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Abstract

It is known that there is not a two dimensional linear space in RR every
non-zero element of which is an injective function. Here, we generalize this
result to arbitrarily large dimensions. We also study the convolution of non-
differentiable functions which gives, as a result, a differentiable function. In
this latter case, we are able to show the existence of linear spaces of the largest
possible dimension formed by functions enjoying the previous property. By
doing this we provide both positive and negative results to the recent field
of lineability. Some open questions are also provided.

1 Introduction and preliminaries

In [12] W. Goldbloom Bloch gives several examples of open mappings between
Euclidean spaces which are discontinuous. One of the first examples of functions
of this kind was proposed by Lebesgue, and is given as follows: let ∆ be the
Cantor set and write R \ ∆ as a disjoint union of open sets {Ik}. For every k, let
fk : Ik → R be a bijection. Define then

L(x) =

{

x if x ∈ ∆,

fk(x) if x ∈ Ik

As Goldbloom Bloch states, all the examples for an open discontinuous function
require discontinuity at an infinite number of points. To give an example of a
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discontinuous open mapping which is continuous except at only a finite number
of points, the author proposes

f (z) =

{

0 if z = 0,

e1/z if z 6= 0,

defined over C. This is an open mapping which is discontinuous only at 0. Using
the usual identification C ↔ R

2 we obtain an open mapping f : R
2 → R

2 which
is discontinuous only at (0, 0).

In the following, we will study the extent to which the number of points of
discontinuity is important when trying to find algebraic structure in sets of dis-
continuous open mapping. Recall that in the beginning of the 21st century, the
definitions that formalize the idea of “consider large algebraic structures inside
of sets” were coined. To be more precise, we have the following:

Definition 1.1. [3, 4, 7, 10, 11] Let M be a subset of a topological vector space X and µ
and ν two cardinal numbers.

1. We say that M is µ−lineable if there exists a vector space V ⊆ M ∪ {0} of dimen-
sion µ.

2. We say that M is µ−spaceable if there exists a closed vector space V ⊆ M ∪ {0}
of dimension µ. We say that M is (µ, ν)−algebrable if there exists an algebra
V ⊆ M ∪ {0} of dimension µ such that the cardinality of a minimal system of
generators is ν.

In the second half of the 19th century, the first examples for what we shall
refer as (in mathematical folklore) pathological properties rose interest among math-
ematicians, and in 1875 Paul du Bois-Reymond published the proof for the
existence of a continuous nowhere differentiable function. To express the shock
that function provoked in most of mathematicians of that time, du Bois wrote:
“It appears to me that the metaphysics of Weierstrass’s function still hides many
riddles and I cannot help thinking that entering deeper into the matter will finally
lead us to the limits of our intellect.”

The study of lineability (and other properties of subsets of topological vector
spaces, together with the type of algebraic structure to be considered) tries to gen-
eralize the existence of those elements fulfilling pathological properties through
finding large algebraic structures of such examples. Up to now, a great number
of cases have been studied (giving even optimal results, talking about maximal
dimension or cardinality). The monographs [2, 6] provide the state of the art of
this topic.

In section 2, we will study two properties of functions: openness and, in
relation with it, injectivity. It is interesting to stress that, even though most of
the results that concerns lineability consist in finding explicitly structures of infi-
nite dimension, we were able to prove that in most of this section that we can not
go beyond finite dimension. One of the earliest results in this negative approach
was the following:
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Theorem 1.2. [1, 9, 16] The set of injective functions from R to R is not 2-lineable.

We will investigate the extent to which this theorem holds when seen in higher
dimensions. We will use a corollary to the proof of the theorem, according to
which, given f , g injective functions and x 6= y, it is possible to construct a linear
combination that attains the same value at x and y.

In the last section of this article, we will complete one problem that was pre-
sented in [13], where the authors studied smoothing properties of the Volterra
convolution. Even though the definition slightly differs from the usual defini-
tion of convolution, this operator still takes the ’best properties’ of the functions
involved. Thus, for example, the Volterra convolution of an L1−function with a
differentiable function having bounded derivative is still differentiable. Also, the
Volterra convolution of two L2−functions gives a continuous function. Specifi-
cally, we have the following definition:

Definition 1.3. Let f1, f2 be two Lloc
1 (R)−functions. We define its Volterra convolution

as

f1 ∗V f2(x) =
∫ x

0
f1(ζ) f2(x − ζ)dζ.

