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Abstract

We study the non-existence of smooth curves of low degree and low
positive genus on a general heptic hypersurface of P5. The genus 0 case
was proved for the same degrees by Hana - Johnsen and Cotterill.

1 Introduction

H. Clemens conjectured that for any degree d > 0 a general quintic hypersur-
face of P

4 contains only finitely many smooth rational curves of degree d; the
stronger form of the conjecture says that the same is true for singular rational
curves, except rational degree 5 plane curves ([5], [6], [9], [19], [20], [21], [22],
[30]). There are results on other Fano 3-folds ([21],[26, Theorem 2], [22, Theorem
1.2]) results for higher genera ([23], [24]) and results on higher dimensional hy-
persurfaces of general types ([32]). In particular for every integer k ≥ 8 for a
very general degree k hypersurface X ⊂ P5 and any integral curve D ⊂ X, we
have deg(D) ≤ 2g̃ − 2, where g̃ is the geometric genus of D ([31], [32, Theorem
3.9]). The case k = 7, i.e. the case of a general heptic hypersurface of P

5, was
singled out as an interesting boundary case ([7], [14]). A general heptic hypersur-
face contains exactly 698005 lines and no rational curve (not even singular ones)
with degree d if 2 ≤ d ≤ 16 ([7], [14], [28, Theorem 1.1]). There are two main tools
available for rational curves, but not for smooth curves of higher genus (a very
strong result on the strata by splitting type of the restricted tangent bundle and
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the use of semigroups related to a rational parametrization). See [6] and [7] for a
full use of these tools and [8] for a full use of the latter tool in another context.

For any set S ⊆ P5 let 〈S〉 denote its linear span. In this paper we prove the
following result.

Theorem 1. Let W ⊂ P5 be a general heptic hypersurface. For all integers d, g with
d ≤ 16 and 1 ≤ g ≤ 3 W does not contain any smooth curve C of genus g and degree d
with dim(〈C〉) 6= 3.

Only numerical reasons prevent us to get degrees d a little bit higher or gen-
era g a little bit higher or to cover the curves spanning a 3-dimensional linear
subspace. We prove the following result, but several parts of its proof works for
higher genera and/or higher degree.

Proposition 1. A general heptic hypersurface of P5 contains no smooth curve C of genus
1 and degree d ≤ 14.

In section 2 (resp. section 3, resp. section 4) we prove the part of Theorem
1 concerning curves C spanning a linear subspace 〈C〉 of P5 of dimension ≤ 2
(resp. 5, resp. 4). In section 5 we give a few results for the case dim(〈C〉) = 3
and prove Proposition 1. Section 4 contains more lemmas than the ones needed
to prove Theorem 1 and even so in many places we know how to improve the
lemmas by 1. Anyway, section 3 does not work if (d, g) ∈ {(17, 0), (17, 1)}, the
next interesting cases.

Since for any smooth hypersurface W ⊂ Pn, n ≥ 4, with deg(W) ≥ 2 there
is a codimension 2 subvariety Z ⊂ W which is not the intersection of W and a
codimension 2 subvariety of Pn ([29], [25]), there are plenty of curves on a very
general heptic hypersurface X, which are not easily described, but certainly not
unexpected. A dimensional count suggests that a very general heptic hypersur-
face has no curve with very low genus. If we take curves with arithmetic genus q
and degree d ≫ q, then the dimensional count is better for high q than for q = 0
(when d ≫ q the dimensional count is even better for degenerate curves than for
non-degenerate ones).

Question 1. Let X ⊂ P5 be a very general heptic hypersurface. Is it true that X
contains no elliptic curve? Is it true that for each q ∈ N there is an integer d(q)
such that X has no curve of arithmetic genus q and degree d > d(q)?

Our tools cannot solve these questions (at the very least we need 7d + 1− q <

(12
5 )), but we made an attempt to see where not to find counterexamples to this

kind of questions. A strong feature of [7] (and also of [6] and [8]) is that it works
for singular rational curves and this is the best way to state problems related to
Clemens’ conjecture as non-existence or finiteness results for maps from moduli
schemes of curves to a varying target, e.g. a very general heptic hypersurface, i.e.
in the set-up of Kontsevich moduli spaces with a varying target. Unfortunately,
our tools use the arithmetic genus of the image and so at most we may recover
(for low degrees) singular curves with low arithmetic genus. Theorem 1 and
Proposition 1 are stated only for smooth curves, because in the singular case (but
with arithmetic genus q ≤ 3) we can handle only lower degrees. The first lemmas
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to be generalized for the interested reader are Lemmas 2 and 3, because a non-
degenerate singular curve C ⊂ P5 has hyperplane sections C ∩ H which are not
curvilinear. Moreover, if q = 1 the singular curves are rational and so they do
not exist for d ≤ 16 on a very general heptic by [7]. If q = 2, 3 knowing by [7]
the case of rational curves we may say that the non-rational ones have very mild
singularities, and it helps, even for the generalizations of Lemmas 2 and 3.

Thanks are due to a referee for useful remarks.

2 Preliminaries

We work over the complex number field.
Let Md,g denote the set of all smooth curves C ⊂ P5 with degree d, genus g and

h1(OC(1)) = 0. The algebraic set Md,g is irreducible, because we only took non-
special line bundles for the embeddings. Fix C ∈ Md,g and let NC be the normal

bundle of C in P5. Since dim(C) = 1, we have h2(F ) = 0 for every coherent
sheaf F on C. Therefore for any surjection G → E of coherent sheaves on C, the
associated map H1(G) → H1(E) is surjective. Hence h1(E) = 0 if h1(G) = 0. The
Euler’s sequence shows that TP

5 is a quotient of OP5(1)⊕6. Hence h1(NC) = 0.
Thus Md,g is smooth and of dimension h0(NC) = 6d + 2 − 2g.

If we drop the condition h1(OC(1)) = 0, then when g ≤ 3 we only need to
add the case (d, g) = (4, 3) (canonically embedded non-hyperelliptic curves of
genus 3). See Remark 2 for a proof that a general heptic hypersurface contains no
canonically embedded curve of genus 3.

For any integer r ≥ 1 let Md,g(r) be the set of all C ∈ Md,g whose linear span
has dimension r. Since g > 0, we have Md,g(1) = ∅. Since 1 ≤ g ≤ 3 and the
embedding is by a non-special line bundle, Md,g(2) = ∅, unless (d, g) = (3, 1).

Let W be the set of all smooth heptic hypersurfaces W ⊂ P5 satisfying the
thesis of [7], i.e. containing no rational curve of degree ≤ 16 (not even singular
ones).

Let Z ⊂ Pr be any zero-dimensional scheme. For any hyperplane H ⊂ Pr

let ResH(Z) denote the residual scheme of Z with respect of H, i.e. the closed
subscheme of Pr with IZ : IH as its ideal sheaf. We have ResH(Z) ⊆ Z and
deg(Z) = deg(ResH(Z)) + deg(H ∩ Z). For every integer t we have the follow-
ing residual short exact sequence of coherent sheaves on P

r (the latter is also an
OH-sheaf), which we often call the residual exact sequence of H or of the inclu-
sion H ⊂ Pr:

0 → IResH(Z)(t − 1) → IZ(t) → IZ∩H,H(t) → 0 (1)

Remark 1. Let N ⊂ P5 be a plane and C ⊂ N be a smooth cubic. The normal bun-
dle NC of C in P5 is isomorphic to OC(3) ⊕ OC(1)

⊕3 and hence
h1(NC) = 0 and h0(NC) = 18. Hence the Hilbert scheme of P5 is smooth at
[C] and of dimension 18. We have h1(IC(t)) = 0 for all t ∈ N and hence

h0(IC(7)) = (12
5 ) − 21. Hence a general heptic hypersurface contains no plane

cubic.

By Remark 1 a general heptic hypersurface contains no element of Md,g(2).
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Remark 2. Let N ⊂ P
5 be a plane and C ⊂ N be a smooth degree 4 curve. C

has genus 3 and OC(1) ∼= ωC. The normal bundle NC of C in P5 is isomorphic to
OC(4)⊕OC(1)

⊕3 and hence h1(NC) = 3 and h0(NC) = 23. P5 has ∞9 planes and
each plane has ∞14 degree 4 curves. Hence the Hilbert scheme of P5 is smooth
at [C] and of dimension 23. We have h1(IC(t)) = 0 for all t ∈ N and hence

h0(IC(7)) = (12
5 )− 26. Hence a general heptic hypersurface contains no degree 4

plane curves.

Lemma 1. Fix integer t ≥ 2, r ≥ 3 and an integral and non-degenerate curve T ⊂
Pr such that h1(IT(t)) > 0. Fix a linear subspace V ⊆ H0(OPr(1)). Assume
that h1(M, IM∩T,M(t)) = 0 for every hyperplane M ∈ |V|. Then h1(IT(t − 1)) ≥
h1(IT(t)) + dim(V)− 1.

Proof. For any hyperplane M ⊂ Pr we have an exact sequence

0 → IT(t − 1) → IT(t) → IT∩M,M(t) → 0 (2)

Since h1(M, IT,M(t)) = 0, the map H1(IT(t − 1)) → H1(IT(t)) is surjective
and hence its dual eM : H1(IT(t))

∨ → H1(IT(t − 1))∨ is injective. Taking
the equations of all hyperplanes we get a bilinear map map u : H1(IT(t))

∨ ×
H0(O

P4(1)) → H1(IT(t− 1))∨ , which is injective with respect to the second vari-
ables, i.e. for every non-zero linear form ℓ u|H1(IT(t))∨×{ℓ} is injective (it is eM with

M := {ℓ = 0}). Hence if (a, ℓ) ∈ H1(IT(t))
∨ × H0(O

P4(1)) with a 6= 0 and ℓ 6= 0,
then u(a, ℓ) = eM(a) 6= 0. Therefore the bilinear map u is non-degenerate in
each variable. Hence h1(IT(t − 1)) ≥ h1(IT(t)) + dim(V) − 1 by the bilinear
lemma.

Lemma 2. Fix an integer a > 0 and assume d ≥ 2g − 1 + a. Fix a zero-dimensional
curvilinear scheme Z ⊂ P5 such that deg(Z) = a. Set EZ := {C ∈ Md,g : Z ⊂ C}.
Then every irreducible component of EZ has dimension ≤ 6d + 2 − 2g − 4a.

Proof. If EZ = ∅, then the lemma is true. Hence we may assume E 6= ∅. Fix
C ∈ E. By [27, Theoreme 1.5] it is sufficient to prove that h1(NC(−Z)) = 0. Since
C is smooth, NC is a quotient of TP5

|C
. By the Euler’s sequence of TP5 NC is a

quotient of OC(1)
6. Since d ≥ 2g − 1 + a, we have h1(OC(1)(−Z)) = 0.

Lemma 3. Fix integers t ≥ 1 and r ≥ 2. Let Z ⊂ P
r denote a curvilinear zero-

dimensional scheme such that c := deg(Z) ≤ 3t + r − 2, Z spans Pr and
h1(IZ(t)) > 0; if c = 3t + r − 2 assume that h1(N, IN∩Z,N(t)) = 0 for every plane
N ⊆ P

r. Then either there is a line L ⊂ P
r with deg(L ∩ Z) ≥ t + 2 or there is a conic

D ⊂ Pr with deg(D ∩ Z) ≥ 2t + 2.

Proof. The case r = 2 is true for all t by [11, Corollaire 2] (in the case c = 3t we
assumed that both h1(IZ(t)) > 0 and h1(IZ(t)) = 0). Hence we may assume
r ≥ 3 and use induction on r. The case t = 1 is true (if c ≤ r, because no Z with
deg(Z) ≤ r spans Pr, while if c = r + 1 because h1(IZ(x)) = 0 for all x ≥ 1 if
deg(Z) = r + 1 and Z spans Pr). Hence we may assume t ≥ 2 and use induction
on t in P

r.
(a) Let M ⊂ Pr be a hyperplane such that a := deg(Z ∩ M) is maximal.

