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Abstract

We give further insights into the weighted Hurwitz product and the
weighted tensor product of Joyal species. Our first group of results relate
the Hurwitz product to the pointwise product, including the interaction with
Rota–Baxter operators. Our second group of results explain the first in terms
of convolution with suitable bialgebras, and show that these bialgebras are in
fact obtained in a particularly straightforward way by freely generating from
pointed coalgebras. Our third group of results extend this from linear alge-
bra to two-dimensional linear algebra, deriving the existence of weighted
Hurwitz monoidal structures on the category of species using convolution
with freely generated bimonoidales. Our final group of results relate Hur-
witz monoidal structures with equivalences of Dold–Kan type.

1 Introduction

This paper continues the investigations of [44] into the λ-Hurwitz products
of [22, 23]. Given a ring k, an element λ ∈ k, and a k-algebra A, the λ-Hurwitz
product is a certain multiplication ·λ on the set AN which, together with the point-
wise linear structure, endows it with the structure of a k-algebra GλA. This
algebra has a universal role: it is the cofree λ-differential algebra on A. Here, a
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λ-differential algebra is a k-algebra equipped with a λ-weighted derivation—a
k-linear endomorphism ∂ satisfying

∂(1) = 0 and ∂(ab) = (∂a)b + a(∂b) + λ(∂a)(∂b) . (1.1)

When λ = 0, of course, we re-find the classical notion of derivation and differen-
tial algebra; when λ 6= 0, we have variants on these notions apt for the study of
difference rather than differential equations.

Our first set of results clarify the relation between the pointwise and λ-Hurwitz
products on AN. We exhibit algebra morphisms γ : (AN, ·λ) → (AN , pointwise),
which are algebra isomorphisms whenever λ ∈ k is invertible. When λ = 1, this
encodes the well-known fact that a 1-weighted derivation on a ring A comes to
the same thing as a ring endomorphism of A; indeed, in the difference algebra
literature, a difference operator is simply defined to be a ring endomorphism [10].
We relate the maps γ to Lagrange interpolation, and also to weighted Rota–Baxter
algebras [3, 40]: these are k-algebras endowed with a weighted Rota–Baxter opera-
tor—a k-linear endomorphism P satisfying the equation:

P(a)P(b) = P(P(a)b + aP(b) + λab) . (1.2)

Just as derivations encode abstract differentation, so weighted Rota–Baxter
operators encode abstract integration (when λ = 0) or summation (when λ 6= 0).
Following [22, 23], we show that, when A is a weighted Rota–Baxter algebra, γ
above lifts to a homomorphism of Rota–Baxter algebras; in particular, when λ is
invertible, this establishes an isomorphism between two canonical Rota–Baxter
algebra structures on AN arising from a given one on A.

Our second set of results explain the first in terms of more basic data. The
assignation A 7→ GλA underlies a comonad on the category of k-algebras; in fact,
this may be seen as induced by convolution with a k-bialgebra C(λ)∞. There
is another comonad H on this category given by A 7→ (AN, pointwise), which is
again induced by convolution with a bialgebra D∞. Now the k-algebra morphism
γ : GλA → HA can be seen as induced under convolution by a morphism of
bialgebras D∞ → C(λ)∞. In fact, more is true. The comonads Gλ and H are both
cofree on a copointed endofunctor; correspondingly, the bialgebras D∞ and C(λ)∞

are free on pointed coalgebras D and C(λ), and in these terms, the bialgebra
morphism D∞ → C(λ)∞ can be seen as generated by the (much simpler) datum
of a morphism of pointed coalgebras D → C(λ).

The remaining contributions of this paper are concerned with “categorifica-
tions” of the preceding ones. Rather than considering modules over a commuta-
tive ring k, we consider categories enriched over a suitable symmetric monoidal
base V admitting a suitable class of colimits that play the role of “addition”.
Rather than (commutative) k-algebra structure, we consider (symmetric) mono-
idal structure on our V -categories; and rather than coalgebra structure, we con-
sider comonoidale structure in a suitable monoidal bicategory of V -categories. As
described in [44], there is in this setting a “categorification” of the λ-Hurwitz
product found on AN for any k-algebra A to a Λ-Hurwitz monoidal structure on
A S (where S is the category of finite sets and bijections) for any “V -algebra” A .
Inspired by the constructions of the preceding sections, our third set of
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results exhibit this Λ-Hurwitz monoidal structure as induced by convolution
with a “V -bialgebra”, and show that this bialgebra may in fact be obtained as
the free bialgebra generated by a pointed V -coalgebra. Analogously to before,
we obtain a comparison between the Hurwitz monoidal structure on A S and
the pointwise one, which, once again, may be seen as freely generated from a
morphism of pointed V -coalgebras.

The final set of results in this paper explain the link between categorified Hur-
witz tensor products and equivalences of Dold–Kan type. The classical Dold–Kan
equivalence is that between simplicial abelian groups and chain complexes of
abelian groups, the simpler direction of which is the functor N : [∆op,Ab] → Ch

sending each simplicial abelian group to its normalized Moore complex. How-
ever, when we equip [∆op,Ab] with the pointwise tensor product, and Ch with
its classical tensor product, the functor N is not strong monoidal, though it is lax
and oplax monoidal in a compatible manner: see [1, Chapter 5]. This means that
transporting the pointwise monoidal structure on [∆op,Ab] across this equiva-
lence yields a new tensor product on chain complexes, and as we will see, the
formula for this is precisely the λ = 1 case of a Hurwitz-style tensor1.

In fact, we will show something more general than this. Recent work such
as [39, 41, 9] has established various generalisations of the classical Dold–Kan
equivalence; in [37] is described a general framework for obtaining such equiva-
lences, which, starting from a category P equipped with suitable extra structure,
derives a category with zero morphisms D and an equivalence of functor cate-
gories [P ,Ab] ≃ [D ,Ab]pt (here the subscript “pt” indicates the restriction to
zero-map preserving functors). Our fourth main result shows that, in this setting,
the pointwise tensor product on [P ,Ab] always transports to a Hurwitz-style
monoidal structure on [D ,Ab]pt; while our fifth and final result shows that cer-
tain important examples of equivalences arising in this way, may, as before, be
seen as induced by convolution with a map of “Ab-bialgebras” freely generated
from a map of pointed Ab-coalgebras.

2 Preliminaries

Throughout this paper, k will be a commutative Q-algebra. Given natural num-
bers n, m1, . . . , mr, we define the multinomial coefficient

(
n

m1, . . . , mr

)
=

n!

m1! · · · mr!
.

Usually this is for Σimi = n, so that this coefficient gives the number of ways of
partitioning a set of cardinality n into disjoint subsets of cardinalities m1, . . . , mr.
We extend this definition to all integers by declaring k! to be zero for any k < 0 ∈
Z. Of course, we write (n

r) as usual for ( n
r,n−r); more generally, for a k-algebra A

and x ∈ A, we define the binomial coefficients of x to be the elements of A given
by:

(
x

0

)
= 1 and

(
x

r

)
=

x(x − 1) · · · (x − r + 1)

r!
for 0 < r ∈ N .

1The explicit calculation of this tensor product appears in unpublished work of Lack and Hess.
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The following elementary result is classical.

Lemma 2.1. Let p, q ∈ N.

(i) If n ∈ N, then (
n

p

)(
n

q

)
= ∑

u+r+s+t=n
p=r+t, q=s+t

(
n

u, r, s, t

)
;

(ii) If A is a k-algebra and x ∈ A, then

(
x

p

)(
x

q

)
= ∑

t

(
p + q − t

p − t, q − t, t

)(
x

p + q − t

)
.