Observe that in the previous definition it is enough to consider locally L1 func-
tions, namely Lloc

1 (R).

The study of lineability or spaceability in relation to the smoothness of func-
tions has been deeply carried out, and for example, in 1999, V.P. Font, V.I. Gurariy
and M.I. Kadets proved the existence of a closed vector space of dimension c all
of whose elements except zero are continuous nowhere differentiable functions
([8]).

In [14], the authors were able to show that the set {Wa : 7
9 < a < 1} is a

linearly independent set which spans a vector space of such functions, where

Wa(x) = ∑
k≥0

ak cos(9kx)

is the well-known Weierstrass’ Monster, and in [13], the authors proved that in
fact any non-trivial linear combination of elements of this set gives a function
whose convolution with itself is nowhere differentiable. With this result, the
authors of [13] showed that the set of continuous nowhere differentiable func-
tions whose convolution with themselves gives a nowhere differentiable function
is c−lineable.

One might think that the property of nowhere differentiability would indeed
imply the nowhere differentiability of the Volterra convolution. However, in [13]
an example is given of a continuous nowhere differentiable function whose con-
volution with itself is everywhere differentiable. In section 3 we complement this
last result by giving an independent set of cardinality c of nowhere differentiable
functions such that, convolving two elements from the spanned vector space, we
obtain a differentiable function.
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2 Open, Continuous, and Injective mappings

As stated in the preliminaries, we will first separate the situation where the con-
sidered functions are discontinuous at an uncountable set of points or they are
continuous except a finite number of points. For the first case, just remark that
ES(R) := { f : R → R : f (I) = R for every interval I} is a subset of the
uncountably discontinuous open functions. We can then refer to [4], where it
is proved that ES(R) is 2c−lineable.

If we examine now the case where the open mappings are continuous except
from a finite set, we have the following:

Theorem 2.1. The set of open mappings from R to R which are discontinuous at only a
finite set of points is not 2−lineable.

Before giving the proof of this first result, we state a lemma that will be crucial
for our purposes:

Lemma 2.2. A continuous open mapping f : R → R is injective.

Proof of theorem 2.1. Assume f1 and f2 are two open mappings, so that f1 is con-
tinuous on R \ {x1, . . . , xk} and f2 is continuous on R \ {y1, . . . , yl}. Let us find
(a, b) ⊆ R so that f1 and f2 are continuous on (a, b).

We can choose then a1, a2 ∈ R \ {0} so that a1 f1 + a2 f2 is a nonzero noninjec-
tive continuous function on (a, b). Use then Lemma 2.2 to show that the restric-
tion of a1 f1 + a2 f2 to (a, b) is not open (and hence a1 f1 + a2 f2 can not be open as
a function on R).

Remark 2.3. An analogous proof also works if we study the functions that are continuous
except on a discrete set, a subset of a closed set with finite Lebesgue measure or a bounded
set.

The proof of Theorem 2.1 relies deeply in the fact that the set of injective func-
tions defined from R to R is not 2-lineable (see Theorem 1.2 of Section 1). In the
following result we will generalize Theorem 1.2 to arbitrary dimensions:

Theorem 2.4. Let n and m be arbitrary. Then, the set { f : Rn → Rm : f is injective}
is m−lineable, but not m + 1-lineable.

Proof. Let Φ : Rn → R be a bijection and consider the functions

fi =






i
︷ ︸︸ ︷

eΦ(x), . . . , eΦ(x),

m−i
︷ ︸︸ ︷

0, . . . , 0




 .

Then, { fi : 1 ≤ i ≤ m} is a linearly independent set, any nontrivial linear combi-
nation of whose elements gives an injective function. Indeed, let

f (x) =
m

∑
i=1

ai fi(x).



