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Abstract

We introduce a generalization of Grassmannians of projective spaces that
allows us to consider subspaces of any (possibly infinite) rank as points of
the Grassmannian. We show that the spaces that we obtain, carry in a natural
way the structure of a twin building.

Introduction

Grassmannians are point-line spaces arising from projective spaces by consider-
ing the subspaces of a certain finite rank. In this article we introduce a general-
ization of this concept that allows us to consider subspaces of possibly infinite
rank. It turns out that the right approach is to take always two such generaliza-
tions, and connect them by an opposition relation. Such a structure will be called
a partial twin Grassmannian.

In section 3 we introduce a method for constructing a pair of connected cham-
ber systems out of any partial twin Grassmannian. In this fashion, the chambers
turn out to be chains of subspaces of the underlying projective space. More pre-
cisely, these chains are maximal under the condition that every element has a
successor (except for those which are hyperplanes) and a predecessor (except for
those which are singletons). However, we do not use all such maximal chains
since otherwise Grassmannians of infinite rank would in general give rise to a
disconnected chamber system, which is of course not desirable. See [KS96] for a
deeper insight into this question.
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In section 4 we show that the chamber systems introduced in section 3 are,
in fact, buildings. Since the chamber systems always come in pairs, the build-
ings also come in pairs, and it is natural to ask whether these pairs form a twin
building. This indeed is the case as we show in section 5.

1 Preliminaries and notations

A point-line space S = (P ,L) is a pair consisting of a set P , whose elements
are called points and a set L ⊂ P(P) of subsets of P with cardinality at least 2,
which are called lines. If all points are subsets of a common set V, we sometimes
regard a line as the union of its points and hence as a subset of V. Points on a
common line are called collinear. We write p0 ⊥ p1 to denote that p0 and p1 are
collinear. If p0 ⊥ p1, then we call p0 a neighbour of p1. By p⊥ we denote the set of
all neighbours of a point p, called the perp of p. For a set of points M we denote
by M⊥ :=

⋂

p∈M p⊥ the perp of M, i. e. the set of all common neighbours.

A subspace of a point-line space S = (P ,L) is a point-line space S ′ = (P ′,L′)
with P ′ ⊆ P and L′ ⊆ L such that every line in Lr L′ has at most one point
with P ′ in common and every line in L′ is contained in L. We write S ′ ≤ S ,
if S ′ is a subspace of S and S ′

< S if S ′ is properly contained. Since S ′ is
determined by its point set, we call P ′ itself a subspace. Correspondingly, we
treat S sometimes as its own point set. A proper subspace is called a hyperplane
if it intersects every line. For a set of points M, we denote by 〈M〉 the smallest
subspace which contains M, called the span of M. For a family of points p0, . . . , ps

and a family of sets of points M0, . . . , Mr we will write 〈p0, . . . , ps, M0, . . . , Mr〉
rather than 〈{p0, . . . , ps} ∪ M0 ∪ · · · ∪ Mr〉.

A partially linear space1 is a point-line space such that no two different lines
have two different points in common. Clearly, subspaces of partially linear spaces
are again partially linear. For two distinct collinear points p and q of a partially
linear space, the unique line joining p and q is denoted by pq. A point-line space
where every two points are collinear is called singular. Singular partially linear
spaces are called linear. The rank of a singular space S is denoted by rk(S ) and
equals α − 2, where α is the supremum over the lengths of well-ordered chains
of subspaces of S . Hence, the rank of the empty space is −1 and the rank of
a singleton is 0. For a point-line space S let S(S ) := {X ≤ S | X ⊆ X⊥}
denote the set of all singular subspaces of S . The singular rank of S is defined as
srk(S ) := sup{rk(X) | X ∈ S(S )}.

A (possibly degenerate) projective space is a linear space satisfying the following
property:

(VY) For every pair (l, k) of disjoint lines and every point p ∈ P r (l ∪ k) there
is at most one line through p meeting both l and k.

A projective space is called degenerate if it contains at most one line or at least
one short line, i. e. a line of cardinality 2. Very often, projective spaces are required
to be non-degenerate, but we will explicitly allow projective spaces to be degenerate.

1The terminology partial linear space is more common, but grammatically incorrect.
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It is obvious by the definition that every subspace of a projective space is again a
projective space.

Let S be a projective space and let (Si)i∈I be the family of all subspaces of
S that are maximal under the condition of not containing any short line, where
I is a suitable index set. Then for i ∈ I, the subspace Si is either a point, a line
with at least three points or a non-degenerate projective space. It is known (see
for instance [Seg48]) that S equals the direct sum

⊕

i∈I Si, where the direct sum
is defined as follows: the point set of the direct sum is the disjoint union of the
point sets of all components; the line set of the direct sum is the union of the line
sets of the components plus all short lines with points of distinct components.
A direct sum of projective spaces is again a projective space.

Let S be a projective space and let X ⊆ S be a set of points. If p /∈ 〈X r {p}〉
for every point p ∈ X, we call X independent. An independent set of points
B ⊆ S with 〈B〉 = S is called a basis. In a projective space every independent
set of points is a subset of a basis. Furthermore, every basis of S has cardinality
rk(S ) + 1. For a direct sum S =

⊕

i∈I Si of projective spaces, every basis of S

is a union of bases of all components Si and vice versa.
Let V be a subspace of S and let B be a basis of S with 〈B ∩ V〉 = V. Then

we call crkS (V) := |B r V| the corank of V in S . Let U be another subspace of
S . Then crkU(U ∩ V) = crk〈U,V〉V.

Let U and V be two subspaces of a projective space S such that U ∩ V has
finite corank in both U and V. Then we call U and V commensurate, denoted by
U ≷ V. If U and V are commensurate with crkU(U ∩ V) = crkV(U ∩ V), we
write U R V.

A Grassmannian of a projective space S is a point-line space whose point set
P consists of all subspaces of S of rank k ∈ N and whose lines are the maximal
subsets of P whose elements intersect in a common subspace of rank k− 1 and are
contained in a common subspace of rank k+ 1. To be more specific, this point-line
space is also called a Grassmannian of k-spaces. The Grassmannian of 0-spaces is
canonically isomorphic to S .

For a projective space of infinite rank S , there is an analogous way to define
a point-line space whose points are the subspaces of corank k. The so-obtained
point-line space can be seen as the Grassmannian of corank-k-spaces. Thus, the
Grassmannian of corank-1-spaces is just the dual of S .

2 Grassmannians of arbitrary rank

In this section we introduce point-line spaces that are constructed out of projec-
tive spaces and are a natural generalization of Grassmannians. Our new con-
struction will allow us to take subspaces of infinite rank and infinite corank as
elements of the point set. In order to make this possible, we first introduce the
concept of twin spaces.

Definition 2.1. Let S + = (P+ ,L+) and S − = (P−,L−) be two disjoint par-
tially linear spaces. Further let R ⊆ (P+ × P−) ∪ (P− × P+) be a symmetric,
total relation on P+ ∪ P− (called the opposition relation) such that for every pair
(p, l) ∈ (P+ ×L−) ∪ (P− ×L+), the following holds:
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(OP) If p is opposite to some point of l, then there is exactly one point q ∈ l
such that p is not opposite to q.

Then we call the pair (S +, S −) a twin space with opposition relation R.

Let U be a subspace of a projective space S . Then we call a subspace V ≤ S

a complement of U if and only if U and V are disjoint and 〈U, V〉 = S . Since con-
versely, by this definition U is a complement of V, we call U and V complementary
subspaces.

Definition 2.2. Let S be a projective space and let U+ and U− be non-trivial
subspaces of S that are complementary. For σ ∈ {+,−}, set Uσ := {V ≤ S |
V R Uσ}. Further set:

Lσ
m :=

{

{Z ∈ Uσ | X ∩ Y < Z < 〈X, Y〉}
∣

∣ {X, Y} ⊆ Uσ ∧ crkX(X ∩ Y) = 1
}

R := {(M, N), (N, M) | (M, N) ∈ U+ × U− ∧ M ∩ N = ∅}

Then we call the pair ((U+,L+
m), (U−,L−

m)) with the opposition relation R the twin
Grassmannian of S with respect to (U+, U−).

