirsk in 1989
about this was too brief.
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• Another desirable extension would be towards the J.-F. Pommaret approach
[19], although several letters he and I send to each other many years ago did
not help.

• M. Takeuchi’s paper [20] published at the same year as [8] involves Hopf
algebras in the Picard-Vessiot theory, and therefore should be closely related
to [8].

• The much more recent paper [2] of Z. Chatzidakis, C. Hardouin, and
M. Singer compares various definitions of difference Galois groups, and it
would desirable to compare its constructions with our I(A ×B A); in fact
the links between them might go back to the older book of M. Van der Put
and M. F. Singer [21].

• Various authors mention torsors in differential/difference Galois theory,
which also occur of course in categorical Galois theory; this might indicate
easy further links with it.

1 Generalized differential algebras

Given a normed ring R, and a fixed element e in it, we could define the derivative
D( f ) of a map f : R → R at an element r of R as

D( f )(r) = lim
x→e

f (r + x)− f (r)

x
, (1.1)

which becomes the standard definition when e = 0, and which requires, how-
ever, some invertibility explanations even in that special case. Omitting that
explanation and naively following the usual calculation of D( f g), where f g is
the argument-wise product of maps f , g : R → R, we obtain

D( f g)(r) = (D( f )(r))
(

lim
x→e

g(r + x)
)

+ f (r)(D(g)(r)). (1.2)

On the other hand, (1.1) applied to g (also naively) gives

lim
x→e

g(r + x) = g(r) + e(D(g)(r)), (1.3)

and so

D( f g)(r) = (D( f )(r))g(r) + f (r)(D(g)(r)) + e(D( f )(r))(D(g)(r)). (1.4)

In, say, the classical case of R being the field of real numbers, e = 0 gives back
the classical derivative, while e 6= 0 and having continuous f gives D( f ) =
( f (r + e)− f (r))/e, in which cases (1.4) is classical and straightforward, respec-
tively. In the latter case e = 1 would make D the so-called difference operator.
Using (1.4) as a motivation, we introduce, following L. Guo and W. Keigher [4]
(who briefly mention essentially the same motivation and give the same exam-
ples as our Examples 1.2 and 1.3 below):
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Definition 1.1. (a) Let R be a ring, and e an element in R. A differential (R, e)-
algebra is a pair (A, D), in which A is an R-algebra, and D : A → A an R-module
homomorphism with

D(1) = 0, (1.5)

D(ab) = D(a)b + aD(b) + eD(a)D(b), (1.6)

for all a and b in A. We shall often write just A instead of (A, D), use the same
letter D for all differential (R, e)-algebras, and simply call it derivative, as in the
case e = 0.

Example 1.2. When e = 0 in Definition 1.1, a differential (R, e)-algebra is the same
as a differential R-algebra.

Example 1.3. When e, in Definition 1.1, is invertible, (A, D) is a differential (R, e)-
algebra if and only if (A, ϕ) having ϕ : A → A defined by ϕ(a) = eD(a) + a is a
difference R-algebra (we are not requiring ϕ to be injective).

Example 1.4. Every R-algebra equipped with the zero derivative, that is, the
derivative D defined by D(a) = 0 for all a in A, is a differential (R, e)-algebra.
In particular, R itself equipped with the zero derivative is the initial object in the
category of differential (R, e)-algebras.

Remark 1.5. (a) When e = 0, (1.5) follows from (1.6), since (classically) taking
a = b = 1 in (1.6) gives D(1) = D(1) + D(1). In general this implication fails: if
either e = 1 and D(a) = −a for each a, or e = −1 and D(a) = a for each a, then
(1.6) holds but (1.5) does not, unless the algebra is trivial. On the other hand, if
the map ϕ : A → A defined as in Example 1.3 preserves 1, then eD(1) = 0, and
so the invertibility of e implies (1.5).

(b) One could try to replace (1.6) with more general

D(ab) = cD(a)b + daD(b) + eD(a)D(b), (1.7)

for fixed c, d (and e) in R, which would be satisfied, together with (1.5), in Exam-
ple 1.4. However, together with (1.5) it would give D(a) = D(a1) = cD(a) and,
similarly, D(b) = D(1b) = dD(b). Therefore, together with (1.5) it implies (1.6).