First assume h1(M, IZ∩M,M(t)) > 0. Since Z spans M we have deg(Z ∩ M) ≤
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c − 1. The maximality property of M gives that Z ∩ M spans M. Hence the
inductive assumption gives that either there is a line L ⊂ M with
deg(L ∩ Z) ≥ t + 2 or there is a conic D ⊂ M with deg(D ∩ Z) ≥ 2t + 2. Hence
we may assume h1(M, IZ∩M,M(t)) = 0. The residual sequence (1) of M gives
h1(IResM(Z)(t − 1)) > 0. We have deg(ResM(Z)) = c − a. Since M ∩ Z spans M
we have a ≥ r ≥ 3. Assume for the moment a = r. The maximality property of
M implies that Z is in linearly general position in Pr. Since c ≤ rt + 1, we get
h1(IZ(t)) = 0 ([10, Theorem 3.2]). Hence c − a ≤ c − r − 1 ≤ 3t + r − 2 − r − 1 ≤
3(t − 1) + r − 3. By the inductive assumption either there is a line L ⊂ Pr with
deg(L ∩ Z) ≥ t + 1 or there is a conic D ⊂ Pr with deg(D ∩ Z) ≥ 2t. Assume the
existence of a conic D ⊂ Pr with deg(D ∩ Z) ≥ 2t. Since r − 1 ≥ 2, the maximal-
ity property of M gives a ≥ 2t + r − 3. Hence c ≥ 2t + 2t + r − 3, a contradiction.
Now assume the existence of a line L ⊂ Pr with deg(L ∩ Z) ≥ t + 1. To prove
the lemma we may assume deg(L ∩ Z) = t + 1. Let H ⊂ P

5 be a hyperplane
containing L and with b := deg(H ∩ Z) maximal among all hyperplanes con-
taining L. Since Z spans Pr, we have b ≥ t + r − 1. If h1(H, IZ∩H,H(t)) > 0,
then we conclude by the inductive assumption on r. Hence we may assume
h1(H, IZ∩H,H(t)) = 0. The residual sequence (1) of H gives h1(IResH(Z)

(t − 1)) >

0. We have deg(ResH(Z)) = c − b ≤ 2t − 1. Hence the inductive assumption
on t gives the existence of a line L ⊂ P5 with deg(L ∩ ResH(Z)) ≥ t + 1. If the
lemma fails, then deg(R ∩ ResH(Z)) = deg(R ∩ Z) = t + 1. In this case we have
c ≥ 2t + 2. Hence the lemma is proved in degree t if c ≤ 2t + 1 (but this part is
just [4, Lemma 34]).

(b) First assume R 6= L and R ∩ L 6= ∅. Since deg(R ∩ ResH(Z)) = t + 1
and H ⊃ L, we have deg((L ∪ R) ∩ Z = 2t + 2. Hence we may take D := R ∪ L.

(c) Now assume R = L. We may take Z minimal with the restriction that
h1(IZ(t)) > 0 and deg(Z ∩ L) = t + 1. Part (a) of our proof works if instead
on H we take any hyperplane U ⊃ L (since as in the first part we exclude the
existence of a conic D with deg(ResU(Z)) ≥ 2t). Let Q be a quadric hypersurface
containing L in its singular locus. Since deg(ResQ(Z)) ≤ 3t − 2t − 2 ≤ t − 2,

we have h1(IResQ(Z)
(t − 2)) = 0 (even in the case t = 2). Therefore the residual

exact sequence of Q gives h1(Q, IZ∩Q,Q(t)) > 0 and hence h1(IZ∩Q(t)) > 0. The
minimality of Z gives Z ⊂ Q. Since Z is curvilinear, taking Q = N1 + N2 with
N1, N2 hyperplanes we also get that only the connected components of Z whose
reduction are contained in L arise (for a minimal Z), hence we reduce to the case
deg(Z) = 2t+ 2. Let W ⊂ Z be any degree 2t+ 1 subscheme. Since deg(W ∩ J) ≤
deg(Z ∩ J) ≤ t+ 1 for each line J, part (a) of the proof gives h1(IW(t)) = 0. Hence
h1(M, IZ,M(t)) = 1. Since h1(N, IZ∩N,N(t)) = 0 for every hyperplane N ⊂ Pr,
Lemma 1 gives h1(IZ(t − 1)) ≥ r + h1(IZ(t)) = r + 1. Let N be any hyperplane
plane containing L. We have h1(N, IZ∩N(t − 1)) = 1, because deg(Z ∩ L) = t + 1
and deg(Z ∩ N) ≤ 2(t − 1) + 1 (use the residual exact sequence (1) of a general
hyperplane M of N containing L in N). Since deg(ResN(Z)) ≤ t + 1, we have
h1(IResN(Z)(t − 2)) ≤ 2 (part (a) applied. Hence the residual exact sequence (1) of

N gives h1(IResN(Z)(t − 1)) ≤ 2 + 1, a contradiction.

(d) Now assume R ∩ L = ∅. First assume r = 3. Let Q ⊂ P3 be a
general quadric containg L ∪ R. Since IL∪R(2) is spanned and C is curvilinear,
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Q ∩ Z = Z ∩ (R ∪ L) (as schemes). Hence h1(Q, IZ∩Q,Q(t)) = 0. The residual

exact sequence of Q gives h1(IResQ(Z)
(t − 2)) > 0. Since deg(ResQ(t)) ≤ t − 2,

part (a) or [4, Lemma 34] gives a contradiction. Now assume r ≥ 4. Since
L ∪ R spans a 3-dimensional linear space, the maximality property of M gives
b ≥ 2t + 2 + r − 4. Hence c − b ≤ t − 1 < deg(R ∩ ResH(Z)), a contradiction.

3 C non-degenerate

Le tM′
d,g be the set of all C ∈ Md,g spanning P

5. M′
d,g is smooth and irreducible

and dim(M′
d,g) = 6d+ 2− 2g. A general non-special curve C ⊂ P5 of genus g and

degree d ≥ g+ 5 has maximal rank ([3]). We have d ≤ 16 and 7 · 16+ 1− g < (12
5 ).

Hence h1(IC(7)) = 0 for a general C ∈ Md,g, i.e. h0(IC(7)) = (12
5 )− 7d − 1 + g.

A dimensional count shows that no C ∈ M′
d,g is contained in a general heptic

hypersurface. Hence in this section we only need to exclude all C ∈ M′
d,g with

h1(IC(7)) > 0. By [13, Part (ii) of Theorem at page 492 ] we have d ≥ 13.

Lemma 4. No C ∈ M′
d,g, d ≥ 11, 1 ≤ g ≤ 3, is contained in a degree 4 surface.

Proof. Fix a degree 4 surface F ⊂ P
5 containing C ∈ M′

d,g. Since C is non-

degenerate, F is non-degenerate. By the classification of minimal degree surfaces
either F is a cone over a rational normal curve of P

4 or it is an embedding of F0 by
the complete linear system |h + 2 f | or it is an embedding of F2 by the complete
linear system |h + 3 f |.

(a) Assume that F is an embedding of F0 by the complete linear system
|h + 2 f |. Since 1 ≤ g ≤ 3, either C ∈ |2h + (g + 1) f | or C ∈ |(g + 1)h + 2 f |. In the
first (second) case we get d = 5 + g ≤ 8 (resp. d = 2g + 4 ≤ 10), a contradiction.

(b) Assume that F is an embedding of F2 by the complete linear system
|h + 3 f | with C ∈ |ah + b f |. Since g > 0, we have a ≥ 2 and b ≥ 2a. We have
d = a + b. Since ωF2

∼= OF2
(−2h − 4 f ), the adjunction formula gives 2g − 2 =

a(−2(a − 2) + (b − 4)) + b(a − 2). If a ≥ 3 and hence b ≥ 6 we get b ≤ 2g − 2,
a contradiction. If a = 2 and hence b = d − 2, we get 2g − 2 = 2(d − 6), a
contradiction.

(c) Assume that F is a cone over a rational normal curve of P4. Call o its
vertex and let u : G → F be the blowing up of o. G ∼= F4 and, up to this isomor-
phism, u is induced by the complete linear system |h + 4 f |. Let C′ ⊂ F4 be the
strict transform of C. Write C′ ∈ |ah + b f |. Since C is smooth, C′ is smooth and
of genus g > 0. Hence a ≥ 2 and b ≥ 4a. We have d = b. Hence 2 ≤ a ≤ 4
with a = 4 only if d = 16. Since ωF4

∼= OF4
(−2h − 6 f ), the adjunction formula

gives 2g − 2 = a(−4(a − 2) + (b − 6)) + b(a − 2) ≥ b(a − 2). Hence a = 2 and
2g − 2 = 2(d − 6), a contradiction.

Lemma 5. Fix C ∈ M′
d,g and let H ⊂ P5 be a general hyperplane.

(a) We have h1(H, IC∩H,H(3)) ≤ max{0, d − 13}.
(b) Assume d ≥ 14. We have h1(H, IC∩H,H(3)) = d − 13 if and only if C ∩ H is

contained in a rational normal curve of H. The latter case does not occur for a curve C
contained in a general heptic hypersurface if h1(IC(7)) ≤ 3d − 18 − 6g.
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Proof. The scheme Z := C ∩ H is a set of d points in uniform position and span-
ning H. Fix S ⊆ Z with ♯(S) = min{d, 13}. Since S is in linearly general po-
sition in H = P4, we have h1(H, IS,H(3)) = 0 ([10, Theorem 3.2]). Now as-
sume d ≥ 14. If C ∩ H is contained in a rational normal curve D of H, then
h0(H, IZ,H(3)) ≤ h0(H, ID,H(3)) = (7

3)− 13 and hence h1(H, IZ,H(3)) ≥ d − 13.

By part (a) the last inequality is an equality. Now assume h1(H, IZ,H(3)) =
d − 13. First assume h0(H, IZ,H(2)) ≥ 6. Since Z is uniform position, we get
h0(H, IZ,H(2)) = 6 and that Z is contained in a rational normal curve of H ([15,
Lemma 3.9]). Now assume h0(H, IZ,H(2)) ≤ 5. Fix any A ⊂ Z with ♯(A) = 10.
Since h0(H, IZ,H(2)) ≤ 5, we have h1(H, IA,H(2)) = 0. Fix B ⊂ Z \ A with
♯(B) = 4. Since Z is in linearly general position, B spans a hyperplane N of H
and Z ∩ N = B. We have h1(N, IB,N(3)) = 0. The exact sequence

0 → IA,H(2) → IA∪B,H(3) → IB,N(3) → 0

gives h1(H, IA∪B,H(3)) = 0 and hence h1(H, IZ,H(3)) ≤ d − 14, a contradiction.
Now assume that C ∩ H is contained in a rational normal curve TH of H. Set

a := d + 1 − 2g. Fix Z ⊂ TH such that ♯(Z) = a. By Lemma 2 the set of all
C ∈ M′

d,g containing Z has codimension at least 4a in M′
d,g. Since P5 has ∞5

hyperplanes, each hyperplane has 15 rational normal curves and each rational
normal curves has ∞a subsets with cardinality a, to rule out these cases it is suffi-
cient to test all C ∈ M′

d,g with h1(IC(7)) ≥ 3a − 20.

Remark 3. Fix C ∈ M′
d,g and let H ⊂ P5 be a general hyperplane. The exact

sequence (2) with T := C and M := H gives h1(IC(t − 1)) ≥ h1(IC(t)) −
h1(H, IC∩H,H(t)). Now assume d ≤ 4t + 1. Since C ∩ H is in uniform position in
H and it spans H, it is in linearly general position. Hence h1(H, IC∩H,H(t)) = 0
([10, Theorem 3.2]).

Lemma 6. A general heptic hypersurface contains no C ∈ M′
d,g, g > 0, with either

h0(IC(2)) ≥ 5, h0(IC(3)) 6= 25 and d = 15, 16, or h0(IC(2)) ≥ 6 and 13 ≤ d ≤ 16.

Proof. Fix C ∈ M′
d,g with h0(IC(2)) ≥ 5. Let K be the set-theoretic base locus of

|IC(2)|. Since C is irreducible, we have dim(K) ≤ 3. Fix an irreducible compo-
nent A of K containing C and with maximal dimension. Note that h0(IA(2)) =
h0(IC(2)) and that A = C if and only if dim(A) = 1.

(a) Assume dim(A) ≥ 3. Since dim(K) ≤ 3, we have dim(A) = 3 and
deg(A) ≥ 3. Since h0(IC(2)) > 2, A is not the complete intersection of 2 quadrics
and hence deg(A) = 3. Since A is a minimal degree 3-fold, their classification
(linearly normal rational scrolls and cones over a rational normal curve of P3),
gives h0(IA(2)) = 3, a contradiction.