For σ ∈ {+,−}, let Pσ
m ⊆ Uσ be a subset that contains Uσ such that the fol-

lowing conditions are satisfied:

(TG1) For every subspace V ∈ Pσ
m, there is a subspace W ∈ P−σ

m such that
V ∩ W = ∅.

(TG2) 〈V | V ∈ Pσ
m〉 = S .

(TG3) Let V and W be two elements of Pσ
m. Then {X ∈ Uσ | V ∩ W ≤ X ≤

〈V, W〉} ⊆ Pσ
m.

For σ ∈ {+,−}, set L′σ
m := {L ∈ Lσ

m | L ⊆ Pσ
m} and R′ := R ∩ ((P+

m ∪
P−

m) × (P−
m × P+

m)). Then ((P+
m ,L′+

m ), (P−
m ,L′−

m )) with the opposition relation
R′ is called a partial twin Grassmannian of S with respect to (U+, U−).

We will see later on that every (partial) twin Grassmannian is a twin space.
Therefore we call a twin space a (partial) twin Grassmannian if it is isomorphic to
a (partial) twin Grassmannian of a projective space. Throughout this section S is
always a projective space and U+ and U− are non-trivial subspaces of S that are
complementary. For σ ∈ {+,−}, we set Uσ := {V ≤ S | V R Uσ}.

The following proposition shows that the concept of partial twin Grassman-
nians is more general than the one of twin Grassmannians. We will discuss later
on the advantages of using the more general concept.

Proposition 2.3. Every twin Grassmannian of S is a partial twin Grassmannian of S .

Proof. (TG2) and (TG3) are clearly fulfilled. Hence, it remains to verify (TG1).
Let V be a subspace of S that is commensurate to U+. Then V ′ := 〈U+, V〉 is
a subspace with crkV ′V = crkV ′U+ = crkU+(V ∩ U+) = crkV(V ∩ U+) =: r.
Since U+ and U− are complements, this implies rk(V ′ ∩ U−) = r − 1. Thus, U−

contains a complement W ′ of V ′ with crkU−W ′ = r.
Let W ′′ ≤ U+ be a subspace of rank r − 1 that is disjoint from V ∩ U+ and

set W := 〈W ′, W ′′〉. Then crkV(V ∩ U+) = r together with 〈V, W ′′〉 = 〈V, V ∩
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U+, W ′′〉 = 〈V, U+〉 = V ′ implies that W ′′ is a complement of V in V ′. Since W ′

and V ′ are complements in S , we obtain W ∩V ′ = W ′′ and therefore W ∩V = ∅.
On the other hand 〈W, V〉 = 〈W ′, W ′′, V〉 = 〈W ′, V ′〉 = S and consequently, W
and V are complements in S .

The following remark concerns some immediate consequences of the axioms
(TG1) and (TG3).

Remark 2.4. Let V be a subspace with V R U+ and let W be a subspace with

W R U− such that V ∩ W = ∅. Set V ′ := V ∩ U+ and W ′ := W ∩ U−. Then
crkV(V

′) = crkU+(V
′) and crkW(W ′) = crkU−(W

′) and hence, crk〈V,W〉(〈V
′, W ′〉)

= crk〈U+,U−〉(〈V
′, W ′〉). With 〈U+, U−〉 = S this implies 〈V, W〉 = S . Therefore,

the subspaces V and W of (TG1) are always complements.
From (TG3) and the definition of the lines of the twin Grassmannian it fol-

lows directly that every partial twin Grassmannian with respect to (U+, U−) is
a subspace of the twin Grassmannian with respect to (U+, U−). A second con-
sequence of (TG3) is that for a partial twin Grassmannian ((P+

m ,L+
m), (P−

m ,L−
m)),

both point-line spaces (P+
m ,L+

m) and (P−
m ,L−

m) are connected.

Axiom (TG2) plays a special role. As we will see in the following remark,
omitting it does not change anything about the definition of partial twin Grass-
mannians in itself, but it would change the definition of a partial twin Grassman-
nian of a given projective space. Nevertheless, we cling to this axiom since it
turns out to be useful.

Remark 2.5. For σ ∈ {+,−}, let Pσ
1 ⊆ Uσ be a subset with Uσ ∈ Pσ

1 such
that (TG1) and (TG3) are fulfilled, but (TG2) is not. Then Pσ

1 is a subspace of
D

σ, where (D+, D−) is the twin Grassmannian of S with respect to (U+, U−).
Set S ′ := 〈U | U ∈ P+

1 〉. Further set P−
0 := {V ∩ S ′ | V ∈ P−

1 }. Let
U ∈ P+

1 and V ∈ P−
1 such that U and V are complements. Then U and V ∩S ′ are

complements in S ′. Let (D+
0 , D−

0 ) be the twin Grassmannian of S ′ with respect
to (U+, U− ∩S ′).

For two elements V and W of P−
1 there are complementary subspaces V ′ and

W ′ in P+
1 . Since V ′ and W ′ are complements of V ∩ S

′ and W ∩ S
′ in S

′ and

furthermore V ′ R W ′, we conclude V ∩ S ′ R W ∩ S ′. Therefore we obtain

P−
0 ⊆ D

−
0 . Furthermore, rk(U ∩ 〈V, W〉) = crk〈V,W〉(V) − 1 since U is com-

plementary to V. This implies crk〈V,W〉∩S ′(V ∩ S ′) = crk〈V,W〉(V) and conse-

quently, crkV∩S ′(V ∩ W ∩S ′) = crkV(V ∩ W). Hence, P−
1 → P−

0 : X 7→ X ∩S ′

maps the subspace P−
1 of D− isomorphically onto a subspace of D

−
0 .

Let X′ ≤ S
′ be a subspace with X′ R V ∩ S

′ such that V ∩ W ∩ S
′ ≤ X′ ≤

〈V, W〉 ∩ S ′. Then for X := 〈X′, V ∩ W〉, we obtain X R V with V ∩ W ≤ X ≤

〈V, W〉 and hence, (TG3) implies X ∈ P−
1 . Since X′ = X ∩ S ′, we conclude

X′ ∈ P−
0 and that (TG3) holds for P−

0 . Therefore, P−
1 → P−

0 : X 7→ X ∩ S
′ is

surjective and consequently, P−
0 is a subspace of D

−
0 that is isomorphic to P−

1 and
fulfils (TG1) and (TG3).

Suppose S
′′ := 〈U | U ∈ P−

0 〉 < S
′. Then we set P+

0 := {V ∩ S
′′ |

V ∈ P+
1 }. By repeating the arguments we conclude that restricting the elements

of P+
1 and P−

1 to the subspace S ′′ leads to a structure that induces a pair of
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point-line spaces isomorphic to (P+
1 ,P−

1 ) such that complementary subspaces
are mapped onto complementary subspaces. Since now (TG1), (TG2) and (TG3)
are all fulfilled, we conclude that the subspaces contained in P+

0 and P−
0 are the

points of a partial twin Grassmannian. Therefore (TG2) can be seen as a condition
that makes sure that S is “entirely used”.

In the following Sm := ((P+
m ,L+

m), (P−
m ,L−

m)) is a partial twin Grassmannian
of S with respect to (U+, U−). For σ ∈ {+,−}, we set S σ

m := (Pσ
m,Lσ

m). More-
over, we denote by D = (D+, D−) the twin Grassmannian of S with respect to
(U+, U−).

Proposition 2.6. Every partial twin Grassmannian is a twin space.

Proof. Let R be the opposition relation of the partial twin Grassmannian Sm. By
(TG1) R is a symmetric, total relation on P+

m ∪ P−
m . Let U ∈ P+

m and V ∈ P−
m

such that U and V are complements. Further let W ∈ P−
m be a subspace such that

V and W are distinct collinear points in S −
m and let L ∈ L−

m with {V, W} ⊆ L.
Then V and W intersect in a common hyperplane. Hence, U and 〈V, W〉 intersect
in a single point p since U is a complement to V. We conclude that 〈p, V ∩ W〉
is the only element of L that is not disjoint from U. Thus, R fulfils the condition
of an opposition relation of twin spaces. By the definition of the lines of a twin
Grassmannian we conclude that Sm is partially linear.