Example 1.6. When A and B are differential (R, e)-algebras, so is their tensor
product A ⊗R B with the derivative given by

D(a ⊗ b) = D(a)⊗ b + a ⊗ D(b) + eD(a)⊗ D(b), (1.8)

and, moreover, this differential (R, e)-algebra is the coproduct of A and B with
coproduct injections a 7→ a ⊗ 1 and b 7→ 1 ⊗ b, as for the (ordinary) algebras.
Since differential (R, e)-algebras form a variety of universal algebras, this and
what we say in Example 1.4 implies that the forgetful functor from the category
of differential (R, e)-algebras to the category of R-algebras preserves all colimits.
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2 Wronski and Casorati determinants

Following the classical definition in differential algebra, we define the Wron-
ski determinant (=Wronskian) W(a1, . . . , an) of a finite sequence a1, . . . , an of ele-
ments in a differential (R, e)-algebra A as the determinant

W(a1, . . . , an) =

∣

∣

∣

∣

∣

∣

∣

D0(a1) . . . D0(an)
...

...
Dn−1(a1) . . . Dn−1(an)

∣

∣

∣

∣

∣

∣

∣

, (2.1)

where D0(ai) = ai and D j+1(ai) = D(D j(ai)) for all i = 1, . . . , n and j = 0, . . . ,
n − 2. On the other hand, following the classical definition of difference algebra,
we define the Casorati determinant C(a1, . . . , an) as

C(a1, . . . , an) =

∣

∣

∣

∣

∣

∣

∣

ϕ0(a1) . . . ϕ0(an)
...

...
ϕn−1(a1) . . . ϕn−1(an)

∣

∣

∣

∣

∣

∣

∣

, (2.2)

where ϕ is defined as in Example 1.3 (even if e is not necessarily invertible). Using
the obvious presentation

C(a1, . . . , an) = (−1)n−1
ϕ

n−1(a1)C(a2, . . . , an) + . . . + ϕ
n−1(an)C(a1 , . . . , an−1),

(2.3)
the similar presentation of the Wronski determinant, other standard properties of
determinants, and the induction in n, it is easy to show that

C(a1, . . . , an) = en(n−1)/2W(a1, . . . , an). (2.4)

For a differential (R, e)-algebra A, the R-subalgebra

I(A) = {a ∈ A|D(a) = 0} (2.5)

of A will be called the R-subalgebra of constants of A, and its elements will sim-
ply be called constants (as classically); as motivated by Galois theory, we also
think of I(A) as the index R-algebra of A.

Lemma 2.1. (cf. Lemma 3.1 in [8]) Let a1, . . . , an be a finite sequence of elements in a
differential (R, e)-algebra A. Then:

(a) if W(a1, . . . , an) is invertible in A, then (a1, . . . , an) is linearly independent over
I(A);

(b) if e is either 0 or invertible, W(a1, . . . , an) is invertible in A, and a is an element
in A with W(a, a1, . . . , an) = 0, then a is a linear combination of a1, . . . , an over
I(A);

(c) if A is a field, then (a1, . . . , an) is linearly dependent over I(A) if and only if
W(a1, . . . , an) = 0.
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Proof. (a) can be proved in the same way as for differential fields.
(b) When e = 0, consider the system

D0(a1)x1 + . . . + D0(an)xn = D0(a),
. . .

Dn−1(a1)x1 + . . . + Dn−1(an)xn = Dn−1(a)
(2.6)

of linear equations over A, and let us write

xi = ∆i∆
−1 (i = 1, . . . , n) (2.7)

for its unique solution system given by Cramer’s Rule; in particular, ∆ =
W(a1, . . . , an). Applying the derivative to (2.6) we obtain the system

D1(a1)x1 + . . . + D1(an)xn + D0(a1)D
1(x1) + . . . + D0(an)D

1(xn) = D1(a),
. . .