Proof. For a finite set X, we have bijections between any two of the sets

{ P, Q ⊆ X : |P| = p, |Q| = q } ,

{U, R, S, T ⊆ X : X = U + R + S + T, |R + T| = p, |S + T| = q } ,

and {W, R, S, T ⊆ X : W = R + S + T, |R + T| = p, |S + T| = q } .

This proves (i) and also (ii) in the case where x ∈ N. The general case of (ii)
proceeds by a straightforward induction on p.

We will also require the following simple combinatorial identity.

Lemma 2.2. For any k-algebra A and sequence a0, a1, . . . in A, it holds that:

an = ∑
r+s+t=n

(
n

r, s, t

)
(−1)sat .

Proof. Let Σ : AN → AN be the suspension operator Σ(a)n = an+1. As the opera-
tors 1,−1, Σ commute with each other, we have by the trinomial formula that

Σ◦n = (1 − 1 + Σ)◦n = ∑
r+s+t=n

(
n

r, s, t

)
1◦r ◦ (−1)◦s ◦ Σ◦t .

Applying this operator identity to a ∈ AN and evaluating at 0 yields the result.

3 The λ-weighted Hurwitz product

Throughout this section, we fix λ ∈ k and a k-algebra A. The λ-weighted Hurwitz
product on AN [22, §2.3] is defined by the equation

(a ·λ b)n = ∑
n=r+s+t

(
n

r, s, t

)
λtar+tbs+t . (3.3)

This product has (1, 0, 0, . . . ) as neutral element; taken together with the point-
wise k-linear structure we obtain a k-algebra (AN, ·λ), which is commutative
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whenever A is so. This formula restricts to Aℓ regarded as the linear subspace
of AN comprising those a with an = 0 for n > ℓ; moreover, we can recapture
AN and its algebra structure from the Aℓ’s as the limit of the chain · · · → An →
· · · → A1 → A0, where each map Aj+1 → Aj sets aj to zero. In light of this, we

may consider that AN = Aℓ for ℓ = ∞.
Our first result relates the λ-weighted algebra structure on each Aℓ to the

pointwise one. Its first part allows us to focus attention on the case λ = 1 as
occurring in [40]; the second reduces that to the pointwise case.

Proposition 3.1. Let ℓ ∈ N ∪ {∞}.

(i) There is a k-algebra morphism λ̂ : (Aℓ, ·λ) → (Aℓ, ·1) defined by λ̂(a)n = λnan;

(ii) There is a k-algebra isomorphism θℓ : (Aℓ, ·1) → (Aℓ, pointwise) defined by

θℓ(a)n = ∑
m

(
n

m

)
am ;

(iii) There is a k-algebra morphism γℓ : (Aℓ, ·λ) → (Aℓ, pointwise) defined by

γℓ(a)n = ∑
m

(
n

m

)
λmam ,

which is an isomorphism whenever λ is invertible in k.

Proof. (iii) is immediate from (i) and (ii). For (i), clearly λ̂ is linear and preserves
the multiplicative unit; we conclude since

λ̂(a ·λ b)n = ∑
n=r+s+t

(
n

r, s, t

)
λn+tar+tbs+t

= ∑
n=r+s+t

(
n

r, s, t

)
λr+tar+tλ

s+tbs+t = (λ̂a ·1 λ̂b)n .

For (ii), clearly θℓ is linear and preserves 1; for the multiplication, we calculate
that:

θℓ(a ·
1 b)n = ∑

m
∑

r+s+t=m

(
n

m

)(
m

r, s, t

)
ar+tbs+t

= ∑
u+r+s+t=n

(
n

u, r, s, t

)
ar+tbs+t

=
n

∑
p,q=0

(
n

p

)(
n

q

)
apbq = (θℓ(a)θℓ(b))n

using Lemma 2.1 at the third step. Now θℓ is invertible since it is represented on
the standard basis of Aℓ by a triangular matrix with 1’s along the main diagonal; a
direct calculation hinging on Lemma 2.2 shows that an explicit inverse θ̄ℓ is given
by

θ̄ℓ(a)m = ∑
n

(
m

n

)
(−1)m−nan .
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We may also understand the ring isomorphism of Proposition 3.1(ii) in terms
of Lagrange interpolation. Write A[x] for the k-algebra of polynomials in inde-
terminate x with coefficients in A. For each natural number ℓ, we consider the
quotient ring A[x]/(x

ℓ). In this ring we have (x
n) = 0 for all n ≥ ℓ. When

ℓ = ∞, we define A[x]/(x
ℓ) to be the limit of the sequence of quotient maps

· · · → A[x]/(x
n) → · · · → A[x]/(x

0).

Proposition 3.2. Let ℓ ∈ N ∪ {∞}.

(i) There is a k-algebra morphism ψℓ : (Aℓ, ·1) −→ A[x]/(x
ℓ) defined by

ψℓ(a) = ∑
n

an

(
x

n

)
;

(ii) There is a k-algebra isomorphism ϕℓ : A[x]/(x
ℓ) −→ (Aℓ, pointwise) defined by

ϕℓ( f )n = f (n) for 0 6 n 6 ℓ. Moreover, the following triangle commutes,
implying ψℓ invertible.

(Aℓ, ·1)

θℓ ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

ψℓ
// A[x]/(x

ℓ)

ϕℓww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

(Aℓ, pointwise)

Proof. For (i), ψℓ is clearly linear and preserves 1; we conclude since

ψℓ(a ·
1 b) = ∑

n
∑

r+s+t=n

(
n

r, s, t

)
ar+tbs+t

(
x

n

)

= ∑
r,s,t

(
r + s + t

r, s, t

)(
x

r + s + t

)
ar+tbs+t

= ∑
p,q,t

(
p + q − t

p − t, q − t, t

)(
x

p + q − t

)
apbq

= ∑
p,q

apbq

(
x

p

)(
x

q

)
= ψℓ(a)ψℓ(b)

using Lemma 2.1 at the fourth step. When ℓ < ∞, (ii) follows since, by the
Chinese Remainder Theorem for rings (see [24] for example), the homomorphism

A[x] → ∏
0≤n<ℓ

A[x]/(x − n) ∼= (Aℓ, pointwise)

obtained by pairing together the canonical quotient maps is itself a quotient, with
as kernel the ideal generated by x(x − 1) · · · (x − ℓ+ 1). The case ℓ = ∞ follows
on passing to the limit.

We now relate these results to Rota–Baxter operations. As in the introduction,
a Rota–Baxter operator of weight λ on a k-algebra A is a k-linear map P : A → A
satisfying (1.2). Note that the zero operator is always a Rota–Baxter operator.
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Proposition 3.3. Let ℓ ∈ N∪{∞}. Each Rota–Baxter operator P of weight λ on A lifts
to one P̄ on (Aℓ, ·λ), as defined left below, and to one P̃ on (Aℓ, pointwise), as defined
right below.

P̄(a)n =

{
P(a0) for n = 0;

an−1 for n > 0,
P̃(a)n = P(a0) + λ ∑

i<n

ai .

Moreover, the map γℓ of Proposition 3.1(iii) is a map of Rota–Baxter algebras in the sense
that γℓP̄ = P̃γℓ.