Let F be the set of finite subsets of P+
m and set S ′ :=

⋃

F∈F〈F〉, where 〈F〉 is
understood as the span in S . Then S

′ is a subspace of S since the union of two
finite sets is again finite. This implies 〈U | U ∈ P+

m〉 ≤ S ′ and hence, S ′ = S

by (TG2). We will make use of this fact for proving the following lemma.

Lemma 2.7. Let p be a point of S . Then there are elements U ∈ P+
m and V ∈ P−

m such
that p ∈ U ∩ V.

Proof. Since 〈U | U ∈ P+
m〉 = S , there is a finite set F := {Ui | 0 ≤ i < n} ⊆ P+

m

where n ∈ N such that p ∈ 〈F〉. For 0 ≤ j < n, set Sj := 〈Ui | i ≤ j〉. We prove

by induction over j that every point of Sj is contained in a subspace U ∈ P+
m .

For j = 0 there is nothing to prove since S0 = U0. Now assume the claim
holds for j < n − 1. We may assume Uj+1 � Sj since otherwise Sj+1 = Sj. Let
q ∈ Sj+1 rSj. Then there are points r ∈ Uj+1 and s ∈ Sj such that q is on the line

rs. By the induction hypothesis we know that there is a subspace W ∈ P+
m such

that s ∈ W. Since r ∈ 〈Uj+1, W〉, (TG3) implies that there is a subspace U ∈ P+
m

with 〈q, Uj+1 ∩ W〉 ≤ U. A similar argument for P−
m proves the claim.

Lemma 2.8. Let n ∈ N and let (Ui)0≤i≤n be a family of elements of P+
m . Then every

subspace V ∈ U+ with
⋂

0≤i≤n Ui ≤ V ≤ 〈Ui | 0 ≤ i ≤ n〉 is an element of P+
m .

Proof. We prove the claim by induction over n. For n = 0 there is nothing to
prove and for n = 1 this is just (TG3). Hence we may assume n > 1 and that
every subspace V ∈ U+ with

⋂

0≤i<n Ui ≤ V ≤ 〈Ui | 0 ≤ i < n〉 is an element of
P+

m . Moreover, we may assume that
⋂

0≤i≤j Ui ≤ Uk ≤ 〈Ui | 0 ≤ i ≤ j〉 does not

hold for 0 ≤ j < k ≤ n. Set S :=
⋂

0≤i<n Ui and W := 〈Ui | 0 ≤ i < n〉. In the
proof we distinguish three situations:
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(I) First consider the case S ≤ Un and Un � W. Since U0 R Un, there is a
natural number m ∈ N and a family of points (pi)0≤i<m in Un r W such that
〈pi, W | 0 ≤ i < m〉 = 〈Un, W〉. Let H be a subspace with Un ∩ W ≤ H ≤ W
and crkW(H) = crkW(U0) + 1 and let V ′ ≤ W such that V ′ contains H as a
hyperplane. Then V ′ ∈ U+ and thus, V ′ ∈ P+

m by the induction hypothesis. Set
Vi := 〈pi, H〉 for 0 ≤ i < m. Then V ′ ∩ Un ≤ Vi ≤ 〈V ′, Un〉 and thus, Vi ∈ P+

m

by (TG3). Furthermore, S ∩ Un = S ∩ (
⋂

0≤i<m Vi) = S since S ≤ Un ∩ W and
〈W, Un〉 = 〈W, Vi | 0 ≤ i < m〉. Therefore we may restrain ourselves to the case
m = 1.

Let V ∈ U+ with S ≤ V ≤ 〈p0, W〉. If V ≤ W we obtain V ∈ P+
m by the

induction hypothesis. Thus, we may assume V � W. Then V ∩W is a hyperplane
of V since W is a hyperplane of 〈p0, W〉. First assume p0 /∈ V. Then 〈p0, V〉
intersects W in a subspace VW ∈ U+. Since S ≤ V ∩ W, we obtain VW ∈ P+

m by
the induction hypothesis. Furthermore, V and VW have the hyperplane V ∩ W in
common. Now (TG3) implies V ∈ P+

m if and only if 〈p0, V ∩ W〉 ∈ P+
m . Thus, we

may assume p0 ∈ V.

For V = Un there is nothing to prove. Hence, we may assume that there is a
point p ∈ V ∩ W r Un. Let H be a hyperplane of Un ∩ W containing
Un ∩ V ∩ W and let q ∈ W r 〈p, Un〉. The latter is possible since U0 6= U1

and hence, crkW(Un ∩ W) ≥ 2. Set V ′ := 〈p, q, H〉. Then V ′ ∈ P+
m by the

induction hypothesis and consequently U′
n := 〈p0, p, H〉 ∈ P+

m by (TG3) since
V ′ ∩ Un = H ≤ U′

n ≤ 〈V ′, Un〉. With Un ∩ V ≤ 〈p0, H〉 ≤ U′
n and p ∈ U′

n we
obtain crkV(U

′
n ∩ V) = crkV(Un ∩ V)− 1. Thus, repeating this argument implies

V ∈ P+
m .

(II) Now consider the case Un ≤ W and S � Un. Since S ≤ U0 there is a
hyperplane H of U0 with U0 ∩ Un ≤ H and S � H. We obtain 〈S, H〉 = U0 and
S ∩ Un ≤ H. Hence, for a point p ∈ Un r U0, we conclude S � 〈p, H〉 =: U′

n and
therefore U0 ∩U′

n = H. Set S′ := S ∩U′
n. Since H intersects S in a hyperplane, we

obtain crkS(S
′) = 1. Furthermore, S ∩ Un ≤ H implies S ∩ Un ≤ S′ and therefore

crkS′(S ∩ Un) = crkS(S ∩ Un) − 1. Hence, by the finiteness of crkS(S ∩ Un) we
may constrain ourselves to the case crkS(S ∩ Un) = 1.

Let V ∈ U+ with S ∩ Un ≤ V ≤ W. We show V ∈ P+
m . Therefore we may as-

sume V 6= Un. If S ≤ V, the claim follows from the induction hypothesis. Hence,
we may assume S � V and thus, S ∩ Un = S ∩ V since S ∩ Un is a hyperplane of
S. If S ≤ 〈V, Un〉, then for a subspace T ≤ 〈V, Un〉 that is a complement of 〈S, Un〉
in 〈V, Un〉, we obtain V ′ := 〈T, S〉 R Un since Un is a hyperplane of 〈S, Un〉. Now

V ′ ∈ P+
m by the induction hypothesis. With 〈V ′, Un〉 = 〈V, Un〉 and V ∩Un ≤ V ′,

we conclude V ∩ Un = V ′ ∩ Un. Hence, V ∈ P+
m follows from (TG3).

It remains to consider the case S � 〈V, Un〉. Since S ∩ Un < S < U0, there
is a non-empty subspace T ≤ V with T ∩ S = ∅ such that H := 〈T, S ∩ V〉 is a
hyperplane of V with H � Un ∩ V. Thus, V ′ := 〈T, S〉 R V and consequently,

V ′ ∈ P+
m by the induction hypothesis. If V ∩ Un ≤ H, let p ∈ Un r H. If V ∩

Un � H, let p ∈ V ∩ Un r H. Set U′
n := 〈p, H〉. Then Un ∩ V ≤ U′

n and hence
H � Un ∩ V implies Un ∩ V < U′

n ∩ V. Since V ′ ∩ 〈V, Un〉 = H, we obtain
V ′ ∩ Un ≤ V ∩ Un and therefore U′

n ∈ P+
m by (TG3). Thus, V ∈ P+

m by another
induction.
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(III) Finally, consider S � Un � W. As in (I) there is a natural number m ∈ N

and a family of points (pi)0≤i<m in Un r W such that 〈pi, W | 0 ≤ i < m〉 =
〈Un, W〉. Let H be a hyperplane of U0 containing S. Set Vi := Ui for 0 ≤ i < n
and Vi+n := 〈pi , H〉 for 0 ≤ i < m. Then 〈Vi | 0 ≤ i < m + n〉 = 〈W, Un〉 and
⋂

0≤i<n+m Vi. Hence, (I) implies V ∈ P+
m for every V ∈ U+ with S ≤ V ≤ 〈W, Un〉.