Dn(a1)x1 + . . . + Dn(an)xn + Dn−1(a1)D
1(x1) + . . . + Dn−1(an)D1(xn) = Dn(a),

(2.8)
whose first n − 1 equations, together with (2.6), give

D0(a1)D
1(x1) + . . . + D0(an)D1(xn) = 0,

. . .
Dn−2(a1)D

1(x1) + . . . + Dn−2(an)D1(xn) = 0.
(2.9)

In addition to that we have

Dn(a1)x1 + . . .+Dn(an)xn −Dn(a) = ∆−1(Dn(a1)∆1 + · · ·+Dn(an)∆n −Dn(a)∆),
(2.10)

while W(a, a1 , . . . , an) = 0 implies

Dn(a)∆′
0 + Dn(a1)∆

′
1 + . . . + Dn(an)∆

′
n = 0, (2.11)

where ∆′
i(i = 0, . . . , n) are the suitable cofactors. It is then easy to check that

the determinants ∆i and ∆′
i coincide up to signs for each i = 0, . . . , n, where ∆0

is ∆. More precisely, those signs agree in such a way that the left-hand side of
(2.11) coincides with the expression in parentheses in the right-hand side of (2.10),
making it 0. Therefore, in addition to (2.9), the last equality of (2.8) gives

Dn−1(a1)D
1(x1) + . . . + Dn−1(an)D

1(xn) = 0. (2.12)

Since ∆ = W(a1, . . . , an) is invertible, putting (2.9) and (2.12) together we con-
clude that D1(x1) = . . . = D1(xn) = 0. That is, x1, . . . , xn are constants. Hence,
by the first equality of (2.6), a is a linear combination of a1, . . . , an over I(A), as
desired.

When e is invertible, the invertibility of W(a1, . . . , an) implies the invertibility of
C(a1, . . . , an), and W(a, a1 , . . . , an) = 0 (always) implies C(a, a1 , . . . , an) = 0, and
we can argue as follows:



760 G. Janelidze

Consider the matrix






ϕ0(a) ϕ0(a1) . . . ϕ0(an)
...

...
...

ϕn(a) ϕn(a1) . . . ϕn(an)






, (2.13)

whose determinant is C(a, a1 , . . . , an). Since C(a, a1 , . . . , an) = 0, we have

a∆0 + a1∆1 + . . . + an∆n = 0, (2.14)

where ∆0, . . . , ∆n are the suitable cofactors. Replacing the first row in (2.13) with
any other row we obtain a matrix with two equal rows, and so we also have

ϕ1(a)∆0 + ϕ1(a1)∆1 + . . . + ϕ1(an)∆n = 0,
. . .

ϕn(a)∆0 + ϕn(a1)∆1 + . . . + ϕn(an)∆n = 0.
(2.15)

Here ∆0 is the determinant of the matrix obtained from (2.13) by removing the
first row and the first column. Since ϕ is an R-algebra homomorphism (see
Example 1.3) this gives

∆0 = ϕ(C(a1 , . . . , an)), (2.16)

and so ∆0 is invertible. Now compare the systems

ϕ1(a1)∆1∆−1
0 + . . . + ϕ1(an)∆n∆−1

0 = −ϕ1(a),
. . .

ϕn(a1)∆1∆−1
0 + . . . + ϕn(an)∆n∆−1

0 = −ϕn(a),
(2.17)

and
ϕ1(a1)ϕ(∆1∆−1

0 ) + . . . + ϕ1(an)ϕ(∆n∆−1
0 ) = −ϕ1(a),
. . .

ϕn(a1)ϕ(∆1∆−1
0 ) + . . . + ϕn(an)ϕ(∆n∆−1

0 ) = −ϕn(a),
(2.18)

of equations, where (2.17) is obtained from (2.15) while (2.18) is obtained by
applying ϕ to (2.14) and to the first n − 1 equations of (2.15). From these sys-

tems and the invertibility of ϕ(C(a1 , . . . , an)), we obtain ∆i∆
−1
0 = ϕ(∆i∆

−1
0 ) for

each i = 1, . . . , n. Therefore (2.14) gives the desired expression for a, namely

a = (−∆1∆−1
0 )a1 + . . . + (−∆n∆−1

0 )an. (2.19)

(c) follows from known results of differential and difference algebra. Specifically:
for e = 0 it is the same as Theorem 3.7 of [13], or, equivalently, Proposition 2.8 of
[16]; for e invertible it is the same as Lemma II on page 271 of [3], or, equivalently,
Lemma 8.2.1 of [15].