(b) Assume dim(A) = 2. Let T be the intersection of 3 general elements of
|IC(2)|. Since A is non-degenerate, we have 4 ≤ deg(A) ≤ 7 (even if T has a
3-dimensional component) by Bezout’s theorem ([12, Theorem 2.2.5]). By Lemma
4 we may assume deg(A) ≥ 5. The exact sequence

0 → IA(1) → IA(2) → IA∩H,H(2) → 0 (3)
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gives h0(IC(2)) = h0(IA(2)) ≤ h0(H, IA∩H,H(2)). The integral curve A ∩ H
spans H. Set q := pa(A ∩ H). We have q ≤ deg(A ∩ C) − 4 for all deg(A) ∈
{5, 6, 7} by an elementary case of the Castelnuovo’ s bound for the arithmetic
genus of a curve in Pr. By [13, part (ii) of Theorem at page 492] if deg(A) ≤ 6,
then h1(H, IA∩H,H(2)) = 0, except the case deg(A) = 6, A ∩ H a smooth rational
curve having a quadrisecant line. Assume for the moment deg(A) ≤ 6 and that
we are not in this exceptional case. We get h0(IA∩H,H(2)) = 14 − 2 deg(A) + q ≤
4, unless deg(A) = 5 and q = 1.

(b1) Assume deg(A) = 5 and q = 1. We may assume h0(IA(2)) = 5. So we
do need to check this case if d = 13, 14 and hence here we assume d ∈ {15, 16}.
In this case A ∩ H is linearly normal and arithmetically Cohen-Macaulay with
h0(H, IA∩H,H(3)) = 35 − 15 = 20. Since h0(IA(2)) = h0(H, IA∩H,H(2)), then A
is linearly normal by (3). By (3) we get that A is arithmetically Cohen-Macaulay
and in particular h1(IA(2)) = 0. From (3) we get h0(IA(3)) = h0(IA(2)) +
h0(H, IA∩H,H(3)) = 25. Since C ⊂ A, we get h0(IC(3)) ≥ 25. By assumption
h0(IC(2)) 6= 25 and so h0(IC(3)) ≥ 26. Therefore there is a cubic hypersurface
T ⊂ P5 with C ⊂ T and A * T, so that C is contained in the locally Cohen-
Macaulay curve A ∩ T. Since deg(A ∩ T) = 15, we get d 6= 16 and C = A ∩ T.
Since ωA∩T

∼= OA∩T(2), we get g > 3, a contradiction.
(b2) Now assume deg(A) = 6 and that D := A ∩ H is a smooth ratio-

nal curve spanning H and with a line L ⊂ H with deg(L ∩ D) = 4. We have
L ⊂ K, pa(L ∪ D) = 3 and L ∪ D is a linearly normal curve of H = P4. Let
N ⊂ H be a general hyperplane. Since hi(H, ID∪L(1)) = 0, i = 0, 1, a stan-
dard exact sequence gives h0(H, ID∪L(2)) = h0(N, IN∩(D∪L),N(1)) and hence

h0(H, ID,H(2)) = h0(H, ID∪L,H(2)) ≤ h0(N, IN∩D,N(2)). Since N ∩ D is in uni-
form position in N and it spans N, we get h1(N, IN∩D,N(2)) = 0 and hence
h0(N, ID∩N,N(2)) = 4. Hence h0(IC(2)) ≤ 4, a contradiction.

(b3) Now assume deg(A) = 7. By Bezout’s theorem ([12, Theorem 2.2.5])
we have T ∩ H = (A ∩ H)∪ LH with LH a linear space of dimension ≥ 1. If LH is
a line, then the complete intersection T ∩ H links A∩ H to a line and hence A ∩ H
is arithmetically Cohen-Macaulay. We get h0(IC(2)) = h0(IC∩H(2)) = 1 + q ≤ 4.
Now assume dim(LH) > 1. Since T is a general intersection of 3 elements of
|IC(2)| and H is general, we first get that K has a 3-dimensional component, B,
which is a linear space, then we get T = A∪ B and then we get A∪ B = K. Hence
h0(IC(2)) = 3, a contradiction.

(c) Assume dim(A) = 1, i.e. A = C, and d = 15, 16. Let T be the intersec-
tion of 3 general elements of |IC(2)|. Let B be an irreducible component of Tred

containing C. Since we may apply steps (a) and (b) to every irreducible compo-
nent of K containing C, we have B * K and hence there is a quadric containing
C, but not containing B. By Bezout we have deg(B) ≤ 8 with equality if and only
if dim(T) = 2 and B = T. Intersecting B with a general element of |IC(2)| we
get a locally Cohen-Macaulay scheme E of pure dimension 1 with deg(E) ≤ 16
and E ⊇ C. We exclude the case d = 16, because C has not the genus, 17, of
an intersection of 4 quadrics. Now assume d = 15. Since B = T, T has dimen-
sion 2 and hence it is a complete intersection. Hence the complete intersection E
links C to a line. Therefore C is arithmetically Cohen-Macaulay and in particular
h1(IC(2)) = 0, contradicting the inequality 2d + 1 − g > 21.



Heptic hypersurface 447

(d) Assume d = 13, 14. Take K, A as in the previous steps. Fix a gen-
eral hyperplane H ⊂ P5. Since C is non-degenerate, we have h0(IC(1)) = 0.
By (3) with C instead of A we have h0(IC(2)) ≤ h0(H, IC∩H,H(2)). Assume
h0(H, IC∩H,H(2)) ≥ 6. By [15, Lemma 3.9] C ∩ H is contained in a rational normal
curve D ⊂ H. Since d > 8, we have D ⊂ K. By step (a) we get the existence of
A ⊆ K with C ⊂ A and A a degree 4 surface, contradicting Lemma 4.

Lemma 7. Fix integers d, g such that 6 ≤ g + 5 ≤ d ≤ 15. Let Γ be the set of all
C ∈ M′

d,g contained in the smooth locus a quadric. For any v ∈ {0, 1, 2} and integer

x > 0 let Γv,x be the set of all C ∈ M′
d,g contained in a quadric with singular locus V

of dimension v and x = deg(V ∩ C). Then dim(Γ) ≤ 4d + 21 + g, Γ0,x = ∅ for all
x ≥ 2, dim(Γ0,1) ≤ 4d + 22 + g, dim(Γ1,x) ≤ 4d + g + x + 18, and dim(Γ2,x) ≤
4d + 14 + g.

Proof. Fix C ∈ M′
d,g with h0(IC(2)) > 0 and let Q ⊂ P5 be any quadric containing

C. Since C is non-degenerate, Q is irreducible. The Hilbert scheme Hilb(Q) of Q
has H0(NC,Q) as its tangent space at [C]. Let V be the singular locus of Q. Let τ
be the tangent sheaf of Q. Since the algebraic group Aut(Q) acts transitively on
Q \ V and H0(τ) is the tangent space to Aut(Q) at the identity, H0(τ) spans τ at
each point of Q \ V.

(i) First assume that either Q is smooth or C ∩ V = ∅. Since dim |OP5(2)| =
20, to handle these curves C it is sufficient to prove that the set of all C ∈ Md,g

contained in Q and with V ∩ Q = ∅ has dimension ≤ 4d + 1 + g. Since C ∩ V =
∅, the normal sheaf NC,Q is a rank 3 vector bundle on C with degree 4d + 2g − 2.

Since NC,Q is a quotient of τ|C, it is spanned. Take 2 general sections of H0(NC,Q).

These sections induces a rank 2 subsheaf G ′ of NC,Q isomorphic to O⊕2
C . Let G be

the saturation of G ′ in NC,Q, i.e. the only rank 2 subsheaf of NC,Q containing G ′

and with NC,Q/G a line bundle. Since h1(G ′) = 2g, we have h1(G) ≤ 2g. First

assume deg(G) ≤ 3d − 1, i.e. deg(NC,Q/G) > 2g − 2. We get h1(NC,Q/G) =

0 and so h1(NC,Q) ≤ 2g. Riemann Roch gives h0(NC,Q) ≤ 4d + g + 1. Now
assume deg(G) ≥ 3d. Let G1 be the saturation of a general section of G. So G
is the extension of two line bundles, G/G1 and G1, with deg(G/G1) + deg(G1) =
3d ≥ 2(2g − 1) and both with a non-zero section. We get that at least one of the
line bundles G/G1 and G1 is non-special and the other one, L, has h1(L) ≤ g.
Hence h1(G) ≤ g. Since the line bundle NC,Q/G has a non-zero section, we have

h1(NC,Q/G) ≤ g and hence h1(NC,Q) ≤ 2g even in this case.
(ii) Now assume that C ∩ V 6= ∅. The set of all quadrics of rank 5 (resp.

4, resp. 3) has dimension 19 (resp. 17, resp. 14). Since C is not a plane curve

and dim(V) ≤ 2, the scheme C ∩ V is finite. Let u : Q̃ → Q be the blowing

up of V, E := u−1(V) the exceptional divisor, and C̃ ⊂ Q̃ the strict transform

of C. Since C is smooth, u maps isomorphically C̃ onto C. Let Ψv,x be closure

in Hilb(Q̃) of the strict transforms of all C ⊂ Q with deg(C ∩ V) = x. Take a

general D ∈ Ψv,x. Since Aut(Q̃) acts transitively of Q̃ \ E, step (a) of the proof
gives h1(ND,Q̃) ≤ 2g. Hence it is sufficient to give a winning upper bound for

deg(ND,Q̃), i.e. a winning lower bound for deg(ωQ̃ |C̃
). The group Pic(Q̃) is freely

generated by E and the pull-back H of OQ(1). We have D · H = d and D · E = x.
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We claim that ωQ̃
∼= OQ̃(−3H + cE) with c = −2 + v. First assume v > 0. Let

M ⊂ Q be a general hyperplane. M ∩ Q is a 3-dimensional quadric with vertex
of dimension v − 1. We apply [18], Example 8.5 (2), if v = 1 and [18], Example 8.5
(3) if v = 2. Now assume v = 0. To apply the previous formulas we need to take
a hyperplane M ⊃ V whose pull-back has E as a component.

Lemma 8. A general heptic hypersurface contains no C ∈ M′
d,g, 13 ≤ d ≤ 16,

1 ≤ g ≤ 3, with no line R ⊂ P5 with deg(R ∩ C) ≥ 7 and no conic D ⊂ P5

with deg(C ∩ D) ≥ 12.

Proof. Recall that h0(OP5(2)) = 21 and that we are assuming h1(IC(7)) > 0. By
the cases r = 4, c ≤ 3t+ 1 and t = 5, 6, 7 of Lemma 3 we have h1(M, IC∩M,M(t)) =
0 for all hyperplanes M ⊂ P

5. Lemma 1 gives h1(IC(4)) ≥ h1(IC(5)) + 5 ≥
h1(IC(6)) + 10 ≥ h1(IC(7)) + 15. Fix a general hyperplane H ⊂ P5. Lemma 5
and Remark 3 give h1(IC(3)) ≥ h1(IC(4)) and that either h1(IC(2)) ≥
h1(IC(3)) − max{0, d − 14} or d ≥ 14, h1(IC(2)) ≥ h1(IC(3)) + 13 − d and
h1(IC(7)) ≥ 3d − 18 − g. First assume d ≥ 14, h1(IC(2)) ≥ h1(IC(3)) + 13 − d
and h1(IC(7)) ≥ 3d − 18 − g. We first get h1(IC(3)) ≥ h1(IC(4)) ≥ 3d − 3 − g
and then h1(IC(2)) ≥ 2d + 10 − g, i.e. h0(IC(2)) ≥ 31, contradicting Lemma 6.

Now assume h1(IC(2)) ≥ h1(IC(3))−max{0, d− 14} and hence h1(IC(2)) ≥
16 − max{0, d − 14}, i.e. h0(IC(2)) ≥ 36 + g − 2d − max{0, d − 14}. We get
h0(IC(2)) ≥ 21 + 16 − 1 − 26 + g = 11 + g ≥ 7 if d = 13 and h0(IC(2)) ≥
21 + 16 − d + 14 − 2d − 1 + g = 50 − 3d + g if 14 ≤ d ≤ 16. If either 13 ≤ d ≤ 15
or d = 16 and g = 3 we use Lemma 6, except that if d = 16 and g = 3 we also need
to exclude that h0(IC(3)) = 25. Assume d = 16 and g = 3. Since h1(IC(3)) ≥ 16

and (8
3) = 56, we have h0(IC(3)) ≥ 56 + 16 − 1 − 48 + 3 = 26.