Now the claim follows by (II) since Un ≤ 〈Vi | 0 ≤ i < m + n〉 and
⋂

0≤i≤n+m Vi =
S ∩ Un.

The following proposition is axiom (TG3) in a much stronger version.

Proposition 2.9. Let n ∈ N and let (Ui)0≤i≤n be a family of elements of P+
m . Then

every subspace V ∈ U+ with
⋂

0≤i≤n Ui ≤ V is an element of P+
m .

Proof. Set S :=
⋂

0≤i≤n Ui. Since U0 is commensurate to every element of P+
m ,

the intersection U0 ∩ Ui has finite corank in U0 for every i ≤ n. Since n is finite,
this implies U0 ≷ S. Now let V ∈ U+ with S ≤ V. Then crkV(S) = crkU0

(S).
Hence by Lemma 2.7, there is a family (Ui)n<i≤m of elements of P+

m such that
V ≤ 〈S, Ui | n < i ≤ m〉, where m ∈ N with n ≤ m. Now

⋂

0≤i≤m Ui ≤ V ≤ 〈Ui |
0 ≤ i ≤ m〉 and the claim follows from Lemma 2.8.

The following corollary shows that if the rank of U+ is finite then the point-
line space S +

m is uniquely determined. More precisely, S +
m is the Grassmannian

of rk(U+)-spaces of S in this case. This justifies to regard partial twin Grassman-
nians as a generalization of Grassmannians.

Corollary 2.10. Let rk(U+) < ∞. Then S
+

m = D
+.

Proof. Let V ∈ U+ and take an arbitrary element W0 of P+
m . Set S0 := W0.

By Lemma 2.7 there is for every point p ∈ S0 r V a subspace W ∈ P−
m with

p ∈ W. Hence by (TG1), there is a subspace W1 ∈ P+
m with p /∈ W1 and we obtain

S1 := S0 ∩ W1 < S0. Since rk(S0) < ∞, we may repeat this argument to obtain
a finite family (Wi)0≤i≤n of elements of P+

m such that
⋂

0≤i≤n Wi ≤ V. Now the
claim follows from Proposition 2.9.

The analogous statement for finite corank does not hold as the following
example shows:

Example 2.11. Let V be a vector space over the field Q of dimension ℵ0 and let
V∗ := Hom(V, K) be the dual space of V. Let B := {bi | i ∈ N} be a basis of V
and let B∗ := { fi | i ∈ N} be the set of linearly independent vectors of V∗ such
that fi(bi) = 1 for every i ∈ N and fi(bj) = 0 for every j ∈ Nr {i}.

Let P be the set of 1-dimensional subspaces of V and let L be the set of 2-di-
mensional subspaces of V. Then (P ,L) is a projective space. Further let U be
the set of all hyperplanes of (P ,L) such that the corresponding hyperplane in
V is the kernel of an element of 〈B∗〉. Note that 〈B∗〉 � V∗ and hence U does
not contain all hyperplanes of (P ,L). More precisely, |U| = ℵ0, whereas (P ,L)
possesses 2ℵ0 hyperplanes.

Let k ∈ N. Then U+ := 〈〈bi〉 | 0 ≤ i ≤ k〉 ≤ (P ,L) is a subspace of rank k.
Further U− := 〈〈bi〉 | i > k〉 is a subspace of corank k + 1 in (P ,L) and a com-
plement to U−. Note that U− can be obtained as the intersection of finitely many
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elements of U. Let (S +, S −) be the twin Grassmannian of (P ,L) with respect to
(U+, U−). We will show that the points of S − that can be obtained as intersec-
tion of finitely many elements of U form a subspace of S − which we denote by
S

−
0 . Furthermore, we will show that (S +, S −

0 ) is a partial twin Grassmannian
of (P ,L) with respect to (U+, U−) .

Let n ∈ N and let ai ∈ Q for 0 ≤ i ≤ n with an 6= 0. Then the vector ∑i≤n aibi is
not contained in the kernel of ∑i≤n ai fi. This implies that every element of S + has
a complement in S

−
0 and vice versa. Furthermore, for i ≤ n, let gi ∈ 〈B∗〉. Then

g 7→ ker(g) maps the elements of 〈gi | i ≤ n〉 bijectively onto the hyperplanes of
V that contain

⋂

i≤n ker(gi). From these facts it follows that S
−

0 is a subspace of
S − and (S +, S −

0 ) is a partial twin Grassmannian.

The point-line space S
−

0 contains ℵ0 points, whereas S − contains 2ℵ0 points.
Moreover, S + and S

−
0 are isomorphic since V and 〈B∗〉 are isomorphic. There

are no twin Grassmannians such that both parts are isomorphic to S
+. Therefore

it is essential to consider the more general concept of partial twin Grassmannians
rather than restraining ourselves to twin Grassmannians.

Remark 2.12. Let (P ,L) be as in Example 2.11. Further let U+ and U− be comple-
mentary subspaces of (P ,L) that are both of infinite rank. Finally let (S +, S −)
be the twin Grassmannian of (P ,L) with respect to (U+, U−). Then both S − and
S + are infinite Grassmannians in the sense of [Kac90, Exercise 14.32, p. 339].

Remark 2.13. Partial twin Grassmannians can be seen as a generalization of Grass-
mannians. This is because every subspace of a projective space has a complement
and hence, every Grassmannian of k-spaces is together with the Grassmannian of
corank-(k + 1)-spaces a twin Grassmannian.

Conversely, Corollary 2.10 implies that whenever U+ has finite rank then D+

is a Grassmannian in the usual sense. Hence, the two parts of a partial twin
Grassmannian can be seen as Grassmannians of α-spaces, where α is an arbitrary
cardinal. However, the reader should keep in mind that if α is infinite and equals
the rank of S , then the corank β of the considered subspaces can be of any pos-
sible cardinal between 1 and α. Hence, in this case, it does not suffice to mention
the rank of the considered subspace. As long as β is smaller than α one can talk
about a Grassmannian of corank-β-spaces. If β equals α one should mention both
the rank and the corank.

Remark 2.14. The only case where U+ and U− are not disjoint is rk(S ) < ∞ and
rk(U+) = rk(U−). Moreover, by Corollary 2.10 this implies that P+

m and P−
m are

disjoint or equal.

3 Chamber systems

An abstract simplicial complex ∆ is a collection of sets such that B ∈ ∆ for any
subset B with B ⊆ A ∈ ∆. A partially ordered set of sets that is isomorphic to
a simplicial complex is also called a simplicial complex. A simplicial complex
possesses a smallest element that we denote by 0. An element that only contains
0 properly is called a vertex. An arbitrary element A of a simplicial complex ∆ is
called a simplex. A subcomplex ∆′ of a simplicial complex ∆ is a subset of ∆ such
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that ∆′ is again a simplicial complex. Let A be a simplex of a simplicial complex
∆. Then the set of all simplices of ∆ containing A is again a simplicial complex
called the residue of A in ∆ and denoted by res∆(A) or simply by res(A) if there
is no confusion about the underlying simplicial complex.

A simplicial complex ∆ is called a chamber complex if every element of ∆ is con-
tained in a maximal element of ∆ and if for two maximal elements C and C′ of ∆,
there exists a finite sequence (Ci)0≤i≤m such that |Ci r Ci+1| =
|Ci+1 r Ci| = 1 for every i < m. The maximal elements of a chamber complex are
called chambers. Two chambers C and C′ are called adjacent if |C r C′| = 1 and
a finite sequence (Ci)0≤i≤m such that Ci and Ci+1 are adjacent for every i < m
is called a gallery from C0 to Cm. A chamber complex is call thick (respectively
thin) if for any two adjacent chambers C and C′ the subset C ∩ C′ is contained
in at least three (respectively exactly two) chambers. It follows immediately that
in a chamber complex every two chambers have the same cardinality. Moreover,
|C r 0| = |C′ r 0| =: α for every two chambers C and C′. We call α the rank of ∆.

As in the previous section let Sm := ((P+
m ,L+

m), (P−
m ,L−

m)) be a partial twin
Grassmannian of a projective space S = (P ,L) with respect to (U+, U−). Let
Fσ ⊆ P(Pσ

m) be the set of finite subsets of Pσ
m and set Sσ := {

⋂

X, 〈
⋃

X〉 |
X ∈ Fσ} ⊆ P(P) for σ ∈ {+,−}. Note that every two elements of Sσ are
commensurate. Furthermore, if rk(Uσ) < ∞, we obtain ∅ ∈ Sσ and S ∈ S−σ.