Remark 2.2. In the case e = 0, the Lemma 2.1 becomes Lemma 3.1 of [8], which
was briefly called an obvious generalization of Theorem 3.7 of [13] there. How-
ever, I included the proof of 2.1(b) here in order to compare it with the case of
invertible e, where the proof could be similarly (briefly) called an obvious gener-
alization of the proof of Lemma II on page 271 of [3]. The comparison shows that
these ‘almost generalizations’ are not so obvious, and, moreover, I don’t see how
to unify them and what to do when e is neither 0 nor invertible. I hope someone
will try harder to do that. The same applies to the calculations in the next section
and to the last part of the proof of Theorem 6.2.
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3 The derivative of the Wronski determinant

Similarly to differential and difference equations, let us consider an equation

L(y) = a0Dn(y) + . . . + anD0(y) = 0 (with a0 = 1 and n 6= 0) (3.1)

of degree n with coefficients a0, . . . , an in a differential (R, e)-algebra A (where
(R, e) is as above). Let us suppose that u1, . . . , un are (some of) solutions of this
equation in A. According to (2.4.2) of [16], we have

e = 0 ⇒ D(W(u1, . . . , un)) = −a1W(u1, . . . , un), (3.2)

which, in the case of fields, is also mentioned as Lemma 6.3 in [13]. We will need
to calculate D(W(u1, . . . , un)) also in the case of invertible e, for we observe:

(a) For any a ∈ A, we have

D(a) = e−1(ϕ(a) − a), (3.3)

where ϕ : A → A is the R-algebra homomorphism defined in Example 1.3, and
this implies

Di(a) = e−i
i

∑
j=0

(−1)j
( i

j

)

ϕ
i−j(a), (3.4)

for each natural i.

(b) The equation (3.1) rewritten in terms of ϕ becomes

b0ϕ
n(y) + . . . + bn ϕ

0(y) = 0, (3.5)

where

bn−k =
n

∑
i=k

(−1)i−ke−i
( i

i − k

)

an−i. (3.6)

In particular,

b0 = e−n, bn =
n

∑
i=0

(−1)ie−ian−i. (3.7)

and (3.5) implies

ϕ
n(y) = −enb1ϕ

n−1(y)− . . . − enbn ϕ
0(y) with enbn =

n

∑
i=0

(−1)ien−ian−i. (3.8)

(c) Consider the Casorati determinant ϕ(C(u1 , . . . , un)) = C(ϕ(u1), . . . , ϕ(un)).
Since u1, . . . , un are solutions of the equation (3.1), we can replace each ϕn(ui)
(i = 1, . . . , n) in the matrix that defines the determinant C(ϕ(u1), . . . , ϕ(un)) with
a linear combination of ϕj(ui)(j = 0, . . . , n − 1) according to (3.8). After that
comparing the last row with other rows we can remove all multiples of ϕj(ui)
with j 6= 0, and, according to the second equality of (3.8), the last row becomes

((

n

∑
i=0

(−1)i+1en−ian−i

)

u1, . . . ,

(

n

∑
i=0

(−1)i+1en−ian−i

)

un

)

. (3.9)
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Next, moving this last row up to make it the first row, we shall change the sign
of our determinant n − 1 times, after which it becomes nothing but the Casorati
determinant C(u1, . . . , un) multiplied by ∑

n
i=0(−1)n+ien−ian−i. That is,

ϕ(C(u1 , . . . , un)) = C(ϕ(u1), . . . , ϕ(un)) =

(

n

∑
i=0

(−1)n+ien−ian−i

)

C(u1, . . . , un)

= (1 − ea1 + e2a2 − . . . + (−1)nenan)C(u1 , . . . , un). (3.10)

Now, using (3.3), (2.4), the fact ϕ : A → A is an R-algebra homomorphism, and
(3.10), we calculate:

D(W(u1, . . . , un)) = e−1(ϕ(W(u1 , . . . , un))− W(u1, . . . , un))

= e−1(ϕ(e−n(n−1)/2C(u1, . . . , un))− W(u1, . . . , un))

= e−1(e−n(n−1)/2C(ϕ(u1), . . . , ϕ(un))− W(u1, . . . , un))

= e−1

(

e−n(n−1)/2

(

n

∑
i=0

(−1)n+ien−ian−i

)

C(u1, . . . , un)− W(u1, . . . , un)

)

= e−1

((

n

∑
i=0

(−1)n+ien−ian−i

)

W(u1, . . . , un)− W(u1, . . . , un)

)

=

(

n−1

∑
i=0

(−1)n+ien−i−1an−i

)

W(u1, . . . , un).

That is, we obtain:

Proposition 3.1. When e is invertible, for any n solutions u1, . . . , un of the equation
(3.1), we have:

D(W(u1, . . . , un)) =

(

n

∑
i=1

(−1)iei−1ai

)

W(u1, . . . , un)

= (−a1 + ea2 − e2a3 + . . . + (−1)nen−1an)W(u1, . . . , un). (3.11)

4 Admissibility Lemma

For a fixed pair (R, e) as in Definition 1.1, consider the adjunction

(I, H, η, ε) : C → X, (4.1)

in which:

• C is the opposite (=dual) category of differential (R, e)-algebras;

• X is the opposite category of R-algebras;

• I : C → X is the functor defined by (2.5);



Picard-Vessiot and categorically normal extensions in Galois theory 763

• H : X → C is the functor defined by

H(X) = X equipped with the zero derivative (4.2)

(see Example 1.4), and we shall simply write H(X) = X;

• for each object A in C, ηA : A → HI(A) is the inclusion map I(A) → A;

• for each object X in X, εX : IH(X) → X is the identity map of X.

Since the category C has pullbacks, for every object A in C, we have the adjunc-
tion

(IA, HA, η
A, ε

A) : (C ↓ A) → (X ↓ I(A)), (4.3)

induced by the adjunction (4.1). This adjunction is involved in the Galois theory
of the adjunction (4.1) (see [11] and references therein), and, in particular, A is
I-admissible in the sense of [6] when

ε
A : IAHA → 1(X↓I(A)) (4.4)

is an isomorphism. This definition of admissibility, formulated for a general ad-
junction between the categories with pullbacks, in the present case gives:

Observation 4.1. A is I-admissible if and only if for every I(A)-algebra X the
map

X → I(A ⊗I(A) X) (4.5)

defined by x 7→ 1 ⊗ x is bijective.

This observation copies similar observation in [8], and, moreover, the proof of
Lemma 4.2 below copies its special case from [8].

Lemma 4.2. If I(A) is a field, then A is I-admissible.

Proof. Since I(A) is a field, the canonical map I(A) ⊗I(A) X → A ⊗I(A) X is
injective, and therefore so is the map (4.5). To prove the surjectivity we will use
any basis B of X considered as a vector space over I(A), and the fact that it makes
A⊗I(A) X a free A-module over the family (1⊗ b)b∈B. Every element c of A⊗I(A)

X can be written as c =
n

∑
i=1

ai ⊗ bi with ai ∈ A and bi ∈ B, and when c is in

I(A ⊗I(A) X) we have

0 = D(c) =
n

∑
i=1

D(ai)⊗ bi +
n

∑
i=1

ai ⊗ D(bi) +
n

∑
i=1

eD(ai)⊗ D(bi) =
n

∑
i=1

D(ai)⊗ bi.

Since A ⊗I(A) X a free A-module over the family (1 ⊗ b)b∈B this implies that each

ai is a constant, and so c =
n

∑
i=1

1 ⊗ aibi = 1 ⊗
n

∑
i=1

aibi is the image of
n

∑
i=1

aibi under

the map (4.5).
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5 Injectivity Lemma

Returning to the induced adjunction (4.3), consider the natural transformation

η
A : 1(C↓A) → HA IA. (5.1)

For an object (A′, α) in (C ↓ A), the (A′, α)-component (ηA)(A′,α) of ηA is the map

A ⊗I(A) I(A′) → A′ (5.2)

defined by a ⊗ a′ 7→ α(a)a′ .