Injective mappings in RR and lineability 613

and assume f (x) = f (y). Let i0 = max{1 ≤ i ≤ m : ai 6= 0}. Then, we can write

f (x) =

(
i0

∑
i=1

aie
Φ(x),

i0

∑
i=2

aie
Φ(x), . . . , ai0 eΦ(x), 0, . . . , 0

)

,

so f (x) = f (y) yields eΦ(x) = eΦ(y) and the first part of the proof follows.
Let now g1, . . . , gm+1 : Rn → Rm be functions and x 6= y ∈ Rn. Set, for

1 ≤ i ≤ m + 1, gi(z) =
(

g
(1)
i (z), . . . , g

(m)
i (z)

)

and define, for 1 ≤ k ≤ m,

uk =
(

g
(k)
1 (x)− g

(k)
1 (y), . . . , g

(k)
m+1(x)− g

(k)
m+1(y)

)

∈ R
m+1.

Then, dim
(
u⊥

1 ∩ . . . ∩ u⊥
m

)
≥ 1, so there exists b ∈ Rm+1 \ {0} such that 〈b, uk〉 = 0

for every 1 ≤ k ≤ m.
If we consider the function F = b1g1 + . . .+ bm+1gm+1, we obtain that F cannot

be injective. Indeed,

F(k)(x) = b1g
(k)
1 (x) + . . . bm+1g

(k)
m+1(x)

= 〈b, uk〉+ b1g
(k)
1 (y) + . . . bm+1g

(k)
m+1(y) = F(k)(y).

Related to this last result, we observe that the functions constructed in the
proof are in general discontinuous (since we cannot have a continuous injective
function Φ : Rn → R for n ≥ 2). We can wonder if we can have a similar
lineability result for continuous injective functions. Unfortunately, we have not
been able to prove lineability for all dimensions, but we can at least give the
following partial result for a subsequence of natural numbers:

Theorem 2.5. For every natural number n, the set { f : R2n
→ R2n

: f is linear and
bijective} is 2n−lineable. In particular, the set of continuous injective functions
R

2n
→ R

2n
is 2n-lineable.

The proof of this result relies in the following proposition, which we believe
has its own interest:

Proposition 2.6. There exist 2n symmetries Φ
(n)
1 = I, Φ

(n)
2 , . . . , Φ

(n)
2n of the cube such

that {Φ
(n)
1 (x), Φ

(n)
2 (x), . . . , Φ

(n)
2n (x)} is an orthogonal basis of R2n

, for any x 6= 0.

Proof. We will proceed by induction on n. Assume first n = 1. We may just
choose

Φ
(1)
2 =

[
0 −1
−1 0

]

,

where we have identified Φ
(1)
2 with the matrix defining a linear transformation.

Assume next n = 2. In this case we may consider, similarly, the transformations

Φ
(2)
2 =







0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0







, Φ
(2)
3 =







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







, Φ
(2)
4 =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0
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If x = (a, b, c, d), then

(Φ
(2)
1 (x), Φ

(2)
2 (x), Φ

(2)
3 (x), Φ

(2)
4 (x)) =







a b c d
b −a d −c
c −d −a b
d c −b −a







and it is straightforward to see that the above is an orthogonal set.
Assume finally that for n ≥ 2 the result holds true and let us prove the result

for n + 1.
Denote, for x = (x1, . . . , x2n+1), x′ = (x1, . . . x2n), x′′ = (x2n+1, . . . x2n+1) and

define the operators

Φ
(n+1)
i

(
x′

x′′

)

=

(

Φ
(n)
i (x′)

Φ
(n)
i (x′′)

)

, if 1 ≤ i ≤ 2n−1,

Φ
(n+1)
2n+i

(
x′

x′′

)

=

(

Φ
(n)
i (x′′)

−Φ
(n)
i (x′)

)

,

Φ
(n+1)
i

(
x′

x′′

)

=

(

Φ
(n)
i (x′)

−Φ
(n)
i (x′′)

)

if 2n−1 + 1 ≤ i ≤ 2n,

Φ
(n+1)
2n+i

(
x′

x′′

)

=

(

Φ
(n)
i (x′′)

Φ
(n)
i (x′)

)

,

Let us show that {Φ
(n+1)
1 (x), . . . , Φ

(n+1)
2n+1 (x)} constitutes an orthogonal system.