Lemma 3.1. Let S and V be subspaces of S such that S ≤ V and crkV(S) < ∞. Then
S ∈ S+ implies V ∈ S+.

Proof. Let B be a set of crkV(S) points such that 〈B, S〉 = V.
First assume S = 〈

⋃

M〉 for a finite subset M of P+
m . Let U ∈ M. Let b ∈ B.

For every b ∈ B there is a subspace Ub ∈ P+
m that contains b by Lemma 2.7. By

(TG3) we may assume that U and Ub have a hyperplane in common. We conclude
V = 〈B, S〉 = 〈

⋃

b∈B Ub ∪
⋃

M〉 ∈ S+.
Now assume S =

⋂

M for a finite subset M of P+
m . Let U ∈ U+ be a subspace

with S ≤ U such that U ≤ V or V ≤ U holds. By Proposition 2.9 we know
U ∈ P+

m . For U ≤ V, we are in the situation above. Thus, we may assume
V < U. Then there is a set N ⊆ U+ of cardinality crkU(V) + 1 such that V =

⋂

N.
Proposition 2.9 implies N ⊆ P+

m since every element of N contains S. This implies
V ∈ S+.

Remark 3.2. Let V ∈ S+ and let S ≤ V with crkV(S) < ∞. Then V ∈ S+ does
not necessarily imply S ∈ S+. Indeed, suppose it would; since crkS (U+) < ∞

implies S ∈ S+, we would have P+
m = U+ whenever crkS (U+) < ∞. This

contradicts what we have seen in Example 2.11.

We now introduce a type function for the elements of S+ and S−: Let
σ ∈ {+,−}; then we define the type function typ : Sσ → Z such that:

typ(U) := 0

typ(V) := σn if crkV(U) = n and

typ(V) := −σn if crkU(V) = n

for subspaces U ∈ Pσ
m and V ∈ Sσ.
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Note that by this definition, two subspaces W ∈ S+ and W ′ ∈ S− that are
complementary in S are of the same type.

Let I be an index set and let {Ci | i ∈ I} be a family of chains of S+ such that
for two distinct indices i and j of I, either Ci ⊂ Cj or Cj ⊂ Ci. Then

⋃

i∈I is again

a chain of S+. Thus, Zorn’s Lemma implies that S+ possesses maximal chains.
For σ ∈ {+,−}, let Mσ denote the set of maximal chains of Sσ r {∅, S }. Since
any two subspaces that are elements of Sσ are commensurate, every element of
Mσ is a set M that contains a unique subspace U ∈ Sσ with typ(U) = n for every
n ∈ typ(Sσ r {∅, S }). For a chain M ∈ Mσ, we denote by M := M ∪ (Sσ ∩
{∅, S }) the corresponding maximal chain of Sσ.

Two chains M+ ∈ M+ and M− ∈ M− are called opposite if and only if for
every subspace V+ ∈ M+, there is a subspace V− ∈ M− that is a complement
to V+ in S . By the definition of M+ and M− we know that this definition is
symmetric.

Lemma 3.3. Let M+ ∈ M+ and let N− ⊆ S− be a chain such that for every subspace
V ∈ N− there is a complementary subspace U ≤ S with U ∈ M+. Then there is a
chain M− ∈ M− with N− ⊆ M− that is opposite M+.

Proof. First assume N− = ∅. Let U0 ∈ M+ ∩ P+
m . Then by (TG1) there is a

subspace V0 ∈ P−
m that is complementary to U0 in S . We show that there is a

chain M− ∈ M− with V0 ∈ M− that is opposite M+. Hence, from now on we
may assume N− 6= ∅.

Now let V0 ∈ N− such that V0 is not a hyperplane of any element of N− ∪ S .
Further let U0 ∈ M+ be the subspace that is a complement to V0 in S . Let
U1 ∈ M+ be the element that is a hyperplane of U0. Then 〈U1, V0〉 is a hyper-
plane of S . If U0 is not the maximal element of N−, let V2 ∈ N− be the smallest
subspace with V2 > V0. Then V2 is the complement to an element of M− and
hence 〈U1, V2〉 = S . Thus, there is a point p ∈ V2 r 〈U1, V0〉. If U0 is the maximal
element of N−, let p be an arbitrary point of S r 〈U1, V0〉. Then V1 := 〈p, V0〉 is a
complement to U1 in S and V1 ∈ S− by Lemma 3.1. Thus, N− ∪ {V1} is a chain
of S− such that every element of N− is the complement in S to an element in
M+. Hence by induction, it remains to prove the claim for non-empty chains N−

such that every element of N− is the hyperplane of an element either of N− or of
S .

If N− has no smallest element, N− is maximal and we are done. Thus, we may
assume that N− has a smallest element V0. Further we may assume rk(V0) > 0
since otherwise we are done. Let U0 and U1 be the elements of M+ such that U0

is a complement to V0 in S and a hyperplane of U1. Then U1 and V0 intersect in a
point p. By Lemma 2.7 there is a subspace W ′ ∈ P+

m that contains p and hence by
(TG1) there is a subspace W ∈ P−

m with p /∈ W. If V0 ≥ V for a subspace V ∈ P−
m ,

we set S := V ∩W; otherwise we set S := V0 ∩ S. In both cases we obtain S ∈ S−.
Since S ≤ V0 and p /∈ S, there is a hyperplane V1 of V0 with p /∈ V0 and S ≤ V1.
Now V1 is a complement of U1 in S and we conclude V1 ∈ S− by Lemma 3.1.
Now the claim follows by induction.

Note that for every chain M+ ∈ M+ there is an opposite chain M− ∈ M−

since in the previous lemma N− might be empty. In the following let M+ ∈ M+
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and M− ∈ M− be opposite chains. By the previous lemma we may assume
U+ ∈ M+ and U− ∈ M−. For σ ∈ {+,−}, let Cσ := {M ∈ Mσ | |M r Mσ| <
∞} be the set of all maximal chains of Sσ that differ from Mσ in finitely many
positions.

Proposition 3.4. For every chain N+ ∈ C+, there is a chain N− ∈ C− that is opposite
N+.

Proof. We may assume N+ 6= M+ since otherwise we are done by setting
N− := M−. Since N+ r M+ is a finite set, there are subspaces U0 and U1 in N+

such that U ∈ N+ for every U ∈ M+ with U < U0 or U > U1. Let V0 and V1 be the
elements of M− such that (U0, V0) and (U1, V1) are pairs of complements in S . By
Lemma 3.3 there is a chain N− ∈ M− with N− ⊇ M−r {V ∈ M− | V1 ≤ V ≤ V0}
that is opposite N+. The claim follows with crkV0

(V1) < ∞.

For σ ∈ {+,−}, we denote by ∆σ the set of all chains of Sσ that are subchains
of an element of Cσ. In other words, a chain C of Sσ is an element of ∆σ if and
only if |C r Mσ| < ∞ and C ∩ {∅, S } = ∅. Clearly, ∆σ is a simplicial complex.

Theorem 3.5. The simplicial complex ∆+ is a chamber complex, where C+ is the set of
chambers.

Proof. By definition every element of ∆+ is contained in an element of C+. Hence,
it suffices to check that for every C ∈ C+ there is a gallery (Ci)0≤i≤n from C0 = C
to Cn = M+.

We may assume C 6= M+. Let V1 ∈ C such that V1 /∈ M+ and U ∈ M+ for
every U ∈ C with U < V1. Let V0 be the hyperplane of V1 that is an element of
both C and M+. For i ∈ N and i < crkS (V0) let Ui ∈ M+ and Vi ∈ C such that
crkUi

(V0) = crkVi
(V0) = i. Further let k ∈ N be minimal such that U ∈ M+ for

every U ∈ C with U ≥ Vk and set C′ := C r {Vi | 0 < i < k} = M+ r {Ui |
0 < i < k}.