Proof. P̄ is a Rota–Baxter operator by [23, Proposition 3.8]. For P̃, consider the
difference operator ∂ : Aℓ → Aℓ defined by ∂(a)n = an+1 − an (taking aℓ+1 = 0
when ℓ < ∞). We have ∂ ◦ P̃ = λ and ∂(ab) = (∂a)b + a(∂b) + (∂a)(∂b) under the
pointwise product. Clearly a = b ∈ AN just when a0 = b0 and ∂(a) = ∂(b); thus,
since

P̃(a)P̃(b)0 = P(a0)P(b0) = P(P(a0)b0 + a0P(b0) + λa0b0) =

P(P(a)b + aP(b) + λab)0

and ∂(P̃(a)P̃(b)) = λaP̃(b) + λP̃(b)a + λ2ab = ∂P̃(aP̃(b) + P̃(b)a + λab)

we conclude that P̃ is a Rota–Baxter operator as required. To see that γℓ is a map
of Rota–Baxter algebras, we calculate similarly that γℓP̄(a)0 = P(a0) = P̃γℓ(a)0,
and that

∂γℓP̄(a)n = ∑
m

(
n + 1

m

)
λm(P̄a)m −∑

m

(
n

m

)
λm(P̄a)m

= ∑
m

(
n

m − 1

)
λm(P̄a)m = ∑

m

(
n

m

)
λm+1(P̄a)m+1

= λ ∑
m

(
n

m

)
λmam = λγℓ(a)n = ∂P̃γℓ(a)n .

4 Comonadic aspects

As described in the introduction, the algebra GλA = (AN, ·λ) associated to any
k-algebra A is in fact the cofree λ-weighted differential algebra on A. To be
precise about this, we consider the category Difλ of λ-weighted differential k-
algebras; as in the introduction, the objects of this category are k-algebras equip-
ped with a k-linear endomorphism ∂ satisfying (1.1), while the morphisms are
maps of k-algebras preserving ∂.

Proposition 4.1. For any k-algebra A, the operator ∂ : AN → AN with (∂a)n = an+1

makes GλA into a λ-weighted differential algebra. The algebra morphism GλA → A
given by taking 0th components exhibits (Gλ A, ∂) as the value at A of a right adjoint R
to the forgetful functor U : Difλ → k-Alg. The adjunction U ⊣ R is comonadic.

Proof. This is [22, Propositions 2.7 and 2.8] and [23, Theorem 3.5].
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There is a corresponding (well-known) result for the algebra HA = (AN ,
pointwise). Writing k[x]-Alg for the category of k-algebras equipped with an
algebra endomorphism, we have:

Proposition 4.2. For any k-algebra A, the operator ∂ : AN → AN with (∂a)n = an+1

is a ring endomorphism of HA. The algebra morphism HA → A given by taking 0th
component exhibits (HA, ∂) as the value at A of a right adjoint S to the forgetful functor
V : k[x]-Alg → k-Alg. The adjunction V ⊣ S is comonadic.

Proof. If (B, ϕ : B → B) ∈ k[x]-Alg and f : V(B, ϕ) → A is a map of k-algebras,
then the corresponding map f̄ : (B, ϕ) → (HA, ∂) is defined by f̄ (b)n = f (ϕn(b)).
This gives adjointness; comonadicity follows as V preserves colimits and is con-
servative.

We may now strengthen Proposition 3.1 so as to incorporate the induced
comonad structures on Gλ = UR and H = VS.

Proposition 4.3. The algebra map γ = γ∞ : Gλ A → HA of Proposition 3.1(iii) is the
component at A of a comonad morphism Gλ → H.

Proof. If the k-algebra A bears a λ-weighted differential ∂, then we have a ring
endomorphism of A given by the operator ϕ = 1 + λ∂. Indeed, k-linearity and
preservation of the unit are clear; as for multiplication, we have ϕ(a)ϕ(b) equal
to

(a + λ(∂a))(b + λ(∂b)) = ab + λ((∂a)b + a(∂b) + λ(∂a)(∂b)) =

ab + λ∂(ab) = ϕ(ab)

as required. The assignation (A, ∂) 7→ (A, 1+ λ∂) is thus the action on objects of a
functor F : Difλ → k[x]-Alg commuting with the forgetful functors to k-Alg. Any
such functor induces a comonad morphism Gλ → H—see [6, Lemma 4.5.1], for
example—which in this case is obtained as follows. Take the cofree λ-differential
algebra (GλA, ∂), the induced k[x]-algebra (Gλ A, 1+ λ∂), and the 0th component
homomorphism ε : V(Gλ A, 1 + λ∂) → A. The comonad morphism in question
now has its A-component given by the map of k-algebras underlying ε̄ : (Gλ A,
1 + λ∂) → (HA, ∂). From Proposition 4.2 above, we have that

ε̄(a)n = ε(1 + λ∂)◦n(a) = ∑
m

(
n

m

)
λmε∂m(a) = ∑

m

(
n

m

)
λmam = γ(a)n

since the operators 1 and λ∂ commute; so γ = ε̄ is the component at A of a
comonad morphism, as claimed.

Recall that a comonad P on a category C is said to be cofree on a copointed
endofunctor (T, ε : T ⇒ id) of C if P is the value at (T, ε) of a right adjoint to the
forgetful functor Cmd(C ) → [C , C ]/id from comonads to copointed endofunc-
tors.



Coalgebras for weighted and pointwise products 651

Proposition 4.4. The comonads Gλ and H are cofree on copointed endofunctors, and the
comonad map γ : Gλ → H is cofree on a map of copointed endofunctors.

Proof. For Gλ, consider the copointed endofunctor (S, σ) with SA = (A2, ·λ)
and σ given by the first projection. To endow a k-algebra A with a homomor-
phism a : A → SA satisfying σa = 1A is easily the same as endowing it with a
λ-weighted differential; whence the category (S, σ)-Coalg of coalgebras for this
copointed endofunctor is isomorphic over k-Alg to the category Difλ. It follows
by [33, Proposition 22.2] that the comonad Gλ induced by the adjunction R ⊢
U : Difλ → k-Alg is the cofree comonad on (S, σ). The same argument pertains
for H on considering the copointed endofunctor (T, τ) with TA = (A2, pointwise)
and τ given again by the first projection. Finally, the maps γ2 : (A2, ·λ) → (A2,
pointwise) of Proposition 3.1(iii) are the components of a pointed endofunctor
map (S, σ) → (T, τ), composition with which induces the functor F : Difλ →
k[x]-Alg of the preceding proof; whence γ : Gλ → H is induced as the cofree
comonad morphism on γ2.

5 Coalgebraic aspects

As anticipated in the introduction, we may understand the constructions of the
preceding section more straightforwardly using convolution. Recall that,
if (C, ε, δ) is a k-coalgebra and (A, η, µ) is a k-algebra, the k-linear hom [C, A]
becomes a k-algebra [C, A] under convolution, with unit e = ηε : C → k → A and
product f ∗ g = µ( f ⊗ g)δ.

As a first application, we consider the coalgebra C(λ) whose underlying
k-module is free on {e, d} with counit and comultiplication defined by:

ε(e) = 1 , ε(d) = 0 , δ(e) = e ⊗ e , δ(d) = d ⊗ e + e ⊗ d + λ d ⊗ d .

On the other hand, we have the coalgebra D with the same underlying k-module
but the “set-like” coalgebra structure given by

ε(e) = ε(d) = 1 , δ(e) = e ⊗ e , δ(d) = d ⊗ d .