For that, let us focus on the rows j and k, and let us denote

Φ
(n+1)
i

(
x
)
=
(

lΦ
(n+1)
i

(
x
))2n+1

l=1
,

that is, lΦ
(n+1)
i is the l-th component of Φ

(n+1)
i for 1 ≤ l ≤ 22n+1

. If first we assume
1 ≤ j, k ≤ 2n, then we need to compare the vectors

(
jΦ

(n)
1 (x), . . . ,j Φn

2n−1(x),
j Φ

(n)
2n−1+1

(x), . . . ,

jΦ
(n)
2n (x),j Φ

(n)
1 (y), . . . ,j Φn

2n−1(y),
j Φ

(n)

2n−1+1
(y), . . . ,j Φ

(n)
2n (y)

)

and
(

kΦ
(n)
1 (x), . . . ,k Φn

2n−1(x),
k Φ

(n)
2n−1+1

(x), . . . ,

kΦ
(n)
2n (x),k Φ

(n)
1 (y), . . . ,k Φn

2n−1(y),
k Φ

(n)

2n−1+1
(y), . . . ,k Φ

(n)
2n (y)

)

,

which are orthogonal (by induction hypothesis).
If we assume next 2n + 1 ≤ j, k ≤ 2n+1, then by the same argument we also

have orthogonality. Assume finally 1 ≤ j ≤ 2n and 2n + 1 ≤ k ≤ 2n+1. Then, we
need to compare the vectors

(
jΦ

(n)
1 (x), . . . ,j Φn

2n−1(x),
j Φ

(n)

2n−1+1
(x), . . . ,

jΦ
(n)
2n (x),j Φ

(n)
1 (y), . . . ,j Φn

2n−1(y),
j Φ

(n)
2n−1+1

(y), . . . ,j Φ
(n)
2n (y)

)

and
(

kΦ
(n)
1 (y), . . . ,k Φn

2n−1(y),−
kΦ

(n)

2n−1+1
(y), . . . ,

−kΦ
(n)
2n (y),−kΦ

(n)
1 (x), . . . ,−kΦn

2n−1(x),
k Φ

(n)
2n−1+1

(x), . . . ,k Φ
(n)
2n (x)

)

,
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and one can directly compute the inner product and show that is zero. This makes
the induction step complete.

Proof of theorem 2.5. Consider the functions Φi = Φ2n

i (1 ≤ i ≤ 2n) given by
Proposition 2.6. Let

g(x) :=
2n

∑
i=1

λiΦi(x).

We will have the result if we succeed in proving that g is injective for any
nontrivial choice of λi ∈ R. Since g is linear, we must show that g−1({0}) = {0}.
To this aim, let x ∈ g−1({0}). Then

2n

∑
i=1

λiΦi(x) = 0.

If we write Φi = (Φ1
i , Φ2

i , . . . Φ2n

i ), then for each 1 ≤ j ≤ 2n we obtain

2n

∑
i=1

λiΦ
j
i(x) = 0.

We can write this equality as the homogeneous system








Φ1
1(x) Φ1

2(x) . . . Φ1
2n(x)

Φ2
1(x) Φ2

2(x) . . . Φ2
2n(x)

...
...

. . .
...

Φ2n

1 (x) Φ2n

2 (x) . . . Φ2n

2n(x)















λ1

λ2
...

λ2n







=










0
0
0
...
0










.

By Proposition 2.6, the matrix of this system is non-degenerate if x is no zero. But
the system has the non-trivial solution (λ1, . . . , λ2n). Then x = 0 as required.

Remark 2.7. The proof of Theorem 2.5 is greatly supported by Proposition 2.6, but in fact
we do not require the strong condition given there: it will be enough if, given a natural
number m = 2n, we can guarantee the existence of linear operators A2, . . . , Am : R

m →
Rm such that, for every x ∈ Rm \ {0}, {x, A2x, . . . , Amx} is a linearly independent
set. The last is somehow also a necessary condition for an arbitrary m ∈ N. Indeed, it
is easy to see that the family of bijective linear functions Rm → Rm is l-lineable if and
only if there are bijective linear functions f1, . . . , fl : Rm → Rm such that, for every
x ∈ R

m \ {0}, the set { f1(x), . . . , fl(x)} is a linearly independent system.