Now assume d = 16 and g = 1, 2. We proved that h0(IC(2)) ≥ 2+ g. To repeat
the same proof it would be sufficient to have h1(IC(7)) ≥ 4. If C is contained
in the smooth locus of at least one quadric, then by Lemma 7 we may assume
h1(IC(7)) ≥ 6d + 2 − 2g − (4d − 21 + g) = 2d − 19 − 3g ≥ 17. Now assume that
a general quadric hypersurface containing C has singular locus V of dimension v
and with x := deg(C ∩ V) > 0. Since x ≤ 6 if v = 1, it is sufficient to use Lemma
7.

Notation 1. For each integer a > 0 let A′
a denote the set of all C ∈ M′

d,g such that

there is a line L ⊂ P
5 with deg(L ∩ C) = a and A′′

a := ∪b≥aA
′
a. For each integer

a > 0 let B′
a denote the set of all C ∈ M′

d,g such that there is a conic D ⊂ P5 with

deg(L ∩ D) = a and B′′
a := ∪b≥aB

′
a.

Lemma 9. A general W ∈ W contains no C ∈ M′
d,g, 13 ≤ d ≤ 16, 1 ≤ g ≤ 3, with

A′′
7 6= ∅.

Proof. (a) In this step we prove that W contains no element of A′′
9 . Fix C ∈ A′′

9
and take a line L ⊂ P5 such that deg(L ∩ C) ≥ 9. Set b := 8 if (d, g) = (13, 3)
and b := 9 if (d, g) 6= (13, 3). Fix Z ⊆ C ∩ L such that deg(Z) = 9. Set EZ :=
{A ∈ Md,g : A ⊃ Z}. Lemma 2 gives that dim(EZ) ≤ 6d + 2 − 2g − 4b. Since

L has ∞b degree b subschemes and P5 has ∞8 lines, to prove that no element
of A′′

9 is contained in W it is sufficient to test the ones, C, with the additional
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condition that either h1(IC(7)) ≥ 19 (case (d, g) 6= (13, 3)) or h1(IC(7)) ≥ 16
(case (d, g) = (13, 3)). By the cases t = 3, 4, 5, 6, 7 of Remark 3 we get h1(IC(3)) ≥
h1(IC(7)). Therefore h1(IC(2)) ≥ 17 if (d, g) 6= (13, 3) and h1(IC(2)) ≥ 16 if
(d, g) = (13, 3) (Lemma 5). We get h0(IC(2)) ≥ 37+ g − 2d ≥ 6 if (d, g) 6= (13, 3)
and h0(IC(3)) ≥ 13 if (d, g) = (13, 3). Apply Lemma 6.

(b) In this step we prove that a general heptic contains no element of A′
8.

By part (a) it is sufficient to exclude all elements of A′
8 \ A

′′
9 . By Lemma 2 it is

sufficient to exclude all C ∈ A′
8 \ A

′′
9 with h1(IC(7)) ≥ 16. Fix any such C. By

Lemma 1 and the case r = 4, t = 7 and c = d ≤ 3t + 1 of Lemma 3 we have
h1(IC(6)) ≥ 21. By the cases t = 3, 4, 5, 6 of Remark 3 we get h1(IC(3)) ≥ 21.
Lemma 3 gives h1(IC(2)) ≥ 19 and hence h0(IC(2)) ≥ 39 − 2d + g ≥ 8. Use
Lemma 6.

(c) Fix C ∈ A′
7 \ A

′′
9 . By Lemma 2 it is sufficient to exclude the curves C

with h1(IC(7)) ≥ 13. Since C /∈ A′′
9 , we have h1(IC(6)) ≥ 18 (Lemma 1). The

case t = 4, 5, 6 of Remark 3 gives h1(IC(3)) ≥ 18. Lemma 5 gives h1(IC(2)) ≥ 16
and hence h0(IC(2)) ≥ 36 + g − 2d. Apply Lemma 6, except that if d = 16 and
g = 1 we also need to prove that h0(IC(3)) 6= 25. Since h1(IC(3)) ≥ 18, we have
h0(IC(3)) ≥ 56 + 18 − 48 = 26.

Lemma 10. A general W ∈ W contains no C ∈ M′
d,g such that either there is a conic

D ⊂ P5 with deg(D ∩ C) ≥ 12 or there is a line L ⊂ P5 with deg(L ∩ C) ≥ 6.

Proof. By Lemma 9 it is sufficient to exclude all C ∈ B′
12 \A

′′
7 and all C ∈ A′

6 \A
′′
7 .

(a) We first exclude all C ∈ B′′
14 \ A7. In this case we have d = 16 and

C ∈ B′
14. Take a conic D ⊂ P5 such that deg(D ∩ C) = 14. Since C /∈ A′′

7 , D is
a smooth conic. Set x(1) := 14, x(2) := 13 and x(3) := 11. Fix any Z ⊂ D such
that deg(Z) = x(g). Since x(g) + 2g − 1 ≤ 16, the set EZ of all non-degenerate
A ∈ M16,g with Z ⊂ A has dimension 6d + 2 − 2g − 4x(g) (Lemma 2). Since D

is a smooth curve, it has ∞x(g) degree x(g) subschemes. P5 has ∞9 planes and
each plane has ∞5 conics. Hence it is sufficient to exclude all non-degenerate
C ∈ B′

14 \A7 with h1(IC(7)) ≥ 3x(g)− 14. By Lemma 1 and the case r = 4, t = 7,
c = d ≤ 3t + 1 of Lemma 3 (note that deg(C ∩ D′) < 16 for each conic D′ and
that A′′

9 = ∅) we have h1(IC(6)) ≥ 3x(g) − 9 ≥ 22. Then we continue as in the
last two lines of step (a) of the proof of Lemma 9.

(b) Now we exclude all C ∈ A′
6 \A

′′
7 . Since 13 ≥ 6+ 2g − 1, by Lemma 2 we

may assume h1(IC(7)) ≥ 10. By step (a) we may assume that C /∈ B′′
12. Lemma

1 and the cases t = 6, 7, r = 4, of Lemma 3 give h1(IC(5)) ≥ 5 + h1(IC(6)) ≥
10 + h1(IC(7)) ≥ 20. Then we continue as in the proof of Lemma 9.

(c) Now we exclude all C ∈ B′
12 ∪ B′

13 \ A7. By step (b) we may assume
C /∈ A′

6. Take a conic D such that deg(D ∩ C) ∈ {12, 13}. Note that if B′′
12 6= ∅,

then d 6= 13. Since C /∈ A′′
6 , the conic D is smooth. Set yd,g := min{12, d+ 1− 2g}.

Fix any zero-dimensional scheme Z ⊂ D with deg(Z) = yd,g. By Lemma 2 the
set of all non-degenerate C containing Z has dimension ≤ 6d + 2 − 2g − 4yd,g.

Every smooth conic has ∞yd,g zero-dimensional schemes of degree yd,g. P5 has

∞9 planes and each plane has ∞5 conics. Hence it is sufficient to check the curves
C with the additional condition h1(IC(7)) ≥ 3yd,g − 14. Since 13 ≤ d ≤ 16 and
g ≤ 3, we have yd,g ≥ 8 and so 3yd,g − 14 ≥ 10. We conclude as in step (b).
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By Lemmas 8 and 10 we proved the part of Theorem 1 concerning non-degene-
rate C ∈ Md,g.

4 Curves spanning a hyperplane

In this section we consider curves C ∈ Md,g spanning a hyperplane. For any

hyperplane M ⊂ P5 let M′
d,g(M) be the set of all curves C ∈ Md,g spanning M.

M′
d,g(M) is a smooth and irreducible variety of dimension 5d + 1 − g. A general

element of M′
d,g(M) has maximal rank ([1]). Since (11

4 ) > 7d + 1 − g, we have

h1(M, IC,M(7)) = 0 for a general C ∈ M′
d,g(M). Since P5 has ∞5 hyperplanes to

prove that a general W ∈ W contains no curve in Md,g spanning a hyperplane it

is sufficient to fix a hyperplane M ⊂ P5 and exclude all C ∈ M′
d,g(M) such that

h1(M, IC,M(7)) ≥ d − 4 − g.
Since g > 0, by [13, part (ii) of Theorem on page 492] we have h1(M, IC,M(7)) =

0 if d ≤ 11. Hence in this section we assume 12 ≤ d ≤ 16 and we fix the hyper-
plane M ⊂ P5.

Remark 4. For any C ∈ M′
d,g(M) let α(C) (or just α) denote the minimal integer

t such that h0(M, IC,M(t)) > 0. Since C spans M, we have α ≥ 2. Since d ≤ 16,

we have 4d + 1 − g < 70 = (8
4) and so α ≤ 4. Since (6

2) = 15 and (7
3) = 35, we

have α = 2 if and only if h1(M, IC,M(2)) ≥ 2d − g − 13 and α ≤ 3 if and only if
h1(M, IC,M(3)) ≥ 3d − g − 33.

Lemma 11. Fix C ∈ M′
d,g(M), d ≤ 16, g > 0. There is no plane N ⊂ M with

deg(N ∩ C) ≥ 15.

Proof. Assume the existence of a plane N ⊂ M such that deg(N ∩ C) ≥ 15. Fix
a hyperplane H ⊂ M with H ⊃ N. Since the scheme C ∩ H spans H, we get
d = 16 and deg(C ∩ N) = 15. Since C is smooth, for a general H ⊃ N, H contains
a tangent line of C if and only if this tangent line is contained in N. Hence for a
general H we have C ∩ H = (C ∩ N) ∪ {pH} with pH ∈ C \ C ∩ N. The pencil of
all hyperplanes H ⊃ N shows that C is rational, a contradiction.

Lemma 12. A general W ∈ W contains no C ∈ Md,g such that C ∈ M′
d,g(M) for some

hyperplane M and C is contained in a degree 3 surface A of M.

Proof. Since C spans M, then A spans M. The classification of minimal degree
surfaces gives that either A is the Hirzebruch surface F1 embedded by the com-
plete linear system |OF1

(h + 2 f )| or it is a cone over a rational normal curve of
P3.

(a) Assume that A is the Hirzebruch surface F1 embedded by the complete
linear system |OF1

(h + 2 f )| and take a, b such that C ∈ |OF1
(ah + b f )|. Since C

has genus g > 0, we have b ≥ a ≥ 2. We have d = (ah + b f ) · (h + 2 f ) = a + b.
Since ωF1

∼= OF1
(−2h − 3 f ), the adjunction formula gives 2g − 2 = (ah + b f ) ·

((a − 2)h + (b − 3) f ) = (b − a)(a − 2) + a(b − 3). If a = 2 and hence
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b = d − 2 ≥ 10, we get 2g − 2 ≥ 7, a contradiction. If a ≥ 3, we have 2g − 2 > 4,
a contradiction.

(b) Assume that A is a cone with vertex o over a rational normal curve of
P3. Let u : F3 → A be a minimal desingularization of A. F3 is the Hirzebruch
surface with the same name with h = u−1(o) and u induced by the complete
linear system |OF3

(h + 3 f )|. Let C′ ⊂ F3 be the strict transform of C. Take
a, b such that C ∈ |OF3

(ah + b f )| with b ≥ 3a. We have d = b. We have
ωF3

∼= OF3
(−2h − 5 f )| Since C is smooth, u induces an isomorphism of C′ onto

C. The adjunction formula gives 2g − 2 = (ah + b f ) · ((a − 2)h + (d − 5) f ) =
(a − 2)(d − 3a) + a(d − 5). Since g > 0, we have a ≥ 2 and hence 2 ≤ a ≤ ⌊d/3⌋.
In all cases we get 2g − 2 > 4, a contradiction.

Lemma 13. Fix C ∈ M′
d,g(M) and let H ⊂ M be a general hyperplane. Fix an integer

t ≥ 1.
(a) If 3t + 1 ≥ d, then h1(H, IC∩H,H(t)) = 0.
(b) Assume d ≥ 3t + 2. Then h1(IC∩H,H(t)) ≤ d − 3t − 1 and equality holds

only if C ∩ H is contained in a rational normal curve of H.
(c) If C is contained in a general heptic hypersurface and C ∩ H is contained in a

rational normal curve of M, then h1(IC(7)) ≥ 3d − 23 (case g = 1) or h1(IC(7)) ≥
3d − 16 − 6g (case g = 2, 3).

Proof. The scheme C∩ H is a set of d points of H spanning H = P3 and in uniform
position. Part (a) follows from [10, Theorem 3.2] and part (b) is proved as in
Lemma 8.