Moreover, there is a coalgebra morphism ξ : D → C(λ) with ξ(e) = e and ξ(d) =
λd + e. It is now direct from the definitions that:

Proposition 5.1. For any k-algebra A, there are isomorphisms [C(λ), A] ∼= (A2, ·λ)
and [D, A] ∼= (A2, pointwise), and modulo these, [ξ, A] = γ2 : (A2, ·λ) → (A2,
pointwise).

In fact, the coalgebras C(λ) and D are pointed by the maps η : k → C(λ) and
η : k → D with η(1) = e, and ξ : D → C(λ) is a map of pointed coalgebras.
This structure transports under convolution to make γ2 into the map of copointed
endofunctors (S, σ) → (T, τ) of Proposition 4.4. We saw in that Proposition that
the comonads Gλ and H and comonad morphism γ : Gλ → H may be derived
from these data using cofreeness; our next result reconstructs this purely in the
world of coalgebras.
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We first recall the construction of the free k-bialgebra on a pointed k-coalgebra
(E, η). For each ℓ > 1, define the coalgebra Eℓ as the joint coequaliser γ : E⊗ℓ →
Eℓ of the ℓ coalgebra morphisms

η ⊗ 1 ⊗ · · · ⊗ 1 , 1 ⊗ η ⊗ · · · ⊗ 1 , . . . , 1 ⊗ 1 ⊗ · · · ⊗ η : E⊗(ℓ−1) → E⊗ℓ .

Of course, we also can put E0 = k and E1 = E. Then for each ℓ > 0 we have a
unique coalgebra morphism ζ : Eℓ → Eℓ+1 such that the square

E⊗ℓ γ
//

1⊗···⊗1⊗η
��

Eℓ

ζ

��

E⊗(ℓ+1) γ
// Eℓ+1

commutes. Now the free monoid construction in [17] shows that the free bialge-
bra E∞ on the pointed coalgebra E is obtained as the colimit of the chain

E0
ζ=η
−−→ E1

ζ
−→ E2

ζ
−→ . . .

ζ
−→ Eℓ

ζ
−→ Eℓ+1

ζ
−→ . . . .

We now apply this to the coalgebras D and C(λ). As k-modules, D⊗ℓ and C(λ)⊗ℓ

are both free on the basis {e, d}ℓ, which we think of as the set of words W of
length ℓ in the letters e and d; while Dℓ and C(λ)ℓ are obtained by quotienting
out by the relation WeW ′ ∼ eWW ′ on basis words. They are thus vector spaces of
dimension ℓ+ 1 with basis elements erds where r + s = ℓ. Omitting to write the
er term, we can thus use the isomorphic basis {ds | 0 6 s 6 ℓ}.

As a coalgebra Dℓ, like D, is “set-like” with respect to these basis vectors: that
is ε(ds) = 1 and δ(ds) = ds ⊗ ds for each 0 6 s 6 ℓ. On the other hand:

Proposition 5.2. The coalgebra C(λ)ℓ , with respect to its basis {ds | 0 6 s 6 ℓ}, has
ε(d0) = 1, ε(dn) = 0 for 0 < n ≤ ℓ, and for 0 ≤ n ≤ ℓ

δ(dn) = ∑
n=r+s+t

(
n

r, s, t

)
λtdr+t ⊗ ds+t .

Proof. In the coalgebra C(λ)⊗ℓ , we have for all m + n = ℓ that

δ(emdn) = (e ⊗ e)m(d ⊗ e + e ⊗ d + λd ⊗ d)n .

We cannot expand binomially since d ⊗ e and e ⊗ d and λd ⊗ d do not commute
in C(λ)ℓ ⊗ C(λ)ℓ ; but they do after applying γ ⊗ γ : C(λ)ℓ ⊗ C(λ)ℓ → C(λ)ℓ ⊗
C(λ)ℓ , and so we find that

(γ ⊗ γ)δ(emdn) = ∑
n=r+s+t

(
n

r, s, t

)
(e ⊗ e)m(d ⊗ e)r(e ⊗ d)sλt(d ⊗ d)t

= ∑
n=r+s+t

(
n

r, s, t

)
λt(em+sdr+t ⊗ em+rds+t) .

This implies the result for comultiplication; the counit case is left as an exercise.
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Moreover, the pointed coalgebra morphism ξ : D → C(λ) induces for each
ℓ ∈ N a coalgebra morphism ξℓ : Dℓ → C(λ)ℓ , unique such that the square

D⊗ℓ γ
//

ξ⊗ℓ

��

Dℓ

ξℓ
��

C(λ)⊗(ℓ) γ
// C(λ)ℓ+1

commutes; passing to the colimit, we obtain a map of k-bialgebras ξ∞ : D∞ →
C(λ)∞. Arguing as in the preceding proof, we find for finite ℓ that

ξℓ(dn) = γξ⊗ℓ(ekdn) = ek(λd + e)n = ek ∑
m

(
n

m

)
λmdmen−m = ∑

m

λm

(
n

m

)
dm

which now yields the following result generalising Proposition 5.1.

Proposition 5.3. For any k-algebra A and ℓ ∈ N ∪ {∞}, there are isomorphisms
[C(λ)ℓ , A] ∼= (Aℓ+1, ·λ) and [Dℓ, A] ∼= (Aℓ+1, pointwise); modulo these [ξℓ, A] =
γℓ+1.

Proof. For finite ℓ, we simply compare the preceding formulae with Proposi-
tion 3.1; for ℓ = ∞, we observe that convolution [–, A] : k-Coalg → k-Algop

preserves colimits.

The functor k-Coalg → [k-Alg, k-Alg]op sending C to [C, –] carries tensor prod-
uct of coalgebras to composition of endofunctors, and so carries each k-bialgebra
C to a comonad [C, –] on k-Alg. Of course, for the bialgebras C(λ)∞ and D∞, the
associated comonads are Gλ and H; this follows from Proposition 4.4 and the fact
that the convolution functor k-Coalg → [k-Alg, k-Alg]op sends each free bialgebra
sequence in k-Coalg to a cofree comonad sequence in [k-Alg, k-Alg].

In light of these investigations, we may wonder whether there are other kinds
of k-linear “derivation” which a k-algebra can bear, satisfying some different kind
of “Leibniz identity”. Our next result denies this possibility.

Proposition 5.4. All pointed k-coalgebras whose underlying module is free of rank 2 are
isomorphic to C(λ) for some λ.

Proof. Suppose (C′, η : k → C′) is a pointed coalgebra with basis {e′, d′} such that
η(1) = e′. Since η is a coalgebra morphism, ε(e′) = 1 and δ(e′) = e′ ⊗ e′. Suppose
that ε(d′) = γ; by making the change of basis e = e′ and d = d′ − γe we have that

ε(e) = 1 , ε(d) = 0 , δ(e) = e ⊗ e .

Suppose δ(d) = ρe ⊗ e + σe ⊗ d + τd ⊗ e + υd ⊗ d. From the counit properties
(ε⊗ 1)δ = 1 and (1⊗ ε)δ = 1, we deduce d = ρe+ σd = ρe+ τd and so σ = τ = 1
and ρ = 0. It is easily checked that the coassociativity condition is now automatic.
So we have our result with υ = λ.