For 0 < i < k, we define recursively subspaces V ′
i in the following way: If

Vi ≤ Uk−1, set V ′
i := Vi. Otherwise set V ′

i := Vi+1 ∩ Uk−1. In the second case
Vi ≤ Vi+1 implies Vi+1 � Uk−1. Moreover, since Vi+1 ≤ Uk and Uk−1 is a hyper-
plane of Uk, we conclude that Uk−1 intersects Vi+1 in a hyperplane. Thus, in any
case V ′

i is a hyperplane of Vi+1 and a subspace of Uk−1. Setting V ′
0 := V0 we obtain

that V ′
i−1 is a subspace of all Vi, Vi+1 and Uk−1. Thus, in any case V ′

i−1 is a subspace
of V ′

i . This implies that C0 := C and Ci := C′ ∪ {V ′
j | 0 < j ≤ i} ∪ {Vj | i < j < k}

for 0 < i < k are all elements of C+. Moreover, |Ci r Ci+1| = |Ci+1 r Ci| ≤ 1 for
i < k − 1.

Note that V ′
k−1 = Uk−1. Hence, U ∈ M+ for every U ∈ Ck−1 with U ≥ V ′

k−1
and U ≤ V0. Thus, repeating the previous construction at most k − 2 more times
finishes the proof.
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4 Buildings

Recall that in Definition 2.2 the projective space may have short lines. Consider-
ing only non-degenerate projective spaces, some of the following results can be
obtained by applying the results of [Müh98] and [DMVM12]. We will show that
the restriction to the non-degenerate case is not necessary. It suffices to claim the
axiom (VY).

A morphism of simplicial complexes is a map ϕ : ∆ → ∆′ from a simplicial com-
plex into another such that for any simplex A ∈ ∆ the poset {X ∈ ∆ | X ≤ A}
is mapped isomorphically onto {X ∈ ∆′ | X ≤ Aϕ}. Note that ϕ induces a map
from the set of vertices of ∆ into the set of vertices of ∆′ which determines ϕ
uniquely. A morphism of chamber complexes is a morphism of simplicial complexes
such that chambers are mapped onto chambers.

Definition 4.1. Let ∆ be a simplicial complex and let A be a set of subcomplexes
of ∆. The pair (∆,A) is called a building of which the elements of A are called
apartments if the following conditions hold:

(B1) ∆ is thick.

(B2) The elements of A are thin chamber complexes.

(B3) Any two elements of ∆ belong to an apartment.

(B4) If two apartments Σ and Σ′ contain two common simplices A and A′, there
exists an isomorphism of Σ onto Σ′ which leaves A, A′ and all simplices
contained in one of them invariant.

A pair (∆,A) is called a weak building if it satisfies the axioms (B2), (B3) and (B4).

Let S be a projective space and for σ ∈ {+,−}, let Uσ, Mσ, Cσ and ∆σ be as
in the previous section. By I we denote the set of all independent sets of points
of S . Now let Tσ ⊆ Mσ × I be the set of all pairs (U, B) for which there exists a
subspace V ∈ Mσ such that the following conditions are fulfilled:

(T1) For any two subspaces {X, Y} ⊆ {W ∈ Mσ | W ≤ U ∨ W ≥ V} with
X ≤ Y, the identity crkY(X) = B ∩ Y r X holds.

(T2) For every point p ∈ B, there are subspaces X and Y in Mσ with p ∈ Y r X.

Remark 4.2. Let (U, B) ∈ T+ and let V ∈ M+ such that (T1) and (T2) are fulfilled.
Then obviously, (T1) and (T2) are fulfilled for (U, B) and every V ′ with V ′ ∈ M+

and V ′ ≥ V. It follows that there exists a minimal subspace V ∈ Mσ under the
condition that (T1) and (T2) are fulfilled and V ≥ U.

Motivated by this remark we denote for a pair (U, B) ∈ T+ the smallest sub-
space V with U ≤ V ∈ Mσ for which (T1) and (T2) are fulfilled by Vµ(U, B).

Remark 4.3. Let U0 and V0 be two arbitrary elements of M+ with U0 ≤ V0. For
0 ≤ i ≤ rk(U0), let Ui+1 ∈ M+ be the subspace with crkU0

(Ui+1) = i + 1 and

let pi be any point of Ui r Ui+1. For 0 ≤ i < crkS (V0) let Vi+1 ∈ M+ be the
subspace with crkVi+1

(V0) = i + 1 and let qi be any point of Vi+1 r Vi. Further
let B0 ⊆ V0 r U0 be an independent set of points with |B0| = crkV0

(U0). Set
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B := B0 ∪ {pi | i ≤ rk(U0)} ∪ {qi | i < crkS (V0)}. Then (U0, B) ∈ T. Moreover,
every element of T can be obtained in this way.

For a pair (U, B) ∈ Tσ, we set

S(U, B) := {〈I, W〉 | I ⊆ B ∧ |I| < ∞ , W ∈ Mσ ∧ W ≤ U} and

Σ(U, B) := {C ∈ ∆σ | C ⊆ S(U, B)}

Lemma 4.4. Let (U, B) ∈ T+ and set F := {I ⊆ B | |I| < ∞}.

(a) Let X ∈ M+ with X ≤ U or X ≥ Vµ(U, B). Then X ∈ S(U, B).

(b) Let V and W be elements of M+ with W ≤ V ≤ U. Then {〈I, W〉 | I ∈ F} ⊇
{〈I, V〉 | I ∈ F}.

(c) Let V and W be elements of S(U, B) with W ≤ V. Then 〈B ∩ V r W, W〉 = V
and |B ∩ V rW| = crkV(W).

Proof. Claim (a) is a direct consequence of (T1) and the fact that B is indepen-
dent. By the same arguments there is a set of points I ∈ F such that V = 〈I, W〉
for elements V and W of M+. This proves claim (b). Now let V and W be arbi-
trary elements of S(U, B) with W ≤ V. Then (b) implies that there is a subspace
X ∈ M+ such that {〈I, W〉 | I ∈ F} contains both V and W. Now (c) follows since
B is independent.

We proceed by introducing certain groups that play an import role in the
theory of buildings. See also [AS08, section 2.4] for the following definition.

Definition 4.5. Let (W, S) be a pair consisting of a group W and a set S of
reflections such that W admits the presentation 〈S | (st)ms,t = 1〉, where ms,t is
the order of st ∈ W and for any pair (s, t) ∈ S × S, there is a relation. Then we
call (W, S) a Coxeter system and W a Coxeter group.

Remark 4.6. We denote by Sym0(Z) the subgroup of the symmetric group Sym(Z)
that contains all permutations π ∈ Sym(Z) for which {z ∈ Z | z 6= zπ} is finite.
Let si ∈ Sym0(Z) be the transposition that exchanges i and i + 1 and fixes all
other numbers. Then (Sym0(Z), {si | i ∈ Z}) is a Coxeter system.

In the following we are interested in permutations of the set typ(M+ r {∅});
note that this set might differ from Z. Therefore we denote by S∆ the set of all
transpositions si with i ∈ typ(M+). Then 〈S∆〉 is the subgroup of Sym0(Z) that

stabilises Zr typ(M+ r {∅}) pointwise. Note that there are the following four
cases:

M+ r {∅} = {−n, . . . , m}

M+ r {∅} = {i ∈ Z | i ≥ −n}

M+ r {∅} = {i ∈ Z | i ≤ m}

M+ r {∅} = Z ,

where n and m are positive Integers. One of the first two cases occurs when the
underlying point-line space is a Grassmannian in the usual sense. The third case
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occurs for Grassmannian of corank-m-spaces and the last case occurs whenever
both rk(M+) and crkS (M+) are infinite.

Let C ∈ C+ be a chamber and for i ∈ typ(C), let Ui ∈ C denote the ele-
ment of type i. Further let (U, B) ∈ T+ such that C ∈ Σ(U, B). Then for every
i ∈ typ(C r {∅}), there is exactly one point pi ∈ B with pi ∈ Ui r Ui−1.

Now let π ∈ 〈S∆〉 be a permutation. Then there is exactly one chamber D in
Σ(U, B) such that piπ ∈ Vi rVi−1, where Vj ∈ D denotes the element of type j for

every j ∈ typ(C). We define C(π,B) := D.