Now we prove part (c). Let T ⊂ H be a rational normal curve of H containing
C ∩ H.

(i) First assume g = 1 and set Z := C ∩ H. Since T has ∞d subsets of
cardinality d, P5 has ∞8 3-dimensional linear spaces, each 3-dimensional H ⊂ P5

is contained in ∞1 hyperplanes of P
5 and each 3-dimensional linear space has ∞12

rational normal curves we get part (c) for g = 1 if we prove that h1(NC,M(−Z)) =
0, i.e. h1(NC,M(−1)) = 0. Since C is a curve, h2(F ) = 0 for all coherent sheaves
F on C. Hence it is sufficient to prove that h1(C, TM|C(−1)) = 0. Assume

h1(C, TM|C(−1)) > 0. By duality there is a non-zero map TM|C → OC(1). Fix
homogeneous coordinates z0, z1, z2, z3, z4 of M. The Euler’ s sequence gives a non-
zero map OC(1)

⊕5 → OC(1), i.e. (a0, a1, a2, a5) ∈ C5 \ {0}. Hence C is contained
in the hyperplane {∑i aizi = 0}, a contradiction.

(ii) Now assume g ≥ 2. Set b := d + 2 − 2g and take Z ⊂ C ∩ H with
deg(Z) = b. Since T has ∞b subsets of cardinality b, P5 has ∞8 3-dimensional
linear spaces, each 3-dimensional H ⊂ P5 is contained in ∞1 hyperplanes of P5

and each 3-dimensional linear space has ∞12 rational normal curves, we get part
(c) for g = 2, 3 if we prove that h1(NC,M(−Z)) = 0. Assume h1(NC,M(−Z)) >
0. Since NC,M is a quotient of OC(1)

⊕5, we get h1(OC(1)(−Z)) > 0. Since
deg(OC(1)(−Z)) = 2g − 2, we get OC(1)(−Z) ∼= ωZ. Since b < d, there is
Z′ ⊂ C ∩ H with ♯(Z ∩ Z′) = b − 1. Set {p} := Z \ Z ∩ Z′. By monodromy the
value of h1(OC(1)(−A)) is the same for all A ⊂ C ∩ H with cardinality b. Hence
OC(1)(−Z′) ∼= OC(1)(−Z), i.e. p and q are linearly equivalent, contradicting the
assumption g > 0.
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Lemma 14. A general W ∈ W contains no C ∈ Md,g such that C ∈ M′
d,g(M) for some

hyperplane M and h0(M, IC,M(2)) ≥ 3.

Proof. Fix C ∈ M′
d,g(M) such that h0(M, IC,M(2)) ≥ 3. Let K ⊂ M be the set-

theoretic base locus of |IC,M(2)|. Since C spans M, every quadric hypersurface of
M containing C is irreducible. Hence dim(K) ≤ 2. Let A ⊆ K be any irreducible
component of K containing C. First assume dim(A) = 2. Since C spans M, then
A spans M and hence deg(A) ≥ 3. Fix 2 general Q1, Q2 elements of |IC,M(2)|.
Since h0(M, IQ1∩Q2

(2)) = 2 < h0(M, IC,M(2)) = h0(M, IA,M(2)), Bezout gives
A ( Q1 ∩ Q2 and hence deg(A) = 3. Use Lemma 12. Now assume dim(A) = 1,
i.e. A = C. Fix general Q1, Q2, Q3 and set T := Q1 ∩ Q2 ∩ Q3. Since d > 8,
and C is an irreducible component of T, the contradiction comes from Bezout
([12, Theorem 2.2.5]).

Lemma 15. Fix C ∈ M′
d,g(M) and let H ⊂ M be a general hyperplane. Set Z := C∩ H.

(i) If h0(H, IZ,H(2)) = 0, then we have h1(H, IZ,H(3)) ≤ max{0, d − 13} and
h1(H, IZ,H(4)) = 0.

(ii) If h0(H, IZ,H(2)) = 1, then we have h1(H, IZ,H(3)) ≤ max{0, d − 12},
h1(H, IZ,H(3)) ≤ 2 if d ∈ {15, 16} and h1(H, IZ,H(4)) = 0.

(iii) If h0(H, IZ,H(2)) = 2, then h1(H, IZ,H(3)) ≤ d− 11, h1(H, IZ,H(3)) ≤ d− 12
for all d ≥ 13, h1(H, IZ,H(4)) ≤ max{0, d − 15} and Z is contained in a com-
plete intersection T ⊂ H of 2 quadrics; if d = 16 and h1(H, IZ,H(4)) > 0, then C
is not contained in a general heptic hypersurface; if d = 12 and h1(H, IZ,H(3)) >
0, then h0(M, IC,M(2)) > 0.

(iv) To rule out from a general heptic hypersurface all C ∈ Md,g such that there is

a hyperplane M ⊂ P5 with C ∈ M′
d,g(M) and h0(H, IC∩H,H(2)) = 2 for a

general hyperplane H of M it is sufficient to rule out all C ∈ M′
d,g(M) with

h1(M, IC,M(7)) ≥ 3d − 6g − 21.

Proof. The set Z is in uniform position in H and it spans H. First assume
h0(H, IZ,H(2)) = 0. Fix any S ⊂ C ∩ H with ♯(S) = 9. S is contained in
a unique quadric surface QS and QS ∩ C ∩ H = S. Fix p ∈ C ∩ H and any
S′ ⊂ Z \ (S ∪ {p}) with ♯(S′) ≤ 3. Since Z is in uniform position, there is a plane
N ⊂ H with N ∩ Z = S′. The cubic QS ∪ N shows that h1(H, IS∪S′∪{p}(3)) =

h1(H, IS∪S′(3)). Hence h1(H, IZ,H(3)) ≤ max{0, d − 13}. Since d − 10 ≤ 9, we
have h0(H, IZ\(S∪{p})(2)) > 0. Take a general Q′ ∈ |IZ\(S∪{p}),H(2)|. Since Z is

in uniform position and ♯(Z \ (S ∪ {p})) ≤ 8, we have Q′ ∩ Z = Z \ (S ∪ {p}).
Hence (Q ∪ Q′) ∩ Z = Z \ {p}. Hence h1(H, IZ\{p},H(4)) = h1(H, IZ,H(4)). Tak-

ing smaller subsets of Z \ (S ∪ {p}) we get in finitely steps that h1(H, IZ,H(4)) =
0.

Now assume h0(H, IZ,H(2)) = 1. Take S1 ⊂ Z with ♯(S1) = 8 and let
Q1 ⊂ H be a general element of |IS1,H(2)|. Since Z is in uniform position, we have

h1(H, IS1,H(2)) = 0 and Q1 ∩ Z = S1. Taking planes we get h1(H, IZ,H(3)) ≤
max{0, d − 12}. Since d ≤ 17, any S2 ⊂ Z \ S1 with ♯(S2) ≤ 8 has
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h1(H, IS2,H(2)) = 0 and Q2 ∩ Z = S2 for a general Q2 ∈ |IS2,H(2)|, we get

h1(H, IZ,H(4)) = 0. Now assume d ∈ {15, 16}. Let Q ⊂ H be the quadric
surface containing Z. Since Z is in uniform position, Q is irreducible. Since
h0(Q,OQ(3)) = 16, it is sufficient to prove that h0(Q, IZ,Q(2)) ≤ 18 − d. In par-

ticular we may assume h0(Q, IZ,Q(3)) > 0. Fix a general D ∈ |IZ,Q(3)|. Since Z
is in uniform position in Q (or by monodromy), D is an integral curve and hence
it is a canonically embedded integral curve, which is the complete intersection
of Q and a cubic surface. Riemann-Roch gives h0(D,OD(3)) = 15. Since D is
arithmetically Cohen-Macaulay, to prove that h1(H, IZ,H(3)) ≤ 2 it is sufficient
to prove that h1(D, IZ,D(3)) ≤ 2. Take any zero-dimensional scheme Z′ ⊂ D such
that deg(Z′) = 16 and Z′ ⊇ Z. It is sufficient to prove that h1(D, IZ′,D(3)) ≤ 2.
This is true (by duality), because the very ampleness of ωD

∼= OD(1) implies
h0(D,L) ≤ 1 for every rank 1 torsion free sheaf L on D with deg(L) = 2.

Now assume h0(IZ,H(2)) = 2. Since Z is in uniform position, for all
S3 ⊂ Z with ♯(S3) ≤ 7 we have h1(IS3,H(2)) = 0 and Q3 ∩ Z = S3 for a general

Q ∈ |IS3,H(2)|. As above we get h1(H, IZ,H(4)) ≤ max{0, d − 15} and

h1(H, IZ,H(3)) ≤ d − 11. Let T be the intersection of all elements of |IZ,H(2)|.
Since Z is in uniform position, all elements of |IZ,H(2)| are irreducible. Hence
dim(T) = 1. Assume for the moment that T is either not reduced or reducible.
Since Z is in uniform position and it is a set, there is an irreducible curve T1 ⊂ T
with deg(T1) ≤ 3 and Z ⊂ T1. Since h0(H, IT1,H(2)) ≥ 3 and Z ⊂ T1 we get a
contradiction. Hence T is an integral degree 4 curve with pa(T) = 1. By mon-
odromy for a general H we have Z ⊂ Treg. Set b := d + 1 − 2g. Since Treg has

∞b subsets with cardinality b, P5 has ∞8 3-dimensional linear spaces and each
H ∈ G(3, 5) has ∞16 complete intersections of 2 quadrics, to rule out all C ∈ Md,g

for which there is M and H with C ∈ M′
d,g(M) and C ∩ H contained in an integral

degree 4 complete intersection, it is sufficient to rule out all C ∈ M′
d,g(M) with

h1(M, IC,M(7)) ≥ 3d − 6g − 21. If h0(M, IC,M(2)) = 0, then C is arithmetically
Gorenstein ([17]) and hence h1(M, IC,M(7)) = 0, a contradiction. Since pa(T) = 1
and h1(H, IT,H(3)) = 0, we have h1(H, IA,H(3)) = 0 for every zero-dimensional
scheme A ⊂ T with either deg(A) ≤ 11 or deg(A) = 12 and A /∈ |OT(3)|. Hence
h1(H, IZ,H(3)) = 0 if d ≤ 11. Assume d = 12 and h1(H, IZ,H(3)) > 0. We get
Z ∈ OT(3)| and we conclude quoting [17]. Assume d ≥ 13. Take A1, A2 ⊂ C ∩ H
such that ♯(A1) = ♯(A2) = 12 and ♯(A1 ∩ A2) = 11. Set {p} := A1 \ A1 ∩ A2 and
{q} = A2 \ A1. By monodromy we have h1(H, IA1,H(3)) = h1(H, IA2,H(3)), i.e.

h1(T, IA1,T(3)) = h1(T, IA2,T(3)). Assume h1(T, IAi,T(3)) > 0, i.e. Ai ∈ |OT(3)|.
We get that p and q are linear equivalent, contradicting the inequality pa(T) > 0.

Now assume d = 16 and h1(H, IC∩H,T(4)) > 0. Since ωT
∼= OT, we have

C ∩ H ∈ |OT(4)|, i.e. (since h1(H, IT(4)) = 0) C ∩ H is the complete intersection
of a quartic and 2 quadrics. By [33, Theorem 0.1] we have d ≡ 2 (mod 3) and
that C ∩ H is contained in rational normal curve; both statements are false.

Lemma 16. Fix C ∈ M′
d,g(M), d ≥ 13, such that α(C) = 3 and h0(M, IC,M(3)) ≥ 2.

Let H ⊂ M be a general hyperplane. Then

(a) C ∩ H is not contained in a curve of degree ≤ 3 or degree 4 and arithmetic
genus 1.



454 E. Ballico

(b) h1(H, IC∩H,H(4)) = 0, h1(H, IZ,H(3)) ≤ max{0, d − 12},
h1(H, IZ,H(3)) ≤ 2 if d = 15 and h1(H, IZ,H(3)) ≤ 3 if d = 16.