Note that letting n = 2 in Theorem 2.5 we obtain that the family of bijective
linear functions R4 → R4 is 4-lineable. On the contrary, the corresponding asser-
tion fails for R3:

Corollary 2.8. The set { f : R3 → R3 : f is linear and bijective} is not 3-lineable.
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Proof. Let us proceed by way of contradiction. According to Remark 2.7, we can
assume, without loss of generality, that we can find non-singular linear operators
A and B on R3 so that, for every v = (x, y, z) 6= 0, det[v, Av, Bv] 6= 0, that is

0 6=x3det[e1, Ae1, Be1] + x2y
(
det[e1, Ae1, Be2] + det[e1, Ae2, Be1] + det[e2, Ae1, Be1]

)

+ x2z
(
det[e1, Ae1, Be3] + det[e1, Ae3, Be1] + det[e3, Ae1, Be1]

)

+ y3det[e2, Ae2, Be2]

+ y2x
(
det[e2, Ae2, Be1] + det[e2, Ae1, Be2] + det[e1, Ae2, Be2]

)

+ y2z
(
det[e2, Ae2, Be3] + det[e2, Ae3, Be2] + det[e3, Ae2, Be2]

)

+ z3det[e3, Ae3, B3]

+ z2x
(
det[e3, Ae3, Be1] + det[e3, Ae1, Be3] + det[e1, Ae3, Be3]

)

+ z2y
(
det[e3, Ae3, Be2] + det[e3, Ae2, Be3] + det[e2, Ae3, Be3]

)

+ xyz
(
det[e1, Ae2, Be3] + det[e1, Ae3, Be2] + det[e2, Ae1, Be3]

+ det[e2, Ae3, Be1] + det[e3, Ae1, Be2] + det[e3, Ae2, Be1]
)
,

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).
We are dealing then with a homogeneous polynomial, P(v = (x, y, z)) =
det[v, Av, Bv], of degree 3, since in particular we have

det[e1, Ae1, Be1] · det[e2, Ae2, Be2] · det[e3, Ae3, B3] 6= 0.

If we focus our attention on the points of the form (x, 1, 0), we have that P(x, 1, 0)
is a polynomial of one variable of degree 3, so in particular vanishes at one point
x0 ∈ R. Therefore,

{
(x0, 1, 0), A(x0, 1, 0), B(x0, 1, 0)

}
cannot be a linearly inde-

pendent set. This is the desired contradiction.

Remark 2.9. An analogous proof to the one in Corollary 2.8 would show that, for ev-
ery natural number k, the set { f : R2k+1 → R2k+1 : f is linear and bijective} is not
(2k+1)-lineable.

Yet, we can have the partial positive result (from Theorem 2.5):

Corollary 2.10. For n ∈ N, write n = 2km, where 2 ∤ m. Then, the set
{

f : R
n → R

n such that f is linear and bijective
}

is 2k-lineable. In particular, the set
{

f : R
n → R

n such that f is continuous and injective
}

is 2k−lineable.

Proof. Let f1, . . . , f2k be a basis giving the 2k−lineability of the set

{
f : R

2k
→ R

2k
such that f is linear and bijective

}
.

Define f i : Rn → Rn, for 1 ≤ i ≤ 2k, as follows:

f i(x1, . . . , xn) =
(

fi(x1, . . . , x2k), fi(x2k+1, . . . , x2·2k), . . . , fi(x(m−1)2k+1, . . . , xm2k)
)
.

Then, the functions f 1, . . . , f 2k give the desired result.
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All these considerations motivate the following open problem:

Question 2.11. What can we say about Theorem 2.5 for any dimension? Specifically, we
are interested in the case when the dimension is even. Also, and taking into account what
we have shown in Corollary 2.8, is

{
f : R3 → R3 such that f is injective and conti-

nuous
}

(not) 3-lineable?

Continuing with the consequences of Theorem 2.5, we have the following re-
sult that deals with infinite dimensions:

Theorem 2.12. Let X be a real Banach space over R with Schauder basis {xj}
∞
j=0 and

let L(X) denote, as usual, the vector space of all operators (that is, the vector space of all
continuous linear self-mappings). We have that {T ∈ L(X) such that T is injective} is
lineable.