Lemma 4.7. Let C ∈ C+ ∩ Σ(U, B), where (U, B) ∈ T+, and let π ∈ 〈S∆〉. Then for

every i ∈ Z, the chambers C(π,B) and C(siπ,B) are adjacent and differ in the element of
type i.

Proof. For i ∈ typ(C), let Ui ∈ C, Vi ∈ C(π,B) and Wi ∈ C(siπ,B) be the subspaces
of type i. Further let (U, B) ∈ T+ such that C ∈ Σ(U, B) and let pi ∈ B denote the
point with pi ∈ Ui rUi−1. Now let i ∈ typ(C) and let j ∈ typ(C)r{i, i+ 1}. Then
jsi = j and hence, pjsiπ = pjπ . Analogously, pisiπ = p(i+1)π and p(i+1)siπ = piπ .

This implies Vj = Wj for every j ∈ Zr {i}.

Proposition 4.8. Let (U, B) ∈ T+. Then Σ(U, B) is a thin chamber complex whose set
of chambers is C+ ∩ Σ(U, B).

Proof. Let A ∈ Σ(U, B). Since A ∈ ∆+, there are subspaces U′ ≤ U and V ′ ≥
Vµ(U, B) in M+ such that U′

< X < V ′ for every X ∈ A r M+. By Lemma 4.4(a)
we obtain X ∈ S(U, B) for every subspace X ∈ M+ with X ≤ U′ or X ≥ V ′.
Furthermore, A′ := A ∪ {X ∈ M+ | X ≤ U′ ∨ X ≥ V ′} is a chain and therefore
an element of Σ(U, B).

Let W ′ and W be two elements of A′ with U′ ≤ W ′
< W ≤ V ′ such that there

is no subspace X ∈ A′ with W ′
< X < W. By Lemma 4.4(c) we know that W ′

and W are both contained in {〈I, U′〉 | I ⊆ B ∧ |I| < ∞} and furthermore,
|B ∩ W r W ′| = crkW(W ′). Thus, there are subspaces Wi ∈ {〈I, U′〉 | I ⊆ B ∧
|I| < ∞} for 0 < i < crkW(W ′) with W ′ ≤ Wi < W such that crkWi

(W ′) = i.
Adding for each choice of W ′ and W the subspaces Wi to A′ leads to a chain C
that is contained in C+ ∩ Σ(U, B). Since C is maximal in ∆+ it is also maximal in
Σ(U, B). Thus, C(U, B) := C+∩Σ(U, B) is the set of maximal elements of Σ(U, B).

Let C and C′ be two elements of C(U, B). Then again there are subspaces
U′

< U and V ′
> Vµ(U, B) in M+ such that MC := {X ∈ M+ | X ≤ U′ ∨ X ≥

V ′} ⊆ C ∩ C′. Thus, there is a permutation π ∈ 〈S∆〉 such that C(π,B) = C′.
It follows from Remark 4.6 and Lemma 4.7 that there is a sequence of adjacent
chambers from C to C′. This proves that Σ(U, B) is a chamber complex whose set
of chambers is C(U, B).

Now assume that C and C′ are adjacent. Then there are subspaces W ∈ C and
W ′ ∈ C′ such that C r {W} = C′ r {W ′}. Let X and Y be the elements of C with
crkX(W) = crkW(Y) = 1. Then X = 〈W, W ′〉 and Y = W ∩ W ′. By Lemma 4.4(c)
there are exactly two points p and q in B ∩ X r Y and hence, every element of
C(U, B) containing C r {W} contains either 〈p, Y〉 or 〈q, Y〉. We conclude that Σ

is a thin chamber complex.
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Let (U, B) ∈ T+. Then for a subspace W ∈ M+ with U < W < Vµ(U, B), the
singleton {W} is a vertex of Σ(U, B) if and only if 〈W ∩ B, U〉 = W. This implies
that M+ is not necessarily a chamber of Σ(U, B).

Lemma 4.9. Let S be a projective space of finite rank n and let {Ci | 0 ≤ i ≤ n} and
{Di | 0 ≤ i ≤ n} be chains of subspaces of S with rk(Ci) = rk(Di) = i and let C−1 =
D−1 = ∅. Set π : {0, . . . , n} → {0, . . . , n} such that iπ = min{j ≤ n | 〈Ci−1, Dj〉 ≥
Ci}. Then π is a permutation. Furthermore, i = min{j ≤ n | 〈Cj, Diπ−1〉 ≥ Diπ}.

Proof. Since 〈Ci−1, Dn〉 ≥ Ci for every i ≤ n, we obtain iπ ∈ {0, . . . , n}. Sup-
pose there are indices 0 ≤ j < i < n with jπ = iπ =: k. Then there are points
p ∈ Cj r Cj−1 and q ∈ Ci r Ci−1 that are both contained in Dk r Dk−1. This im-
plies p 6= q. Thus, the line pq intersects the hyperplane Dk−1 of Dk in a point
r 6= p. With q ∈ Ci r Ci−1 and p ∈ Ci−1, we obtain r /∈ Ci−1 and therefore
r ∈ (Ci ∩ Dk−1)rCi−1, a contradiction to the definition of iπ. Thus, π is a permu-
tation.

Analogously, there is a permutation ψ such that iψ = min{j ≤ n | 〈Cj, Di−1〉 ≥
Di} for every i ≤ n. Since there is a point p ∈ Ci r Ci−1 with p ∈ Diπ r Diπ−1.
Hence, (iπ)ψ ≤ i. This implies that the permutation ψ ◦ π is the identity. The
claim follows.

Proposition 4.10. For any two simplices C and D of ∆+ there is a pair (U, B) ∈ T+

such that {C, D} ⊆ Σ(U, B).

Proof. Since both C and D are contained in a chamber of ∆+, it suffices to prove
the claim for the case that both C and D are chambers. Let U and V be elements
of C ∩ D such that {X ∈ C | X ≤ U ∨ X ≥ V} ⊆ D ∩ M+. If C = D = M+, we
choose U = V = U+.

Set k := crkV(U). For 0 ≤ i ≤ k, let Xi ∈ C and Yi ∈ D be the subspaces
with crkXi

(U) = crkYi
(U) = i. Let S ≤ V be a subspace of rank k − 1 that

is complementary to U in V. Then rk(S ∩ Xi) = rk(S ∩ Yi) = i − 1. Thus we
may apply Lemma 4.9 to conclude that there are points ri for 0 ≤ i < k and a
permutation π of {0, . . . , k − 1} such that ri ∈ S ∩ Xi+1 ∩ Yiπ+1 and ri /∈ Xi ∪ Yiπ .
This implies Xi = 〈rj, U | j < i〉 and Yi = 〈rj, U | jπ

< i〉 for i ≤ k.

Now for i ∈ N with i ≤ rk(U), let Ui+1 ∈ M+ be the subspace with
crkU(Ui+1) = i + 1 and choose a point pi ∈ Ui rUi+1. Correspondingly, for i ∈ N

and i < crkS (V), let Vi+1 ∈ M+ be the subspace with crkVi+1
(V) = i + 1 and let

qi ∈ Vi+1 rVi. Set B := {ri | i < k} ∪ {pi | i ≤ rk(U)} ∪ {qi | i < crkS (V)}. Then
(U, B) ∈ T+ and C and D are both contained in Σ(U, B).

Lemma 4.11. Let (U, B) ∈ T+. Further let V and W be elements of S(U, B). Then
V ∩ W and 〈V, W〉 are again contained in S(U, B).

Proof. By definition of S(U, B) there is a maximal subspace U′ ∈ M+ with U′ ≤
V ∩ W. By Lemma 4.4(c) there are finite subsets BV and BW of B r U′ such that
V = 〈BV , U′〉 and W = 〈BW , U′〉. This implies 〈V, W〉 = 〈BV ∪ BW, U′〉 ∈
S(U, B). Since B is an independent set of points, we conclude |BW r BV | =
crk〈V,W〉(V) = crkW(V ∩W). Thus, crkV∩W(U′) = |BW|− |BW rBV | = |BW ∩BV |

and therefore V ∩ W = 〈BV ∩ BW , U′〉 ∈ S(U, B).
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Lemma 4.12. Let (U, B) ∈ T+ and let U′ ∈ M+ with U′ ≤ U. Then Σ(U′, B) =
Σ(U, B).