Proof. Let K ⊂ M be the set-theoretic base locus of |IC,M(3)|. Since α(C) = 3 and
h0(M, IC,M(3)) ≥ 2, we have dim(K) ≤ 2. Assume that for a general H ⊂ M, the
set C ∩ H is contained in a curve TH with c := deg(TH) ≤ 4 and c minimal. Since
H is general, C ∩ H is a set of d points of H spanning H and in uniform position.
Since d > c, monodromy and the minimality of c gives that TH is irreducible.
Since d > 12, Bezout’s theorem gives TH ⊂ K ∩ H. Hence there is an irreducible
component A of K with dim(A) = 2 and TH ⊂ A∩ H for a general hyperplane H.
For a general H, A ∩ H is irreducible. Since TH ⊆ A ∩ H, we get TH = A ∩ H and
hence deg(A) = c. Lemma 12 gives c = 4. Assume pa(TH) = 1, i.e. assume that
TH is the complete intersection of 2 quadrics. Since hi(H, ITH

(1)) = 0, i = 0, 1,
and A ∩ H = TH, the exact sequence (3) gives that A is a complete intersection
of 2 quadric hypersurfaces of M. Since C ⊂ A, we get α(C) = 2, a contradiction.
Now we prove part (b). By part (a) we have h0(H, IC∩H,H(2)) ≤ 1. Use parts (i)
and (ii) of Lemma 17.

Lemma 17. Let Γ be the set of all C ∈ Md,g such that there is a hyperplane M ⊂ P5

with C ∈ M′
d,g(M) and h0(M, IC,M(2)) > 0. Then dim(Γ) ≤ 3d + 19 + g.

Proof. Since P5 has ∞5 hyperplanes, it is sufficient to prove that for each hyper-
plane M the set Ψ of all C ∈ M′

d,g(M) and h0(M, IC,M(2)) > 0 has dimension

≤ 3d + 14 + g. Fix C ∈ Ψ and let Q ⊂ M be any quadric containing C. Since C
spans M, Q is irreducible. The Hilbert scheme Hilb(Q) of Q has H0(NC,Q) as its
tangent space at C. Let τ be the tangent sheaf of Q.

(a) First assume that either Q is smooth or C does not intersect the singular
locus V of C. Since dim |OM(2)| = 14, to handle this case it is sufficient to prove
that h0(NC,Q) ≤ 3d + g. Since the algebraic group Aut(Q) acts transitively on

Q \ V and H0(τ) is the tangent space to Aut(Q) at the identity, H0(τ) spans τ
at each point of Q \ V. Since C ⊂ Q \ V, NC,Q is a quotient of τ|C and hence it

is spanned. Since ωQ
∼= OQ(−3), NC,Q is a rank 2 vector bundle with degree

3d + 2g − 2. Hence h1(det(NC,Q)) = 0. Since NC,Q is spanned, it is an extension

of det(NC,Q) by OC and hence h1(NC,Q) ≤ g. Riemann-Roch gives h0(NC,Q) ≤
3d + g.

(b) Now assume C ∩ V 6= ∅ and set x := deg(C ∩ V). Since C is smooth,
x = 1 if dim(V) = 0. By step (a) and the fact that M has ∞13 singular quadrics
it is sufficient to prove that h0(NC,Q) ≤ 3d + 1 + g. The vector space H0(τ) is
the tangent space at the identity map of the automorphism group Aut(Q). Since
Q \ V is homogeneous, τ|Q\V is a spanned vector bundle. Since C is not a line

and dim(V) ≤ 1, the set V ∩ C is finite. Dualizing the natural map from the
conormal sheaf of C in Q to Ω1

Q we get a map w : τ|C → NC,Q which is sur-

jective outside the finite set C ∩ V. Let u : Q̃ → Q be the blowing up of V,

E := u−1(V) the exceptional divisor, and C̃ ⊂ Q̃ the strict transform of C. Since

C is smooth, u maps isomorphically C̃ onto C. Let Ψ be closure in Hilb(Q̃) of the
strict transforms of all C ⊂ Q with deg(C ∩ V) = x. It is sufficient to prove that

dim(Ψ) ≤ 3d + 1 + g. Take a general D ∈ Ψ. Since Aut(Q̃) acts transitively of
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Q̃ \ E, step (a) of the proof gives h1(ND,Q̃) ≤ g. Hence it is sufficient to prove that

deg(ND,Q̃) ≤ 3d + 2g − 1, i.e. deg(τQ̃ |D
) ≤ 3d + 1, i.e. deg(ωQ̃|D) ≥ −3d − 1.

The group Pic(Q̃) is freely generated by E and the pull-back H of OQ(1). We
have D · H = d and D · E = x. We have ω

Q̃
∼= O

Q̃
(−3H + cE) with c = −1 if

dim(V) = 0 ([18], Example 8.5 (2)) and c = 0 if dim(V) = 1 ([18], Example 8.5
(3)). Hence deg(ω

Q̃ |C̃
) = −3d + cx ≥ −3d − 1 and the proof is complete.

Lemma 18. A general heptic hypersurface contains no C ∈ Md,g such that there is a

hyperplane M ⊂ P
5 with C ∈ M′

d,g(M), there is no line L ⊂ M with deg(L ∩ C) ≥ 6,

no conic D ⊂ M with deg(D ∩ C) ≥ 12.

Proof. By [11, Corollaire 2], Lemma 11 and the assumptions on the lines and the
conics of C, for any integer t ≥ 5 and any plane N ⊂ M we have
h1(N, IC∩N,N(t)) = 0. Lemma 1 and the case r = 4 and t = 5, 6, 7 of Lemma
3 give h1(M, IC,M(4)) ≥ h1(M, IC,M(7)) + 12 ≥ d + 7 − g. Let H ⊂ M be a
general hyperplane.

(a) Assume that the set H ∩ C is not contained in a rational normal curve
of H. By Lemma 15 (assuming that C is contained in a general heptic hyper-
surface) h1(H, IC∩H,H(4)) = 0. Set β = 0 if d ≤ 15 and β = 1 if d = 16. By
Lemma 15 we have h1(H, IC,H(3)) ≤ 1 if d = 12 and h1(H, IC∩H,H(3)) ≤ d− 12 if
d ≥ 13. Hence h1(H, IC∩H,H(4)) + h1(H, IC∩H,H(3)) ≤ 3+ β. By (1) for a general
hyperplane H ⊂ M we have h1(M, IC,M(2)) ≥ h1(M, IC,M(4))− 3− β ≥ d+ 4−
g− β, i.e. h0(M, IC,M(2)) ≥ 18− d− β. If d ≤ 15, then we conclude by Lemma 14.
Now assume d = 16. We got h0(M, IC,M(2)) > 0. By Lemma 17 we may assume
h1(M, IC,M(7)) ≥ 3d − 17 − 3g = 21 − 4g. We first get h1(M, IC,M(4)) ≥ 33 − 3g
and then h1(M, IC,M(2)) ≥ 29 − 3g, i.e. h0(M, IC,M(2)) ≥ 10 − 2g ≥ 4, contra-
dicting Lemma 14.

(b) Now assume that C ∩ H is contained in a rational normal curve EH of H.
By part (c) of Lemma 13 we may assume that h1(M, IC,M(7)) ≥ 3d − 16 − 6g − ǫ
with ǫ = 1 if g = 1 and ǫ = 0 if g ∈ {2, 3}. We first get h1(M, IC,M(4)) ≥ 3d −
4− 6g − ǫ and then h1(M, IC,M(2)) ≥ 3d − 4− 6g − ǫ − min{d − 13, 0} − d + 10,
i.e. h0(M, IC,M(2)) ≥ 20 − 5g − ǫ − min{d − 13, 0}. Lemma 14 concludes unless
(d, g) = (16, 3). Assume (d, g) = (16, 3). We just proved that h0(M, IC,M(2)) ≥ 2.
By Lemma 14 we may assume that h0(M, IC,M(2)) = 2. Let Σ the intersection of
two different quadric hypersurfaces of M containing C. Since C is integral and
C is not contained in a degree 3 surface (Lemma 12), Σ is an integral complete
intersection surface. Hence for a general hyperplane H ⊂ M, the scheme FH :=
H ∩ Σ is an integral complete intersection of two quadrics. By Bezout we have
♯(EH ∩ FH) ≤ 6, contradicting the inclusion of C ∩ H in EH ∩ FH .

Notation 2. Fix d, g. For any integer a ≥ 0 let Fa (resp. Ga) denote the set of all
C ∈ Md,g such that there is a hyperplane M ⊂ P5 and a line L ⊂ M (resp. a
smooth conic L ⊂ M) with C ∈ M′

d,g and deg(L ∩ C) = a. Set F ′′
a := ∪b≥aFb and

G ′′
a := ∪b≥aGb.

The proof of Lemma 2 gives the following result.
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Lemma 19. Fix a hyperplane M ⊂ P
5 and an integer b ≥ 4 such that d ≥ b + 2g −

1. Let Z ⊂ M be a zero-dimensional scheme with deg(Z) = b. Then the set of all
C ∈ M′

d,g(M) containing Z has codimension at least 3b in M′
d,g(M).

Lemma 20. Fix d, g with 12 ≤ d ≤ 16 and 1 ≤ g ≤ 3. For any integer a ≥ 6 set
ua := min{a, d + 1 − 2g}.

(i) Every irreducible component of F ′′
a , a ≥ 6, has dimension ≤ 5d+ 12− g− 2ua .

(ii) Every irreducible component of G ′′
a , a ≥ 12, has dimension ≤ 5d + 17 − g −

2ua.

Proof. Fix a hyperplane M ⊂ P5. Set Fa(M) := {C ∈ Fa : C ⊂ M}, Ga(M) :=
{C ∈ Ga : C ⊂ M}, F ′′

a (M) := ∪b≥aFb(M) and G ′′
a (M) := ∪b≥aGb(M). Since in

the definitions of Fa and Ga we prescribed that C ∈ M′
d,g(M), every C ∈ G ′′

a ∪

F ′′
a is contained in a unique hyperplane. Hence to prove the lemma we may fix

a hyperplane M, give an upper bound for dim(F ′′
a (M)) and dim(G ′′

a (M)) and
then add +5 to that upper bound. Since the upper bounds in (i) and (ii) are
non-decreasing functions of a to prove part (i) (resp. part (ii)) it is sufficient to
give a suitable upper bound for all Fa(M), a ≥ 6, and all Ga(M), a ≥ 12. Fix
C ∈ Fa(M) (resp. C ∈ Ga(M)) and a line L ⊂ M (resp. a smooth conic L ⊂ M)
with deg(L ∩ C) = a. Fix a zero-dimensional scheme Z ⊆ C ∩ Z with deg(Z) =
ua. Use Lemma 19, that the smooth curve L has ∞ua subschemes of degree ua,
that M has ∞6 lines and that M has ∞11 conics.

Lemma 21. A general heptic hypersurface contain no C ∈ Md,g such that there is a
hyperplane M with C ∈ M′

d,g(M) and either there is a line L ⊂ M with deg(C∩ L) ≥ 6

or there is conic D ⊂ M with deg(D ∩ C) ≥ 12.

Proof. By Lemma 11 and [11, Corollaire 2] we have h1(N, IC∩N,N(t)) = 0 if t ≥ 5
and the plane N contains neither a line R with deg(R ∩ C) ≥ t + 2 nor a conic
D with deg(D ∩ C) ≥ 2t + 2. Until step (e) we assume that either α(C) 6= 2 or
d ≤ 12.

(a) We first exclude (with the silent assumption α(C) 6= 2) all C ∈ Md,g

such that there is a hyperplane M and a line L ⊂ M with C ∈ M′
d,g(M) and

deg(C ∩ L) ≥ 9. Fix C, L such that deg(C ∩ L) ≥ 9. Set u9 := min{9, d + 1 − 2g}.
By Lemma 20 we may assume h1(M, IC,M(7)) ≥ d − 10 − g + 2u9. Part (a) of
Lemma 13 for t = 5, 6, 7 gives h1(M, IC,M(4)) ≥ h1(M, IC,M(7)).

First assume d ≤ 12 and so u9 = d+ 1− 2g. Lemma 13 gives h1(M, IC,M(3)) ≥
h1(M, IC,M(4)) and h1(M, IC,M(2)) ≥ h1(M, IC,M(3)) − d + 10. Hence we have
h0(M, IC,M(2)) ≥ 14 − 2d + g + 3d + 3 − 6g − 2 = 15 + d − 5g > 0, a contradic-
tion.

Now assume d ≥ 13. Note that u9 ≥ 8 and hence h1(M, IC,M(4)) ≥ d + 6− g.
We get h1(M, IC,M(3)) ≥ d + 3 − g (Lemma 12) and hence h0(M, IC,M(3)) ≥
39 − 2d − 1 ≥ 2, then α(C) = 3 and then (by Lemma 16) h1(M, IC,M(3)) ≥
h1(M, IC,M(4)) ≥ d+ 6− g and h1(M, IC,M(2)) ≥ d+ 3− g, i.e. h0(M, IC,M(2)) ≥
17 − d > 0, a contradiction.