For a more general result, identifying all notions of possibly non-linear “deri-
vation” that a commutative ring may bear, see [7]; this shows that, beyond those
arising as in the previous proposition, the only other possibility is a Joyal
p-derivation [26]; the corresponding comonad on the category of commutative
rings is that for p-typical Witt vectors.
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6 The Λ-weighted tensor product of species

In [44] is described a “categorification” of the λ-Hurwitz product on k-algebras;
in the rest of this paper, we give corresponding “categorifications” of the results of
the previous sections. To give these generalisations, we replace the commutative
Q-algebra k with a complete and cocomplete symmetric monoidal closed cate-
gory V , replace k-modules with what we shall call V -vector spaces—V -categories
admitting finite coproducts and V -tensors [34, §3.7]—and replace k-algebras by
V -algebras, that is, V -vector spaces with a monoidal structure which preserves
finite coproducts and V -tensors in each variable separately. We call a V -algebra
symmetric when its monoidal structure is so2.

Throughout the rest of this section, we fix some Λ ∈ V . For any (symmetric)
V -algebra A , there is a now (symmetric) V -algebra structure on A N with unit
J = (I, 0, . . . ) and binary tensor ∗Λ given by

(M ∗Λ N)n = ∑
n=r+s+t

Λ⊗r ⊗ Ms ⊗ Nt . (6.4)

In [44] was described a similar tensor product on the V -category A S of A -valued
species—here S is the groupoid of finite sets and bijections—whose unit J and
binary tensor ∗Λ are given by

JX =

{
I if X = ∅;

0 otherwise;
and (M ∗Λ N)X = ∑

U,V⊂X
X=U∪V

Λ|U∩V| ⊗ MU ⊗ NV . (6.5)

As previously, these monoidal structures restrict back to the respective subcate-
gories A ℓ ⊂ A N and A Sℓ ⊂ A S for any ℓ ∈ N; here Sℓ is the full subcategory
of S on sets of cardinality < ℓ. Our next result will reconstruct these monoidal
structures through an argument like that of Section 5.

We exploit the symmetric monoidal bicategory V -Vect of V -vector spaces,
wherein 1-cells are V -linear V -functors—ones preserving finite coproducts and
V -tensors—2-cells are V -natural transformations, and the tensor product ⊗ clas-
sifies V -bilinear V -bifunctors—ones which preserve finite coproducts and
V -tensors in each variable separately. The unit object is V itself. This monoidal
bicategory is biclosed in the sense of [15], with the internal hom [A , B] being the
functor V -category of V -linear V -functors. There is a free-forgetful biadjunction
V -Vect ⇆ Cat whose left adjoint is strong monoidal with respect to the tensor
product of V -vector spaces and the cartesian product of categories. For a given
category A , we write 〈A 〉 for the free V -vector space thereon.

A (symmetric) monoidale3 in V -Vect is precisely a (symmetric) V -algebra in
the sense described above; correspondingly, we refer to comonoidales in V -Vect
as V -coalgebras. By convolution as in [15], the internal hom from a comonoidale
to a monoidale in a biclosed monoidal bicategory is again a monoidale; so if C is a
V -coalgebra and A is a V -algebra, then the V -linear hom [C , A ]V is a V -algebra.

2Although now this is extra structure not just a condition
3Also called a pseudomonoid.
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Consider now the V -coalgebra C (Λ) with underlying V -vector space 〈E, D〉—
so that C (Λ) ⊗ C (Λ) ≃ 〈E ⊗ E, E ⊗ D, D ⊗ E, D ⊗ D〉—with counit ε : C (Λ) →
V and comultiplication δ : C (Λ) → C (Λ)⊗ C (Λ) given on generators by

ε(E) = I , ε(D) = 0 , δ(E) = E ⊗ E , δ(D) = D ⊗ E + E ⊗ D + Λ ⊗ D ⊗ D. (6.6)

The coassociativity and counit coherences are given on generators in the obvious
way. There is a comonoidale morphism V → C (Λ) sending V to V ⊗E so making
C (Λ) into a pointed V -coalgebra. Convolving with a V -algebra A gives monoidal
structures on the V -linear hom [C (Λ), A ]V ≃ A 2; the unit object is J = (I, 0),
while the binary tensor is given by

(M0, M1) ∗Λ (N0, N1) = (M0 ⊗ N0, M0 ⊗ N1 + M1 ⊗ N0 + Λ ⊗ M1 ⊗ N1)

so that we re-find the case ℓ = 2 of the Λ-weighted tensor product (6.4), which is
also the case ℓ = 2 of (6.5). We now show how to obtain the corresponding tensor
products on A N or [S, A ] from this by arguing as in Section 5.

First, since the free V -vector space 2-functor Cat → V -Vect is strong symmet-
ric monoidal and cocontinuous, it preserves the construction of free (symmetric)
monoidales. As the free monoidal category and the free symmetric monoidal
category on the pointed category {E} → {E, D} are (N,+, 0) and (S,+, 0) re-
spectively, we conclude that:

Proposition 6.1. The free V -algebra and free symmetric V -algebra on the pointed
V -vector space 〈E〉 → 〈E, D〉 are respectively 〈N〉 and 〈S〉 under the monoidal struc-
ture given on basis elements by disjoint union.

The symmetric monoidal structure on the bicategory V -Vect lifts to the bicate-
gories V -Alg and V /V -Vect of V -algebras and of pointed V -vector spaces; when
endowed with these monoidal structures, the forgetful V -Alg → V /V -Vect is
thus strict monoidal, so that its left biadjoint is an opmonoidal homomorphism. It
follows that the biadjunction passes to the respective bicategories of comonoidales:

V -Bialg ⇆ V /V -Coalg .

Explicitly, this means that, if Z : V → C is a pointed V -coalgebra, and the map
ι : C → C∞ of pointed objects exhibits C∞ as the free V -algebra on Z : V → C

seen as a pointed V -vector space, then C∞ bears a coalgebra structure making it
into the free V -bialgebra on V → C , with counit and comultiplication V -functors
obtained as the essentially-unique homomorphisms of V -algebras rendering the
following diagram commutative to within natural isomorphisms:

C
δ //

ι
��

ε

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

C ⊗ C

ι⊗ι
��

V C∞
δ

//
ε

oo C∞ ⊗ C∞ .

(6.7)

Of course, if we construct instead the free symmetric V -algebra on C , then the
above argument shows that we in fact obtain the free symmetric V -bialgebra on C .
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Applying these two constructions to the pointed V -coalgebra C (Λ) and using
Proposition 6.1, we induce V -bialgebra structures on 〈N〉 and on 〈S〉; we will
show that these convolve to give the weighted tensor products of (6.4) and (6.5).
The argument in the two cases is similar, and that for 〈N〉 is exactly like that in
Section 5 above; so we go through the details only for 〈S〉.

Theorem 6.2. The free symmetric V -bialgebra C (Λ)∞ on the pointed V -coalgebra C (Λ)
is 〈S〉 with as algebra structure the V -linear extension of (S,+, 0), and coalgebra struc-
ture determined on basis elements X ∈ S by:

ε(X) =

{
I if X = 0;

0 otherwise,
and δ(X) = ∑

X=U∪V

Λ⊗|U∩V| ⊗ U ⊗ V . (6.8)

For any V -algebra A , the convolution algebra structure on [C (Λ)∞, A ]V ≃ A S is
given by the Λ-weighted tensor product of (6.5).

Proof. [44, Proposition 23] shows that the above data do indeed define a V -bialge-
bra structure on 〈S〉. Let ι : 〈E, D〉 → 〈S〉 be given on generators by E 7→ 0 and
D 7→ 1. By Proposition 6.1, this map exhibits 〈S〉 as the free symmetric V -algebra
on the pointed object 〈E〉 → 〈E, D〉; now by comparing (6.9) with (6.6), we see
that the following diagram commutes to within isomorphism since it does so on
generators:

〈E, D〉 δ //

ι
��

ε

||①①
①①
①①
①①
①

〈E, D〉 ⊗ 〈E, D〉

ι⊗ι
��

V V S
δ

//
ε

oo V S⊗ V S

.