Proof. Assume that the Schauder basis of the Banach space X, {xj}
∞
j=0, is normal-

ized and let Vn be a vector space provided by the 2n-lineability (see Theorem 2.5)
of the set

{ f : R
2n

→ R
2n

such that f is linear and injective }.

Let { f
(n)
i }2n

i=1 be a basis of Vn.
Arrange then the elements of ∪n∈NVn in a matrix whose kth column consists

of the functions f
(k−1)
1 , . . . , f

(k−1)

2k−1 for the first 2k−1 entries, and f
(k−1)

2k−1 for the other
entries. That is, we create the following matrix:



















f
(0)
1 f

(1)
1 f

(2)
1 f

(3)
1 f

(4)
1 f

(5)
1 . . .

f
(0)
1 f

(1)
2 f

(2)
2 f

(3)
2 f

(4)
2 f

(5)
2 . . .

f
(0)
1 f

(1)
2 f

(2)
3 f

(3)
3 f

(4)
3 f

(5)
3 . . .

f
(0)
1 f

(1)
2 f

(2)
4 f

(3)
4 f

(4)
4 f

(5)
4 . . .

f
(0)
1 f

(1)
2 f

(2)
4 f

(3)
5 f

(4)
5 f

(5)
5 . . .

f
(0)
1 f

(1)
2 f

(2)
4 f

(3)
6 f

(4)
6 f

(5)
6 . . .

f
(0)
1 f

(1)
2 f

(2)
4 f

(3)
7 f

(4)
7 f

(5)
7 . . .

...
...

...
...

...
...

. . .



















Let K ≥ 1 be the basis constant associated to the Schauder basis {xj}
∞
j=0. Then,

if x = ∑
∞
j=0 ajxj is the unique representation of x ∈ X given by the Schauder basis

{xj}
∞
j=0, we have that |aj| = |aj| ‖xj‖ ≤ 2K‖x‖ for all j ≥ 0 (see e.g. [5, Chap. 2]).

Consider then the subset A = {Fi}i∈N ⊂ ∏
∞
n=0 Vn whose elements are the rows

of the previous matrix. Notice that each Fi has the form Fi = ( f
(0)
i0

, f
(1)
i1

, f
(2)
i2

, ...).

Let f
(j)
i (a0, a1, . . . , a2j−1) = (bj,0, . . . , bj,2j−1) ∈ R2j

and define cn :=
b

j,n−2j

5j when-

ever 2j ≤ n < 2j+1 (j = 0, 1, 2, . . . ). Next, define T(Fi) : X → X by

T(Fi)(x) =
∞

∑
n=1

cnxn.



618 P. Jiménez – S. Maghsoudi – G.A. Muñoz – J.B. Seoane

Now, by the selection of the functions f
(j)
i (1 ≤ i ≤ 2j) (see Theorem 2.5 and

Proposition 2.6) we infer that the absolute value of each of the 2j coordinates bj,k

of the vector f
(j)
i (a0, a1, . . . , a2j−1) is not bigger than |a0|+ |a1|+ · · ·+ |a2j−1|, and

so not bigger than 2j · 2K‖x‖. Hence

∞

∑
n=1

‖cnxn‖ =
∞

∑
j=0

2j+1−1

∑
n=2j

|cn| ‖xn‖ =
∞

∑
j=0

2j+1−1

∑
n=2j

∣
∣
bj,n−2j

5j

∣
∣

≤
∞

∑
j=0

2j · 2j · 2K‖x‖

5j
= 10K‖x‖ < ∞,

which together with the completeness of X implies that ∑
∞
n=1 cnxn converges in

X. In other words, T(Fi) is well defined. Obviously, it is linear. Now, a simple
application of the closed graph theorem (see e.g. [15, Chap. 2]) implies its conti-
nuity. Consequently, each T(Fi) ∈ L(X).

To conclude the result we shall show that every nontrivial linear combination of
the set {T(Fi) : i ∈ N} yields an injective function. Thanks to linearity, this is
equivalent to prove that the kernel of each such combination collapses to {0}.