(b) Now we exclude all C ∈ Md,g such that there is a hyperplane M and
a line L ⊂ M with C ∈ Md,g(M) and deg(C ∩ L) ≥ 6. Fix C, L such that
deg(C ∩ L) ≥ 6. Since d ≥ 2g − 1 + 6, by Lemma 20 we may assume



Heptic hypersurface 457

h1(M, IC,M(7)) ≥ d + 2 − g. By step (a) we may assume that deg(R ∩ C) ≤ 8
for all lines R. Lemma 1 and the case t = 7 of Lemma 13 give h1(M, IC,M(4)) ≥
h1(M, IC,M(6)) ≥ d + 6 − g. We solved this case in step (a).

(c) Now we exclude all C such that there is a conic D with deg(D ∩ C) ≥ 12
(they have d ≥ 13). By step (b) we may assume deg(R ∩ C) ≤ 5 for all lines R.
Thus D is smooth. Set b := min{12, d + 1 − 2g}. By Lemma 20 we may assume
that h1(M, IC,M(7)) ≥ d − 15− g + 2b. By Lemma 1 and the case t = 7 of Lemma
13 we may assume h1(M, IC,M(6)) ≥ d− 11− g + 2b. Since 2b ≥ 17, we conclude
as in steps (a) and (b).

(d) Now we assume d ≥ 13 and α(C) = 2. By Lemma 17 we may assume
h1(M, IC,M(7)) ≥ 3d − 17 − 3g.

(d1) First assume that there is no line L with deg(L ∩ C) ≥ 9. By Lemmas 1
and 13 (case t = 7), we have h1(M, IC,M(6)) ≥ h1(IC,M(7)) + 4 ≥ 3d − 13 − 3g.
Part (a) of Lemma 13 for t = 5, 6 gives h1(M, IC,M(4)) ≥ 3d − 13 − 3g. The
cases t = 3, 4 of Lemma 13 gives h1(M, IC,M(2)) ≥ 3d − 13 − 3g + 10 − d −
min{0, d − 13}, i.e. h0(M, IC,M(2)) ≥ 11 − 2g − min{0, d − 13}. Lemma 14 gives
d = 16, g = 3 and h0(M, IC,M(2)) = 2. Let K be the intersection of 2 differ-
ent elements of |IC,M(2)|. K is a degree 4 surface and for a general hyperplane
H of M K ∩ H is an integral degree 4 curve, which is the complete intersec-
tion of 2 quadrics. Hence for a general H the set C ∩ H is not contained in a
rational normal curve of H. Hence h1(M, IC,M(3)) ≥ h1(M, IC,M(4)) − 2 and
h1(M, IC,M(2)) ≥ h1(M, IC,M(3)) − 4 (Lemma 13). Hence h1(M, IC,M(2)) ≥ 20,
i.e. h0(M, IC,M(2)) ≥ 5, a contradiction.

(d2) Now assume the existence of a line L ⊂ M such that e := deg(L ∩ C) ≥
9. Let U be the set of all lines R ⊂ M such that deg(R ∩ C) ≥ 7 and let V be the
set of all planes spanned by conics D such that deg(D ∩ C) ≥ 12.

(d2.1) Assume for the moment that U ∪ V is finite. Let N ⊂ M be a general
plane. We have N ∩ R = ∅ for all R ∈ U and N ∩ A is a single point for every
A ∈ V . Let V ⊂ H0(OM(1)) be the 2-dimensional linear subspace parametrizing
all hyperplanes U of M containing N. For any such U we have R * U for all
R ∈ U and dim(U ∩ A) = 1 for each A ∈ V . Hence U contains no line R
with deg(R ∩ C) ≥ 7 and no conic D with deg(C ∩ D) ≥ 12. By Lemma 11
and [11, Corollaire 2] we have h1(A, IC∩A,A(5)) = 0 for every plane A ⊂ U
and then Lemma 3 for r = 3, t = 5 and c ≤ 16 gives h1(U, IC∩U,U(5)) = 0.
Lemma 1 for t = 5, 6, 7 gives h1(M, IC,M(4)) ≥ h1(M, IC,M(7)) + 3. As in step
(d1) we get 15 ≤ d ≤ 16 and g = 3. As in step (d1) we exclude the case
h0(M, IC,M(2)) = 2 (and in particular the case d = 15), i.e. we may assume d = 16
and h0(M, IC,M(2)) = 1. Let Q ⊂ M denote the quadric containing C. We have
h1(M, IC,M(3)) ≥ h1(M, IC,M(4))− 3 ≥ 22, i.e. h0(M, IC,M(3)) ≥ 35− 46+ 22 =
11 ≥ 7. Hence h0(Q, IC,Q(3)) ≥ 2. Fix two general U1, U2 ∈ |IC,Q(3)| and set
K := U1 ∩ U2. K is the complete intersection in M of a quadric and 2 cubics, be-
cause any element of |IC,Q(3)| is an irreducible surface, since h0(Q, IC,Q(2)) =
h0(M, IC,M(2))− 1 = 0. The complete intersection K links C to a degree 2 locally
Cohen-Macaulay curve E. By Bezout we have L ⊂ K and so either E is a double
structure on L (a rope) or it is the union of L and another line R. Set R := L if E
is a rope. The complete intersection K links R to the curve C ∪ L. Since R is arith-
metically Cohen-Macaulay, C ∪ L is arithmetically Cohen-Macaulay. In particular
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h1(M, IC∪L,M(7)) = 0. Since h1(M, IC,M(7)) ≥ 3d − 14 − 3g > d ≥ deg(C ∩ L),
we got a contradiction.

(d2.2) Now assume that U is infinite. Take R ∈ U with R 6= L. Assume
R∩ L 6= ∅. Since deg(L∩ R) = 1, we get deg(L∩C) = 9, deg(R∩C) = 7 L∩ R ∈
C. The plane A spanned by R ∪ L has deg(A ∩ C) ≥ 15, contradicting Lemma
11. Now assume R ∩ L = ∅. The hyperplane H spanned by R ∪ L intersects C in
a scheme of degree ≥ 16. We get d = 16, deg(L ∩ C) = 9 and deg(R ∩ C) = 7.
Since C is smooth, the linear projection M \ L → P2 from L induces a morphism
u : C → P2 such that deg(u) · deg(u(C) = 7. Since there are infinitely many
R ∈ U , we get deg(u) ≥ 7 and so u(C) is a line, contradicting the assumption
C ∈ M′

d,g(M).

(d2.3) Now assume that V is infinite. Let V ′ be an irreducible component
of V with dim(V ′) > 0. Assume the existence of a conic D ⊂ M such that
deg(D ∩ C) ≥ 12 and call A the plane spanned by D. If A ∩ L is a point, then
the 3-dimensional linear space spanned by A ∪ L intersects C in a scheme of de-
gree ≥ 12 + 9 − 1 > d, a contradiction.

Now assume L ⊂ A for infinitely many planes A ∈ V ′. For any plane N ⊂ M
with N ∩ L = ∅, the set N ∩ A is a single point. Hence as in step (d2.1) we may
ignore all these planes A ∈ V ′, even if infinite.

Now take a general A ∈ V ′ and assume A ∩ L = ∅ and f := deg(D ∩ C) with
D ⊂ A a conic and f ≥ 12. Take general A1, A2 ∈ V ′ and let Di ⊂ Ai, i = 1, 2, be
the conic with deg(Di ∩C) = f . First assume that A1 ∩ A2 is a line (this is the case
if either D1 and D2 have a common component or D1 ∩ D2 is a zero-dimensional
scheme of degree ≥ 2). We get that either all A ∈ V ′ are contained in a fixed
hyperplane of M (absurd, because C spans M) or there is a line R ⊂ M contained
in all A ∈ V ′. If N ⊂ M is a plane with R ∩ N = ∅, then no conic of some A ∈ V ′

is contained in a hyperplane of M containing N.

(d2.3.1) Assume D1 ∩ D2 = ∅. We have h0(OD1∪D2∪L(2)) = 13 and there-
fore we have h0(M, ID1∪D2∪L(2)) ≥ 2. Fix any Q′ ∈ |ID1∪D2∪L(2)|. Since
deg(C ∩ Q′) ≥ 2 f + e ≥ 33, Bezout gives C ⊂ Q′. Hence h0(M, IC,M(2)) ≥ 2.
By Lemma 14 we may assume h0(M, IC,M(2)) = 2 and call K′ the degree 4
irreducible surface which is the base locus of |IC,M(2)|. For a general hyperplane
H ⊂ M the scheme K′ ∩ H is an integral curve complete intersection of 2 quadrics
and containing C ∩ H. By Bezout C ∩ H is not contained in a rational normal
curve of H and so h0(H, IC∩H,H(2)) = 2. Lemma 15 gives h1(M, IC,M(3)) ≥
h1(M, IC,M(4)) ≥ 3d − 17 − 3g, i.e. h0(M, IC,M(3)) ≥ 17 − 2g > 10. Hence
the map H0(M, IC,M(2)) ⊗ H0(M,OM(1)) → H0(M, IC,M(3)) is not surjective.
Therefore C is contained in the intersection of K′ with a cubic hypersurface, con-
tradicting Bezout and the inequality d > 12.

(d2.3.2) Now assume that the scheme D1 ∩ D2 is a single point. First assume
that either e ≥ 10 or f ≥ 13 or d ≤ 15 or D1 ∩ D2 /∈ C. Since h0(OD1∪D2∪L(2)) ≤
12, we have h0(M, ID1∪D2∪L(2)) ≥ 3. Fix any Q′ ∈ |ID1∪D2∪L(2)|. Since
deg(C ∩ Q′) ≥ 2 f + e − deg(D1 ∩ D2 ∩ C) ≥ 2d + 1, Bezout gives Q′ ⊃ C, con-
tradicting Lemma 14. Now assume e = 9, f = 12, d = 16 and that D1 ∩ D2

is a point p ∈ C. Take a general q ∈ C. Since h0(OD1∪D2∪L∪{q}(2)) ≤ 13, we

have h0(M, ID1∪D2∪L(2)) ≥ 2. Fix any Q′ ∈ |ID1∪D2∪L(2)|. Since deg(C ∩ Q′) ≥
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2 f − 1+ e−deg(D1 ∩D2 ∩C)+ 1 ≥ 2d+ 1, then Q′ ⊃ C. Hence h0(M, IC,M(2)) ≥
2. By Lemma 14 we may assume h0(M, IC,M(2)) = 2 and call K′ the degree 4 ir-
reducible surface which is the base locus of |IC,M(2)|. We conclude as in step
(d2.3.1).

Proof of Theorem 1: We just proved Theorem 1 for all C ∈ Md,g spanning a hyper-

plane of P5, and so we completed the proof of Theorem 1

5 Curves in a 3-space

In this section we assume that C spans a 3-dimensional linear subspace U ⊂ P
5.

We prove Proposition 1 and give a few results useful to extend it to higher de-
grees and higher genera. The Hilbert scheme M′

d,g(U) of all non-special curves of

degree d and genus g of U is smooth and irreducible of dimension 4d. Since the
Grassmannian G(3, 5) of all 3-dimensional linear subspaces of P5 has dimension
8, to exclude these curves C it is sufficient to exclude the ones with h1(IC(7)) ≥
2d + 2 − 2g − 8. However, for a general W ∈ W and a general U ∈ G(3, 5) the
surface W ∩U is a general surface of degree 7 and hence any curve of degree ≤ 16
on it is a complete intersection by a theorem of Max Noether. Hence to exclude
all C ∈ Md,g spanning some U ∈ G(3, 5) it is sufficient to exclude the ones with

h1(IC(7)) ≥ 2d − 2g − 5. Fix a general X ∈ M′
d,g(U). Since X has maximal rank

([2]) and 7d + 1 − g ≤ 120 = (10
3 ), we have h1(IX(7)) = h1(U, IX,U(7)) = 0

and so h0(IX(7)) = (12
5 ) − 7d − 1 + g. Since dim(M′

d,g(U)) = 4d, P5 has ∞8

3-dimensional linear spaces and 7d + 1 − g > 4d + 8, a general heptic hypersur-
face contains no curve C ∈ Md,g with the Hilbert function of X in degree 1 and
degree 7. Hence we may increase by one these bounds and so we may assume
h1(U, IC,U(7)) ≥ 2d − 2g − 4, i.e. for any d, g to rule out the existence of any
C ∈ Md,g with dim(〈C〉) = 3 for a general heptic hypersurface it is sufficient

to exclude all C ∈ M′
d,g(U) with h1(U, IC,U(7)) ≥ 2d − 2g − 4. By [13] we may

assume d ≥ 11. Hence 11 ≤ d ≤ 16 and 1 ≤ g ≤ 3. Let α or α(C) be the minimal
degree of a surface of U containing C. Since C is non-degenerate, we have α ≥ 2.