Lemma 5.1. If A is a field, then each component of ηA is an injective map.

Proof. Since A is a field, so is I(A), which easily follows from (1.5) and (1.6).
Therefore A ⊗I(A) I(A′) is a free module over I(A′) ; moreover, if B is a

basis of A considered as a vector space over I(A), then the family (b ⊗ 1)b∈B

is a basis of that free module. It follows that in order to prove injectivity of the
map (5.2) it suffices to prove that if (a1, . . . , an) is linearly independent in A over
I(A), then (α(a1), . . . , α(an)) is linearly independent in A′ over I(A′). However,
excluding the case of empty B, that follows from (c) and (a) of Lemma 2.1, since
α(W(a1 , . . . , an)) = W(α(a1), . . . , α(an)) and α must be injective.

6 Picard-Vessiot extensions

The following definition copies its classical differential- and difference-algebraic
special cases:

Definition 6.1. Let K and E be differential (R, e)-algebras that are fields with
K ⊆ E. We say that E is a Picard-Vessiot extension of K for an equation (3.1)
(of degree n) with coefficients in K, if I(E) = I(K) and there exist solutions
u1, . . . , un ∈ E of that equation, which are linearly independent over K and gen-
erate E in the following sense: there is no proper differential (R, e)-subalgebra of
E that is a field containing K and u1, . . . , un.

Theorem 6.2. Let E be a Picard-Vessiot extension of K for an equation (3.1) with
u1, . . . , un as in Definition 6.1, w = W(u1, . . . , un), and let A be the differential
(R, e)-subalgebra of E generated by K

⋃

{u1, . . . , un, w−1}. If e is either 0 or invert-
ible in R, then A is a normal extension of K in the sense of categorical Galois theory
(see Theorem 0.2), that is, the following conditions hold:

(a) A is I-admissible;

(b) the change-of-base functor (C ↓ K) → (C ↓ A) is monadic;

(c) (A ×K A, pr1) ≈ HA IA(A ×K A, pr1) canonically in (C ↓ A) (or, equivalently

under (a), (A ×K A, pr1) belongs to the replete image of HA).
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Proof. (a) follows from Lemma 4.2, and (b) follows from the corresponding result
for rings, which itself follows from the fact that K is a field (see e.g. [12] for details,
although this is a reformulation of a very old observation of A. Grothendieck).

(c): The pullback A ×K A in C is nothing the tensor product A ⊗K A, and the
canonical morphism

(ηA)(A×K A,pr1)
: (A ×K A, pr1) → HA IA(A ×K A, pr1) (6.1)

in (C ↓ A) is the map

A ⊗I(A) I(A ⊗K A) → A ⊗K A (6.2)

defined by a ⊗

(

k

∑
i=1

bi ⊗ ci

)

7→ ∑
k
i=1 abi ⊗ ci. We have to prove that this map,

which we will simply denote by f , is injective and surjective.

Injectivity: Consider the commutative diagram

A ⊗I(A) I(A ⊗K A) → A ⊗K A

↓ ↓
E ⊗I(E) I(E ⊗K A) → E ⊗K A,

(6.3)

in which the top arrow is f , the bottom arrow is defined similarly, and the vertical
arrows are maps induced by the inclusion map A → E. Since I(A) = I(E) and
K are fields, the vertical arrows are injective, while the injectivity of the bottom
arrow follows Lemma 5.1. It follows that f is also injective.

Surjectivity: It suffices to show that, for every a ∈ A, the image of f contains the
element 1 ⊗ a of A ⊗K A. Moreover, since the set of all a ∈ A for which 1 ⊗ a is in
the image of f is (obviously) a differential (R, e)-subalgebra of A, it suffices to do
that for all a ∈ {u1, . . . , un, w−1}.