By the argument following Proposition 6.1, we conclude that 〈S〉, equipped with
the given algebra and coalgebra structures, is the free symmetric V -bialgebra
C (Λ)∞ on C (Λ). The final claim follows immediately by comparing (6.9) with
(6.5).

We now relate the Λ-weighted tensor products on A N and A S to the point-
wise ones, following the pattern set out in Section 5 above. To this end, consider
the pointed V -coalgebra D with the same underlying V -vector space 〈E, D〉 as
C (Λ) and the same pointing, but the diagonal comonoidale structure:

ε(E) = I , ε(D) = I , δ(E) = E ⊗ E , δ(D) = D ⊗ D .

For any V -algebra A , convolution with D induces the pointwise V -algebra struc-
ture on the V -linear hom [D , A ] ≃ A 2. Arguing as previously, we now have that:

Theorem 6.3. The free symmetric V -bialgebra D∞ on the pointed V -coalgebra D is 〈S〉
with as algebra structure the V -linear extension of (S,+, ∅), and coalgebra structure
given on homogeneous elements X ∈ S by:

ε(X) = I and δ(X) = X ⊗ X . (6.9)

For any V -algebra A , the convolution algebra structure on [D∞, A ]V ≃ A S is the
pointwise algebra structure.
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To compare the pointwise and the Λ-weighted monoidal structures on A S,
it will thus suffice to compare their restrictions to A 2. So consider the V -linear
V -functor Θ : D → C (Λ) defined on generators by Θ(E) = E and Θ(D) =
Λ ⊗ D + E; we may without difficulty equip this with the structure of a strong
morphism of pointed comonoidales in V -Vect. The pointings on C (Λ) and D

correspond to the V -algebra morphisms given by the first projection, while
Θ : D → C (Λ) transports under convolution to yield Θ̂ : A 2 → A 2 sending
(M0, M1) to (M0, M0 + Λ ⊗ M1). Since Θ is a strong morphism of pointed como-
noidales, this yields:

Proposition 6.4. Θ̂ : (A 2, ∗Λ, J) → (A 2, pointwise) is strong monoidal.

The map Θ induces a map Θ∞ : D∞ → C (Λ)∞ of symmetric bimonoidales
which is determined in an essentially-unique manner by the requirement that the
square

D
Θ //

ι

��

C (Λ)

ι
��

D∞
Θ∞ // C (Λ)∞

(6.10)

should commute to within isomorphism. It is easy to see that these requirements
are satisfied by taking Θ∞ to be defined on basis elements X ∈ S by:

Θ∞(X) = ∑
W⊆X

Λ⊗|W| ⊗ W .

The proof that this is a map of bimonoidales uses the equation U + V =
U ∪V +U ∩V for U, V ⊆ X. For any V -algebra A , convolution with Θ∞ yields a

V -functor Θ̂∞ : A S → A S defined by Θ̄∞(M)X = ∑W⊆X Λ⊗|W| ⊗ MW, and
since Θ∞ is a strong map of bimonoidales, we conclude that:

Proposition 6.5. Θ̂∞ : (A S, ∗Λ, J) → (A S, pointwise) is strong monoidal.

Note that the preceding two results are further examples of a transformation
converting a convolution product into pointwise product as promoted in [14].

7 Correspondences of Dold–Kan type

In these final two sections, we consider a different categorification of Sections
3– 5. This time, we replace modules over a commutative ring k by additive Karou-
bian categories—Ab-enriched categories which admit finite biproducts and split-
tings of idempotents; and we replace (commutative) k-algebras by (symmetric)
Ab-algebras: (symmetric) monoidal additive Karoubian categories.

In [37] is described a general theory for establishing equivalences of addi-
tive Karoubian categories. From an ordinary category P equipped with a sub-
category of monomorphisms M satisfying some axiomatic assumptions is con-
structed a category D enriched over the category of pointed sets together with an
equivalence

Γ : [D , X ]pt → [P , X ] (7.11)
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for each additive Karoubian X ; here, on the right we have the ordinary func-
tor category, and on the left the category of zero-map preserving functors. For
suitable choices of P and M , equivalences obtained in this way include the clas-
sical Dold–Puppe–Kan correspondence [16] between simplicial abelian groups
and chain complexes; the correspondence between cubical and semi-simplicial
abelian groups; and the equivalence between linear species and the FI♯-modules
of [9].

In the situation of (7.11), if the additive Karoubian X is an Ab-algebra, then
so too is [P , X ] under the pointwise tensor product. Transporting across the
equivalence yields an Ab-algebra structure also on [D , X ]pt; in fact, this turns out
to be a Hurwitz-style (λ = 1) tensor product, and the comparison functor (7.11)
yet another example of a transform taking convolution to pointwise product.

We show this in detail for a special but useful case of (7.11). Let C be a category
equipped with an orthogonal factorisation system (E , M ) in the sense of [19]
such that all M -maps are monomorphisms, pullbacks of M -maps along arbitrary
morphisms exist, and each A ∈ C has only a finite set of distinct M -subobjects.
We take P = Par(C , M ), whose objects are those of C , whose maps from A
to B are isomorphism-classes of spans m : A  R → B : f in C with m ∈ M ,
and whose composition is by pullback. We write R for the category whose ob-
jects are those of C and whose maps are the E -maps, and we define D to be the
free category with zero maps on R. With this choice of P and D we obtain by
[37, Example 3.1] our first instance of an equivalence (7.11), which, since D is free
on R, may be written more simply as

Γ : [R, X ] → [P , X ] . (7.12)

In order to see how the pointwise tensor product on [P , X ] transports under
this equivalence, we will need an explicit description of both Γ and its pseudoin-
verse. Choose for each A ∈ C a representing set Sub(A) of M -subobjects, and
write B 6n A to mean that n : B  A is in Sub(A) and B <n A to mean that
n ∈ Sub(A) is proper: that is, non-invertible. For F ∈ [R, X ], we now take
ΓF : P → X to be given on objects by the (finite) direct sum

(ΓF)A =
⊕

B6n A

FB .

To specify ΓF at a map m : A  R → A′ : f in P , suppose that B 6n A and
that B′ 6n′ A′, and define ξ(m, f )nn′ : FB → FB′ to be Fe if there is a (necessarily
unique) diagram of the form

B
��

n
��

B
��

p

��

e∈E // B′
��

n′

��

A Roomoo
f

// A′

(7.13)

and define ξ(m, f )nn′ = 0 otherwise. We now take (ΓF)(m, f ) : (ΓF)A → (ΓF)A′

to be the matrix of size Sub(A)× Sub(A′) with entries ξ(m, f )nn′ . Note in partic-
ular that, if f = m in (7.13), then e must be invertible, whence n = n′ in Sub(A);
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thus ξ(m, m)nn′ is the identity if n = n′ and n factors through m, and is zero other-
wise. This shows that (ΓF)(m, m) is the idempotent on

⊕
B6n A FB which projects

onto those summands n ∈ Sub(A) which factor through m.
The inverse equivalence N : [P , X ] → [R, X ] to (7.11) sends H ∈ [P , X ] to

NH : R → X defined on objects by

(NH)(A) =
⋂

R<m A

ker(H(m, m) : HA → HA) ; (7.14)

note that this is well-defined in the Cauchy-complete X , since the limit involved
may be constructed by splitting the idempotent ∏R<m A(1 − H(m, m)) of the ring
X (HA, HA). The action of NH on a morphism e : A → A′ is the unique factori-
sation of the composite (NH)(A)  HA → HA′ through (NH)(A′)  HA′;
the existence of such a factorisation is verified in [37, Theorem 4.1], while the fact
that Γ and N are indeed pseudoinverse is proved by Theorem 6.7 of ibid.