Since 7 · 16 + 1 − g < 120 = (10
3 ), we have α ≤ 7.

Lemma 22. We have α 6= 2.

Proof. Assume α = 2. Let Q ⊂ U be a quadric containing C. If Q is a quadric
cone, then C is arithmetically Cohen-Macaulay ([16, V, Ex. 2.9]), because C is
smooth, and in particular h1(IC(7)) = 0, a contradiction. Hence Q is a smooth
quadric. Write C ∈ |OQ(u, v)| with, say, u ≤ v. Since g > 0, we have u > 1. Since

h1(OC(1)) = 0, we have u ≤ 2. Since 1 ≤ g ≤ 3, we get u = 2 and v = g + 1. In
all cases we have h1(IC(7)) = 0, a contradiction.

The following lemma is a particular case of step (b2) of Remark 5 proved
below.
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Lemma 23. Fix C ∈ M′
d,g(U), d ≤ 16. Let H ⊂ U be a general hyperplane. We

have h1(H, IC∩H,H(t)) = 0 for all t ≥ 5, h1(H, IC∩H,H(4)) = 0 if d ≤ 12 and
h1(H, IC∩H,H(4)) ≤ 1 if d ∈ {13, 14}.

Remark 5. Let H ⊂ U be a general plane. The set Z := C ∩ H is formed by d
points of H in uniform position and spanning H.

(a) In particular Z is in linearly general position and hence h1(H, IZ,H(t)) =
0 for all t with 2t ≥ d− 1 ([10, Theorem 3.2]). If d ≥ 2t+ 2 we get h1(H, IZ,H(t)) ≤
d − 2t − 1.

(b) Now assume 2t ≤ d − 2, but (t+2
2 ) ≥ d, i.e., if d = 16 assume 5 ≤ t ≤ 7,

while if 11 ≤ d ≤ 15 assume 4 ≤ t ≤ ⌊(d − 2)/2⌋. Assume h1(H, IZ,H(t)) > 0.
We get h0(H, IZ,H(t)) > 0. Since C ∩ H is in uniform position (or by a mon-
odromy argument) and d > t, either a general D ∈ |IZ,H(t)| is irreducible or the
base locus of |IZ,H(t)| contains an irreducible curve T ⊃ Z and D = cT for some
integer c ≥ 2. The latter case does not occur if t is a prime, because Z spans H.

(b1) Assume D = cT with c ≥ 2. We get |IZ,H(t)| = {cT} and hence

h0(H, IZ,H(t)) = 1. Therefore h1(H, IZ,H(t)) = d + 1 − (t+2
2 ). Since d ≤ (t+2

2 ), we

get d = (t+2
2 ) and h1(H, IZ,H(t)) = 1. Since Z spans H, t is not a prime. Since

d ≤ 16, we get t < 6. Hence t = 4, c = 2, deg(T) = 2 and d = 15. Since T is an
integral conic (i.e. a smooth conic), we get h1(H, IZ,H(y)) = 0 for all y ≥ 7. Let
K ⊂ U be a degree α surface containing C. Recall that α ≤ 7. Since d = 15 > 2α,
Bezout theorem gives T ⊂ K. Varying H we see that K contains a 3-dimensional
family of conics and hence it is a projection of a Veronese surface. Hence α ≤ 4.
Since C has odd degree K must be an inner projection of the Veronese surface and
hence α = 3. Since C is smooth, we see that C is isomorphic to a plane curve of
degree ≥ 8, contradicting the assumption g ≤ 3.

(b2) Assume that D is irreducible. Since hi(OH) = 0, i = 1, 2, then we
have h1(H, IZ,H(t)) = h1(D, IZ,D(t)). Since ωD

∼= OD(t − 3), we get d ≥ 3t.
If d = 3t we also get that Z is the complete intersection of D with a plane cu-
bic; since h1(U, IC,U(7)) > 0, [33, Theorem 0.1] gives that Z is contained in a
smooth conic, contradicting the inequality d > 2t and the irreducibility of D.
Now assume d ≥ 3t + 1. Since h1(D, IZ,D(t)) > 0, IZ,D(t) is a subsheaf of
ωD

∼= OD(t − 3) and hence there is Z′ ⊂ Z such that deg(Z′) = 3t and Z′ is
the complete intersection of D and and a cubic curve. We have h1(H, IZ,H(t)) =
h1(D, IZ,D(t)) and h1(H, IZ′,H(t)) = h1(D, IZ′,D(t)) = h1(D,OD(t − 3)) = 1.
Since OD(t− 3) is very ample, we have h0(D, IE,D(t)) = h0(D, IZ′,D(t))−deg(E)
(i.e. h1(D, IE,D(t)) = h1(D, IZ′,D(t)) for every E ⊃ Z′ with deg(E)− deg(Z′) ≤
2. Hence if h1(H, IZ,H(t)) > 0, then d ≥ 3t + 1 and if d ≤ 3t + 2, then
h1(H, IZ,H(t)) ≤ 1.

5.1 Proof of Proposition 1

In this subsection we take g = 1 and d ≤ 14.

Lemma 24. Fix a zero-dimensional scheme Z ⊂ U and set b := deg(Z). Let EZ be the
set of all C ∈ M′

d,1(U) such that C ⊃ Z. If d ≥ b, then every irreducible component of
EZ has dimension 4d − 2b.



Heptic hypersurface 461

Proof. Fix C ∈ EZ. It is sufficient to prove that h1(NC,U(−Z)) = 0 ([27, Theorem
1.5]). Since NC is a quotient of OC(1)

⊕4, we are done if h1(OC(1)(−Z)) = 0.
Since d ≥ b and ωC

∼= OZ, this is the case, unless d = b and OC(1) ∼= OC(Z). By
duality we only need to exclude the existence of a non-zero map NC → OC(1).
Assume that this is the case. The restriction to C of Euler’s sequence of TP3 gives
a non-zero map OC(1)

⊕4 → OC(1). This map gives the equation of a hyperplane
of U containing C, a contradiction.

Lemma 25. A general W ∈ W contains no C ∈ Md,1, d ≤ 14, such that there is
U ∈ G(3, 5) with C ∈ M′

d,1(U), deg(R∩C) ≤ 7 for each line R and deg(C∩D) ≤ 13
for each conic D.

Proof. Fix C ∈ M′
d,1(U) such that deg(R ∩ C) ≤ 7 for each line R and

deg(R∩D) ≤ 13 for each conic D. By Lemmas 1 and 23 we have h1(U, IC,U(5)) ≥
h1(U, IC,U(6)) + 3 ≥ h1(U, IC,U(7)) + 6 ≥ 2d. By Lemma 23 we have
h1(U, IC,U(3)) ≥ h1(U, IC,U(7)) − ǫ ≥ 2d − ǫ with ǫ = 0 if d ≤ 12 and ǫ = 1
if d ∈ {13, 14}, i.e. h0(U, IC,U(3)) ≥ 20 − d − ǫ ≥ 2. Since α > 2 (Lemma 22),
C is contained in the intersection of 2 integral cubic surfaces and so d ≤ 9, a
contradiction.

Lemma 26. A general W ∈ W contains no C ∈ Md,1, d ≤ 14, such that there is
U ∈ G(3, 5) with C ∈ M′

d,1(U) and a conic D with deg(D ∩ C) ≥ 14.

Proof. Take C ∈ Md,1, d ≤ 14, such that there is U ∈ G(3, 5) with C ∈ M′
d,1(U)

and a conic D with deg(D ∩ C) ≥ 14. We have d = 14 and deg(D ∩ C) = 14. By
Lemma 25 we may assume that deg(R ∩ C) ≤ 6 for every line R. Hence D is a
smooth conic and so it has ∞14 degree 14 subschemes. Since dim(G(3, 5)) = 8,
U has ∞3 planes and each plane has ∞5 conics, to prove the lemma (quoting
Lemma 24) it is sufficient to exclude all C ∈ M14,1 spanning a 3-space U and with
h1(U, IC,U(7)) ≥ 6d + 2 − 2g − 4d − 8 + 28 − 14 − 8 = 2d − 2. By Lemma 23 we
have h1(U, IC,U(3)) ≥ h1(U, IC,U(7))− ǫ ≥ 2d − 2 − ǫ with ǫ = 0 if d ≤ 12 and
ǫ = 1 if d ∈ {13, 14}, i.e. h0(U, IC,U(3)) ≥ 18 − d − ǫ ≥ 2 and so Bezout gives
d ≤ 9, a contradiction.

Lemma 27. A general W ∈ W contains no C ∈ Md,1, d ≤ 14, such that there is
U ∈ G(3, 5) with C ∈ M′

d,1(U) and a line R with deg(R ∩ C) ≥ 8 for some line R.

Proof. Fix U and C ∈ M′
d,1(U). By Lemma 26 we may assume deg(D ∩ C) ≤ 13

for each conic D. Let R ⊂ U be a line such that b := deg(C ∩ R) is maximal. First
assume b ≥ 9. Fix Z ⊂ R ∩ C with deg(Z) = 9. Since dim(G(3, 5)) = 8, U has
∞4 lines and each line has ∞9 subschemes of degree 9, Lemma 24 shows that it
is sufficient to exclude the curves C with h1(U, IC,U(7)) ≥ 2d − 8 + 18 − 9 − 4 =
2d − 3. By Lemma 23 we have h1(U, IC,U(3)) ≥ 2d − 3 − ǫ with ǫ = 0 if d ≤ 12
and ǫ = 1 if d ∈ {13, 14}, i.e. h0(U, IC,U(3)) ≥ 17− d− ǫ ≥ 2 and so Bezout gives
d ≤ 9, a contradiction. Now assume b = 8. As above we see that it is sufficient to
exclude all C ∈ M′

d,1(U) with h1(U, IC,U(7)) ≥ 2d − 4. By Lemmas 1 and 23 we

have h1(U, IC,U(6)) ≥ 2d − 1 and hence h0(U, IC,U(3)) ≥ 4.

Proof of Proposition 1. Lemmas 25, 26 and 27 prove Proposition 1.
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[16] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–
New York, 1977.



Heptic hypersurface 463

[17] C. Huneke and B. Ulrich, General hyperplane sections of algebraic varieties,
J. Algebraic Geom. 2 (1993), no. 3, 487–505.

[18] P. Jahnke, T. Peternell, and I. Radloff, Some recent developments in the clas-
sification theory of higher dimensional manifolds, Global aspects of complex
geometry, 311–357, Springer, Berlin, 2006.

[19] T. Johnsen and S. Kleiman, Rational curves of degree at most 9 on a general
quintic threefold, Comm. Algebra 24 (1996), 2721–2753.

[20] T. Johnsen and S. Kleiman, Toward Clemens’ Conjecture in degrees between
10 and 24, Serdica Math. J. 23 (1997), 131–142.

[21] T. Johnsen and A. L. Knutsen, Rational curves in Calabi-Yau threefolds. Spe-
cial issue in honor of Steven L. Kleiman. Comm. Algebra 31 (2003), no. 8,
3917–3953.

[22] S. Katz, On the finiteness of rational curves on quintic threefolds, Composi-
tio Math. 60 (1986), 151–162.

[23] A. L. Knutsen, On isolated smooth curves of low genera in Calabi-Yau com-
plete intersection threefolds, Trans. Amer. Math. Soc. 364 (2012), no. 10,
5243–5264.

[24] A. L. Knutsen, Smooth, isolated curves in families of Calabi-Yau threefolds
in homogeneous spaces, J. Korean Math. Soc. 50 (2013), no. 5, 1033–1050.

[25] N. Mohan Kumar, A. P. Rao and G. V. Ravindra, On codimension two subva-
rieties in hypersurfaces, Motives and algebraic cycles, 167–174, Fields Inst.
Commun., 56, Amer. Math. Soc., Providence, RI, 2009

[26] K. Oguiso, Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math.
452 (1994), 153–161.

[27] D. Perrin, Courbes passant par m points généraux de P3, Bull. Soc. Math.
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