Since u1, . . . , un are solutions of the equation (3.1), we can write

a1Dn−1(ui) + . . . + anD0(ui) = −Dn(ui) (i = 1, . . . , n). (6.4)

In particular, this gives us, for each fixed i = 1, . . . , n, the system

a1Dn−1(1 ⊗ ui) + . . . + anD0(1 ⊗ ui) = −Dn(1 ⊗ ui),
a1Dn−1(u1 ⊗ 1) + . . . + anD0(u1 ⊗ 1) = −Dn(u1 ⊗ 1),

. . .
a1Dn−1(un ⊗ 1) + . . . + anD0(un ⊗ 1) = −Dn(un ⊗ 1)

(6.5)

of equations in A ⊗K A, where aj is used for 1 ⊗ aj = aj ⊗ 1. As follows from
these equations, the last row of the matrix used to define the Wronski determinant
W(1 ⊗ ui, u1 ⊗ 1, . . . , un ⊗ 1) is a linear combination of previous rows. Therefore
W(1 ⊗ ui, u1 ⊗ 1, . . . , un ⊗ 1) = 0. On the other hand, W(u1 ⊗ 1, . . . , un ⊗ 1) is
invertible in A ⊗K A. It follows now from Lemma 2.1(b) that 1 ⊗ ui is a linear
combination of u1 ⊗ 1, . . . , un ⊗ 1 over I(A⊗K A). Therefore 1⊗ ui is in the image
of f .
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It remains to prove that 1 ⊗ w−1 is in the image of f . Since 1 ⊗ w−1 =
(w ⊗ w−1)(w−1 ⊗ 1), it suffices to prove that D(w ⊗ w−1) = 0. When e = 0
this is done [8] as follows:

D(w ⊗ w−1) = D(w)⊗ w−1 + w ⊗ D(w−1) =

(−a1w)⊗ w−1 + w ⊗ (−D(w)w−2) = 0,

where the second equality follows from (3.2) and from D(w)w−1 +wD(w−1) = 0,
while the third one follows from −D(w)w−2 = a1w−1, which is also a conse-
quence of (3.2). If e is invertible, we will write c for the Casorati determinant
C(u1, . . . , un) and we use (3.10) in the form ϕ(c) = ac, where a = 1− ea1 + e2a2 −
. . . + (−1)nenan ∈ K. In this case we have

D(w ⊗ w−1) = D(c ⊗ c−1) (by (2.4))

= e−1(ϕ(c ⊗ c−1)− c ⊗ c−1) (by definition of ϕ in Example 1.3)

= e−1(ϕ(c)⊗ ϕ(c)−1 − c ⊗ c−1) (since ϕ is an R-algebra homomorphism)

= e−1(ac ⊗ (ac)−1 − c ⊗ c−1) (since ϕ(c) = ac)

= 0 (since a is in K),

as desired.

Remark 6.3. Since K is a field and R can be replaced with its canonical image in
K, our condition on e in Theorem 6.2 is in fact irrelevant.

Corollary 6.4. As follows from Theorem 6.2, the equivalence

SplI(A, f ) ∼ XI(A×B A),

of Theorem 0.2 applies to differential (R, e)-algebras as follows. We take:

• I to be the functor from the opposite category of differential (R, e)-algebras to the
opposite category of R-algebras sending differential (R, e)-algebras to their
R-algebras of constants. Accordingly X becomes the opposite category of R-algebras.

• f : A → B to be the inclusion map K → A = K ∪ {u1, . . . , un, w−1}, in the
notation of Theorem 6.2, considered as a morphism A → K in the opposite category
of differential (R, e)-algebras.

Then:

• The internal Galois groupoid I(A ×B A) in X has the R-algebra of constants of A
as its object-of-objects and the R-algebra of constants of A ⊗K A as its object-of-
morphisms. In particular, if A and K have the same constants, then I(A ×B A) is
the Hopf algebra of constants of A ⊗K A.

• SplI(A, f ) is the opposite category of all differential (R, e)-algebras whose tensor
product with A is obtained by freely adding constants to A, that is, obtained as
A ⊗I(A) X, where X is an I(A)-algebra and both I(A) and X are considered as

differential (R, e)-algebras with the zero derivative.
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