Using the above formulae, we may now derive the existence of a Hurwitz-
style tensor product on [R, X ] for any Ab-algebra X which transports the point-
wise one on [P , X ]. In the statement of the following result, we call a pair of
subobjects n, n′ ∈ Sub(A) covering if any M -map through which both n and n′

factor is invertible.

Proposition 7.1. Let C be a category equipped with an (E , M )-factorisation system, let
all pullbacks along M -maps exist and let each A ∈ C have but a finite set of
M -subobjects. Writing as above P = Par(C , M ) and R for the category of E -maps,
there is for any (symmetric) Ab-algebra X a (symmetric) Ab-algebra structure (∗, J) on
[R, X ] whose unit J and binary tensor ∗ are given by

J(A) =

{
I if |Sub(A)| = 1;

0 otherwise
and (F ∗ G)(A) =

⊕

B6n A, B′6n′ A

n,n′ are covering

FB ⊗ GB′

(7.15)
Moreover, (7.12) is strong monoidal as a functor ([R, X ], ∗) → ([P , X ], pointwise).

Proof. It suffices to show that the pointwise tensor product on [P , X ] transports
to the given structure on [R, X ]. For the unit this is immediate from (7.14). For
the binary tensor, given F, G ∈ [R, X ], we form the pointwise tensor
H = ΓF ⊗ ΓG with

HA = (ΓF)A ⊗ (ΓG)A =
⊕

B6n A

FB ⊗
⊕

B′6n′ A

GB′ ∼=
⊕

B6n A
B′6n′ A

FB ⊗ GB′

on objects; we will not need the full definition on morphisms, but we see by the
observations above that, for any M -map m : R  A, the idempotent
H(m, m) : HA → HA is given by projection onto those summands (n, n′) ∈
Sub(A)2 for which both n and n′ factor through m. Comparing with (7.14), we
conclude that (NH)(A) is given by restricting HA to those direct summands
(n, n′) which do not have this property for any proper m ∈ Sub(A): which gives
the formula for F ∗ G displayed above.
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Examples 7.2. (i) Let C be the category of finite sets and injections, and (E , M )
the (isomorphisms, all maps) factorisation system. Then R is the groupoid
S of finite sets and bijections and P is the category of finite sets and partial
injections, denoted by FI♯ in [9]; the equivalence [S, X ] → [FI♯, X ] for any
additive Karoubian X is now that of Theorem 4.1.5 of ibid. When X is an
Ab-algebra, the induced tensor product on [S, X ] is the case Λ = Z of (6.5),
so that this tensor product corresponds to the pointwise tensor product of
FI♯-modules.

(ii) In a similar way, when C is ∆+
inj, the category of finite ordinals [n] and mono-

tone injections, and (E , M ) = (identities, all maps), we have R = N and
P the category FO♯ of finite ordinals and partial monotone injections; in
this way, we re-find for any Ab-algebra X the case Λ = Z of the tensor
product (6.4) on X N, but now with the additional information that it is
monoidally equivalent to the pointwise monoidal structure on [FO♯, X ].

(iii) Take C itself to be FO♯, and let E and M comprise the maps therein with
entire codomain and domain respectively. Then R is isomorphic to (∆+

inj)
op,

while P is the cube category I of [11], diagrams on which are the cubical
sets4 of [31]. For any Ab-algebra X , the pointwise product on cubical ob-
jects in X thus transports to a Hurwitz-style tensor product on the category
[(∆+

inj)
op, X ] of augmented semi-simplicial objects in X .

(iv) Let C be the category of finite sets and all maps, and (E , M ) the (epi, mono)
factorisation system. In this case, P , the category of finite sets and partial
maps, is isomorphic to Segal’s category Γ of finite pointed sets, while R is
the category Ω of finite sets and epimorphisms. The equivalence [Ω, X ] →
[Γ, X ] for any additive Karoubian X was described in [39, Theorem 3.1],
and our construction yields a Hurwitz-style tensor product on [Ω, X ] for
any Ab-algebra X .

We now summarise the analogue of the preceding results for the general case
of (7.11) as described in [37]. The basic data are a category P ; a subcategory M

containing all the isomorphisms; and an identity-on-objects functor (–)∗ : M op →
P such that m∗ ◦ m = 1 for every m ∈ M (so in particular, each m is a split
monomorphism in C ). The class of morphisms R is defined to comprise those
r ∈ P such that, if r = m ◦ x ◦ n∗ for any m, n ∈ M , then m and n are invertible.
The category D has the same objects as P , and as morphisms the maps in R

with a zero morphism freely adjoined between any pair of objects; if r, s ∈ R are
composable morphisms in D , then their composite is s ◦ r if this also lies in R,
and is zero otherwise.

These data are required to satisfy various Assumptions which are listed in
[37, Section 2]; one of these is that every morphism f ∈ P factors as
f = n ◦ r ◦ m∗, uniquely up to isomorphism, for m, n ∈ M and r ∈ R, while
another is that each set Sub(A) of M -subobjects is finite. Given these data, The-
orem 6.7 of ibid. defines the equivalence Γ of (7.11) as follows. For F ∈ [D , X ]pt,

4With degeneracies but without symmetries or connections.
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we take ΓF : P → X to be given on objects as before by

(ΓF)A =
⊕

B6n A

FB ,

where the sum is again over the (finite) set of M -subobjects of A. For its value
at a map f : A → A′ in P , suppose that B 6n A and that B′ 6n′ A′, and define
ξ( f )nn′ : FB → FB′ to be Fr if there is a (necessarily unique) diagram of the form

B
��

n
��

r∈R // B′
��

n′

��

A
f

// A′

and to be zero otherwise; we now take (ΓF)( f ) to be the matrix with entries
ξ( f )nn′ . It follows from the assumptions that, for any m ∈ M , the map (ΓF)(mm∗)
is the idempotent on

⊕
B6n A FB projecting onto those summands n ∈ Sub(A) for

which m∗n ∈ M . The pseudoinverse N to Γ is once again defined by the for-
mula (7.14) (with H(mm∗) replacing H(m, m)) and now tracing through the re-
mainder of the argument given above yields the following more general
version of Proposition 7.1. When interpreting (7.15) in this context, we say that
n, n′ ∈ Sub(A) are covering if whenever m ∈ M is such that m∗n and m∗n′ are
both in M , then m is invertible.

Proposition 7.3. Suppose given a category P , subcategory M , and identity-on-objects
(–)∗ : M op → P satisfying the Assumptions of [37], and let D be the associated cate-
gory with zero maps as above. For any (symmetric) Ab-algebra X there is a (symmetric)
Ab-algebra structure (∗, J) on [D , X ]pt defined as in (7.15). Moreover, (7.11) is strong
monoidal as a functor Γ : ([D , X ]pt, ∗, J) → ([P , X ], pointwise).