Indeed, let f (x) = ∑
n
i=1 λiT(Fi)(x) and assume f (∑∞

j=0 ajxj) = 0. Let k ≥ 0

so that 2k
> n. Then, if we focus on the coordinates between 2k and 2k+1 − 1 we

would have

1

5k

(

λ1 f
(k)
1 (a0, a1, . . . , a2k−1) + λ2 f

(k)
2 (a0, a1, . . . , a2k−1) + . . .

+ λn f
(k)
n (a0, a1, . . . , a2k−1)

)

= 0

If {λi}
n
i=1 does not describe a trivial linear combination, we must conclude ai = 0

for every 0 ≤ i ≤ 2k − 1, due to the injectivity of λ1 f
(k)
1 + . . . + λn f

(k)
n . Let k → ∞

to obtain the result.

We remark that the previous result cannot be improved for a general infinite
dimensional topological space, in the following sense:

Theorem 2.13. The set { f : c00 → c00 such that f is injective} is not κ−lineable, for
any cardinal number κ > ℵ0.

Proof. Assume that we have a linearly independent set { fα}α∈Γ of cardinality

κ > ℵ0. Denote fα = ( f
(1)
α , f

(2)
α , f

(3)
α , . . .) and fix x, an element of c00. Then, there

must exist a natural number n0 so that, if Γn0 := {α ∈ Γ : f
(n)
α (x) = 0 for every

n > n0}, then #Γn0 > ℵ0.
Let (y1, . . . , yn0) 6= (x1, . . . , xn0). By the same reason as before, there must exist

a natural number m0 such that, if Γm0 = {α ∈ Γn0 : f
(m)
α (y1, . . . , yn0 , xn0+1, . . .) = 0

for every m > m0}, then #Γm0 > ℵ0.
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Take k0 = max{n0, m0} and α1, . . . , αk0+1 elements of Γn0 (if k0 = n0) or Γm0 (if
k0 = m0) and define, for every 1 ≤ i ≤ k0 + 1,

f̃αi
(z1, . . . , zk0

) :=
(

f
(1)
αi

(z1, . . . , zk0
, xk0+1, . . .), f

(2)
αi

(z1, . . . , zk0
, xk0+1, . . .), . . .

. . . , f
(k0)
αi

(z1, . . . , zk0
, xk0+1, . . .), 0, 0, . . .

)

.

Then, f̃αi
: Rk0 → Rk0 and therefore there must exist nonzero real numbers

b1, . . . , bk0+1 so that

k0+1

∑
i=1

bi f̃αi
(x1, . . . , xk0

) =
k0+1

∑
i=1

bi f̃αi
(y1, . . . , yk0

).

Hence,
k0+1

∑
i=1

bi fαi
(x1, x2, . . . , xk0

, xk0+1, . . .)

=

(
k0+1

∑
i=1

bi f
(1)
αi

(x1, . . . , xk0
),

k0+1

∑
i=1

bi f
(2)
αi

(x1, . . . , xk0
),

k0+1

∑
i=1

bi f
(k0)
αi

(x1, . . . , xk0
), 0, 0, . . . ,

)

=

(
k0+1

∑
i=1

bi f
(1)
αi

(y1, . . . , yk0
),

k0+1

∑
i=1

bi f
(2)
αi

(y1, . . . , yk0
),

k0+1

∑
i=1

bi f
(k0)
αi

(y1, . . . , yk0
), 0, 0, . . . ,

)

=
k0+1

∑
i=1

bi fαi
(y1, y2, . . . , yk0

, xk0+1, . . .),

so there exists a non trivial linear combination of the functions fα1
, . . . , fαk0+1

which is not injective.

Question 2.14. We would like to remark that c00 is not a Banach space. Therefore we
have the following open question for this problem: Can we improve Theorem 2.12 for
concrete spaces, like c0? Also, can we prove that the set there considered cannot be further
lineable in general? Concerning the vector space c00, can we have an analogous theorem
to Theorem 2.12 for this specific case?

3 Some remarks on nowhere differentiability

In [13], the authors used the functions Ka,b defined by Knopp in some results in
their article. By Z we denote, as usual, the set of all integer numbers.

Definition 3.1. Let 0 < a < 1 and b > 1 so that 1/a > ab > 1. Denote fb,k(x) =

dist(bkx, Z) and define the Knopp’s function as

Ka,b(x) = ∑
k≥0

ak fb,k(x).

This function is a continuous nowhere differentiable function, but convolving
it with a function of the same kind gives differentiability at every point.
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Theorem 3.2. Let Ka = Ka,9 for 1
9 < a <

1
3 . Then Ka1

∗V Ka2 is differentiable every-

where for all a1, a2 ∈

(

1
9 , 1

3

)

.

In order to prove the above theorem, we first recall the following result, which
follows from the well-known Weierstrass M-test:

Proposition 3.3. Let ( fn)∞
n=0 be a sequence of differentiable functions on an interval I

of R and let (an)
∞
n=0 be a sequence of numbers such that ∑

∞
n=0 |an| < ∞. Assume that

supn≥0 supx∈I | f
′(x)| < ∞ for all n ≥ 0 and that ∑

∞
n=0 an fn(x) converges for at least

one x ∈ I. Then ∑
∞
n=0 an fn converges uniformly on I to a differentiable function f such

that f ′ = ∑
∞
n=0 an f ′n.

Proof of Theorem 3.2. Denote fk = f9,k (see Definition 3.1) and notice

Ka1
∗V Ka2(x)

=
∫ x

0
Ka1

(τ)Ka2(x − τ)dτ =
∫ x

0

( ∞

∑
k=0

ak
1 fk(τ)

)( ∞

∑
j=0

a
j
2 f j(x − τ)

)

dτ

=
∞

∑
k=0

k

∑
j=0

∫ x

0
ak

1dist(9kτ, Z)a
k−j
2 dist(9k−j(x − τ), Z)dτ

=
∞

∑
k=0

(
9a1a2 + 1

2

)k ( 2

9a1a2 + 1

)k k

∑
j=0

ak
1a

k−j
2

∫ x

0
dist(9kτ)dist(9k−j(x − τ))dτ

=
∞

∑
k=0

(
9a1a2 + 1

2

)k

gk(x),

with

gk(x) =

(
2

9a1a2 + 1

)k k

∑
j=0

ak
1a2k − j

∫ x

0
dist(9kτ)dist(9k−j(x − τ))dτ,

where we have been able to interchange sum with integral sign using the fact that
0 < ai < 1, and therefore both infinite sums are convergent.

Each of the functions gk is differentiable, with

g′k(x) =

(
2

9a1a2 + 1

)k k

∑
j=0

ak
1a

k−j
2

∫ x

0
dist(9kτ)9k−jdist′(9k−j(x − τ))dτ,

and hence,

|g′k(x)| ≤

(
18a1a2

9a1a2 + 1

)k k

∑
j=0

(
1

9a2

)j M

2
≤

9Ma2

2(1 − 9a2)
.

In conclusion, |g′k(x)| ≤
9Ma2

2(1−9a2)
, for all x in [0, M] and all k. Applying Proposition

3.3 it follows that Ka1
∗V Ka2 is differentiable.
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Corollary 3.4. The family
{

Ka : 1
9 < a <

1
3

}

is a linearly independent set which spans

a vector space of functions which, when convolving among themselves, give a differen-
tiable function.

Proof. We only need to prove the linearly independence, just taking into account
the linearity of the convolution and the differentiability.
Indeed, let λ1, . . . , λn in R and 1

9 < a1, . . . , an <
1
3 , and consider

f (x) =
n

∑
i=1

λiKai
(x).

Then, assuming f ≡ 0 and evaluating at 1
9 , 1

92 , . . . , 1
9n would give

n

∑
i=1

λi = 0,
n

∑
i=1

λiai = 0,
n

∑
i=1

λia
2
i = 0, . . . ,

n

∑
i=1

λia
n
i = 0,

leading us to a Van der Monde determinant, which is nonzero because the ai’s
are pairwise different. This allows us to conclude that λi = 0 for every i, as
desired.
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of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51
(2014), no. 1, 71–130, DOI 10.1090/S0273-0979-2013-01421-6.

[7] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Some results and open
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