The main additional example that this more general case allows is the follow-
ing one. If we take P to be ∆op, for ∆ the category of non-empty finite ordinals
and monotone maps, take M to comprise the surjective monotone maps, and for
each m ∈ M take m∗ to be its right adjoint, then the assumptions of [37] may be
verified to hold as in Example 3.3 of ibid. In this case, the category D turns out
to be the indexing category for chain complexes, and the equivalence (7.11) the
classical Dold–Kan equivalence between simplicial objects and chain complexes
in any additive Karoubian X . The preceding proposition now describes for any
Ab-algebra X a tensor product of chain complexes in X given by

(A ∗ B)(n) =
⊕

σ : [k]և[n]։[ℓ] : τ
σ,τ jointly monic

Ak ⊗ Bℓ .

This tensor product was calculated explicitly in unpublished work [36] of Lack
and Hess; the key point is that A ∗ B is a well-behaved retract of the usual tensor
product A ⊗ B of chain complexes. This can be understood as part of the fact
that the equivalence N : [∆op, X ] → Ch(X ) is a Frobenius monoidal functor, as
explained in [1, Chapter 5].
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8 Dold–Kan equivalences from small coalgebras

We conclude this paper by discussing coalgebraic aspects of the equivalences
described in the previous section. To this end, we consider the 2-category Ab-Catcc

whose objects are additive Karoubian categories, and whose 1- and 2-cells are
Ab-enriched functors and transformations. Ab-Catcc is a symmetric monoidal bi-
closed bicategory: the tensor product is obtained by Cauchy completing the usual
Ab-categorical tensor product, while the internal hom is the standard
Ab-enriched functor category. We can thus talk about (symmetric) monoidales
and comonoidales in Ab-Catcc; the monoidales are the Ab-algebras considered
previously, while the comonoidales we refer to as Ab-coalgebras. Much as in Sec-
tion 6, we have a free–forgetful biadjunction Ab-Catcc ⇆ Cat whose left biadjoint
is a strong monoidal homomorphism, and we reuse the notation 〈A 〉 for the free
additive Karoubian category on A ∈ Cat. If A is a category with zero mor-
phisms, then we write 〈A 〉pt for the free additive Karoubian category on A qua

category with zero morphisms.
Suppose now that we are given a category P , a subcategory M and a functor

(–)∗ : M op → P satisfying the assumptions of [37], and let D be as before the
associated category with zero maps. We may see the equivalences Γ : [D , X ]pt →
[P , X ] of (7.11) for any additive Karoubian X as induced by precomposition
with an equivalence 〈P〉 → 〈D〉pt of additive Karoubian categories, defined on

generating objects by A 7→
⊕

B6n A B. The point we wish to make is that, for
several of our examples above, the Ab-categories 〈P〉 and 〈D〉pt are Ab-algebras

which are free on pointed additive Karoubian categories, and the equivalence
between them generated by an equivalence at this more primitive level. For our
first example of this, we consider the equivalence [S, X ] ≃ [FI♯, X ] of Exam-
ples 7.2(i). We write SE for the free split epimorphism as displayed in:

E m //

1 ��
❄❄

❄❄
❄❄

❄❄
D

e
��

E .

Proposition 8.1. The free symmetric Ab-algebras on the pointed additive Karoubian
categories 〈E〉 → 〈E, D〉 and 〈E〉 → 〈SE〉 are respectively 〈S〉 and 〈FI♯〉 under the
monoidal structures given on basis elements by disjoint union.

Proof. The first claim follows as in Proposition 6.1 above, and the second does too
once we observe that FI♯ is the free symmetric monoidal category on the pointed
category {E} → SE, with the generators E and D corresponding to the empty
and singleton sets 0 and 1.

It is straightforward to see that 〈E, D〉 and 〈SE〉 are equivalent as pointed
Ab-categories. In one direction, we have the Ab-functor Θ : 〈SE〉 → 〈E, D〉 clas-
sifying the split epimorphism π1 : E ⊕ D → E with section ι1 : E → E ⊕ D. In the
other, we have the Ab-functor 〈E, D〉 → 〈SE〉 picking out the pair of objects E and
ker(e : D → E) (here, as before, this kernel can be constructed as a splitting of the
idempotent 1 − me in 〈SE〉). Applying Proposition 8.1, we deduce the existence
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of a strong monoidal equivalence Θ∞ fitting into a pseudocommutative square

〈SE〉 Θ //

��

〈E, D〉

��

〈FI♯〉
Θ∞ // 〈S〉 ,

and so by composing with Θ∞ an equivalence [S, X ] ≃ [FI♯, X ], which a direct
analysis shows is precisely the equivalence of (7.12).

Moreover, the induced (symmetric) Ab-algebra structures on [S, X ]pt and
[FI♯, X ] when X is a (symmetric) Ab-algebra may be seen as induced by con-
volution with symmetric Ab-coalgebra structures on 〈S〉 and 〈FI♯〉. As before,
these structures make 〈S〉 and 〈FI♯〉 into symmetric Ab-bialgebras; and as before,
these symmetric bialgebra structures are in fact freely generated from pointed
Ab-coalgebra structures on 〈E, D〉 and 〈SE〉 respectively. Explicitly, we equip
〈E, D〉 with the diagonal coalgebra structure—so ε(E) = ε(D) = Z and
δ(E) = E ⊗ E, δ(D) = D ⊗ D—and endow 〈SE〉 with the coalgebra structure
given on generating objects by

ε(E) = Z , ε(D) = 0 , δ(E) = E ⊗ E , δ(D) = D ⊗ E ⊕ E ⊗ D ⊕ D ⊗ D

and on generating morphisms in the unique possible manner. It is quite straight-
forward to see that, with respect to these structures, Θ becomes a strong mor-
phism of Ab-coalgebras, and so that, by the argument of Section 6 above, Θ∞ is an
equivalence of symmetric Ab-bialgebras. As in Theorem 6.3 above, the induced
coalgebra structure on 〈S〉 is the diagonal one, so that the induced monoidal
structure on [S, X ] is pointwise. By uniqueness of transport of monoidal struc-
ture, it follows that the coalgebra structure on 〈FI♯〉 must be the one which, un-
der convolution, induces the Hurwitz product on each [FI♯, X ]. In the situation
just discussed, we may also take free non-symmetric monoidales; whereupon the
equivalence Θ : 〈E, D〉 → 〈SE〉 of pointed Ab-coalgebras yields an equivalence
of Ab-bialgebras 〈N〉 → 〈FO♯〉, inducing the (monoidal) equivalences of Exam-
ples 7.2(ii).

Finally, let us show how Examples 7.2(iii) may be obtained in a corresponding
manner. If we consider the arrow category 2 = { f : D → E} and the free category
G on a reflexive graph, as to the left in:

E
i //

1 ��
❄❄

❄❄
❄❄

❄❄
D

t
��

s
��

E

E
ι1 //

1
""❋

❋❋
❋❋

❋❋
❋❋

❋❋
E ⊕ D

(−1 f )

��

(1 0)

��

E .

As is well-known, there is an equivalence of additive Karoubian categories
Θ : 〈G〉 → 〈2〉 whose action on generators picks out the reflexive graph as right
above. With each category pointed by the object E, it is easy to see that the
free monoidal categories thereon are given by (∆+

inj)
op and the cube category I

respectively, and so we obtain an equivalence of Ab-algebras 〈(∆+
inj)

op〉 ≃ 〈I〉



664 R. Garner – R. Street

inducing the equivalences of Examples 7.2(iii) above. Once again, the equiva-
lence between 〈G〉 and 〈2〉 may be made into one of pointed Ab-coalgebras in
such a way that, on passing to the associated free Ab-bialgebras, we reconstruct
the monoidal equivalence [I, X ] ≃ [(∆+

inj)
op, X ] for any Ab-algebra X .
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