Proof. As a direct consequence of Lemma 4.4(b) we conclude S(U′, B) = S(U, B).
The claim follows.

Proposition 4.13. Let C and D be two simplices of ∆+ and let (U0, B0) and (U1, B1) be
two pairs of T+ such that {C, D} ⊆ Σ(U0, B0) ∩ Σ(U1, B1). Then there is an isomor-
phism ϕ : Σ(U0, B0) → Σ(U1, B1) that leaves every simplex that is contained in C or D
invariant.

Proof. First of all, we may assume U0 = U1 =: U by Lemma 4.12. Moreover, since
both C and D are elements of ∆+ we may assume X > U for every subspace
X ∈ (C ∪ D)r M+. Correspondingly, let V ∈ M+ such that X < V for every
subspace X ∈ (C ∪ D)r M+. If C ∪ D ⊆ M+, we set V := U. We denote by PC

(resp. PD) the set of all pairs (W, W ′), where W and W ′ are subspaces contained
in C (resp. D) such that U ≤ W < W ′ ≤ V and X ≥ W ′ for every X ∈ C (resp.
X ∈ D) with X > W.

We may prove the claim for simplices {C′, D′} ⊆ Σ(U, B0) ∩ Σ(U, B1) with
C ⊆ C′ and D ⊆ D′. Hence, by Lemma 4.4(a) we may assume {X ∈ M+ |
X ≤ U ∨ X ≥ V} ⊆ C ∩ D. Let (X0, X1) ∈ PC and let (Y0, Y1) ∈ PD. By
Lemma 4.11 we know that X′ := 〈X0, X1 ∩ Y0〉 is contained in both S(U, B0) and
S(U, B1). Furthermore, X′ is comparable to every element of C. Thus, we may
assume X′ ∈ C or, equivalently, that X1 ∩ Y0 * X0 implies 〈X0, X1 ∩ Y0〉 = X1.
Analogously, we may assume that Y1 ∩ X0 * Y0 implies 〈Y0, Y1 ∩ X0〉 = Y1. We
refer to this assumption as (∗).

Let (X0, X1) ∈ PC and let (Y0, Y1) ∈ PD such that Y1 is minimal under the
condition (X1 r X0) ∩ Y1 6= ∅. By (∗) this is equivalent to (X1 ∩ Y0 ≤ X0 and
〈X0, X1 ∩ Y1〉 = X1). This yields crkX1∩Y1

(X1 ∩ Y0) = crkX1
(X0). By Lemma 4.11

we know that X1 ∩ Y0 and X1 ∩ Y1 are both contained in S(U, B0) ∩ S(U, B1).
Thus for i ∈ {0, 1}, Lemma 4.4(c) implies |Bi ∩ X1 ∩ Y1 r Y0| = |Bi ∩ X1 r X0|.
Since 〈X0, X1 ∩ Y1〉 = X1 and X1 ∩ Y0 ≤ X0, we conclude Bi ∩ X1 ∩ Y1 r Y0 =
Bi ∩ X1 r X0.

Particularly, this implies Bi ∩ X1 r X0 ⊆ Bi ∩ Y1 r Y0 for i ∈ {0, 1}. By analo-
gous reasons, there is a pair (X′

0, X′
1) ∈ PC such that Bi ∩ Y1 r Y0 ⊆

Bi ∩ X′
1 r X′

0. Since X1 r X0 and X′
1 r X′

0 are either equal or disjoint, this yields
(X′

0, X′
1) = (X0, X1) and thus, Bi ∩ X1 r X0 = Bi ∩ Y1 r Y0. We conclude that

mapping (X0, X1) to (Y0, Y1) induces a bijection ψ from PC onto PD such that

Bi ∩ W1 rW0 = Bi ∩ W
ψ
1 rW

ψ
0 for every (W0, W1) ∈ PC and i ∈ {0, 1}.

Set C := C ∪ ({∅, S } ∩S(U, B0)). We define a map ϕ′ : B0 → B1 such that
for every two successive subspaces X0 < X1 of C the following holds: If X1 ≤ U
or X0 ≥ V, the unique point of B0 ∩ X1 r X0 is mapped on the unique point
of B1 ∩ X1 r X0. Otherwise (X0, X1) ∈ PC and the points of B0 ∩ X1 r X0 are
mapped bijectively onto the points of B1 ∩ X1 r X0. Finally, we define a map

ϕ : S(U, B0) → S(U, B1) such that 〈I, W〉ϕ = 〈Iϕ′
, W〉 for every finite subset

I ⊆ B0 and every subspace W ∈ M+ with W ≤ U. It is straightforward to check
that this map induces a well-defined isomorphism from Σ(U, B0) onto Σ(U, B1)
that leaves every simplex that is contained in C or D invariant.
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For σ ∈ {+,−}, we set Aσ := {Σ(U, B) | (U, B) ∈ Tσ}.

Theorem 4.14. For σ ∈ {+,−}, the pair (∆σ,Aσ) is a weak building. Moreover,
(∆σ,Aσ) is a building if and only if all short lines of S intersect

⋂

Mσ or S r
⋃

Mσ.

Proof. Axioms (B2), (B3) and (B4) follow from the Propositions 4.8, 4.10 and 4.13.
Thus, (∆σ,Aσ) is a weak building.

Set S :=
⋂

Mσ and T :=
⋃

Mσ. First assume that every line of T that is
disjoint to S is a thick line. Let C and C′ be two adjacent chambers of ∆σ and
let V and V ′ be the subspaces of S with C r C′ = {V} and C′ r C = {V ′}.
Set U := V ∩ V ′ and W := 〈V, V ′〉. Then crkW(U) = 2. Hence, there is a line
l ≤ W that is disjoint to U. Since U ≥ S and W ≤ T, this implies that l is thick.
Now for every point p ∈ l, the subspace Vp := 〈p, U〉 intersects l in p. Moreover,
(C r {V}) ∪ {Vp} ∈ Cσ. Thus, ∆σ is thick.

Now assume there is a short line l with l ⊆ T r S. Then there are subspaces
U ∈ Mσ and W ∈ Mσ with l ⊆ W rU. Thus, there is a chamber C ∈ Cσ such that
U and 〈l, U〉 are elements of C. Let p and q be the two points of l. We may assume
〈p, U〉 ∈ C. Then there are exactly two chambers in Cσ that contain C r {〈l, U〉}.
Thus, ∆σ is not thick.

5 Twin buildings

Throughout this section, let ∆σ, Cσ, Aσ and Tσ be defined as in the previous sec-
tion, where σ ∈ {+,−}. Moreover, let si ∈ S∆ be the permutation that exchanges
i and i + 1.

In order to introduce twin buildings, we define a certain distance function on
C+ that is based on the Coxeter system (〈S∆〉, S∆) in the following way: Let C and
D be two adjacent chambers of C+. Further let V ∈ C be the subspace that is not
contained in D. We say that C and D are si-adjacent, where i = typ(V). Now let
(Ci)i≤n be a gallery, such that Ci and Ci+1 are ti-adjacent with ti ∈ S∆ for i < n.
Then we call the gallery (Ci)i≤n of type (ti)i<n. A gallery from C to D is called
minimal if there is no shorter gallery from C to D.

Let (W, S) be a Coxeter system. A word t0t1 · · · tn, where n ∈ N and ti ∈ S for
i ≤ n is called a reduced word if for every word r0r1 · · · rm = t0t1 · · · tn ∈ W with
ri ∈ S, we have m ≥ n.

Proposition 5.1. Let C and D be two chambers of C+ and let (Ci)i≤n and (Di)i≤n be two
minimal galleries from C to D. Further let (Ci)i≤n be of type (ti)i<n and let (Di)i≤n be
of type (ri)i<n. Then t0t1 · · · tn−1 = r0r1 · · · rn−1 and both are reduced words of (W, S).

Proof. This is an immediate consequence of [AS08, Lemma 5.16].

This result motivates the following definition. We define the Weyl distance
only for the buildings we are dealing with in this context although this a funda-
mental concept for buildings in general.

Definition 5.2. Let C and D be two chambers of C+ such that there is a minimal
gallery from C to D of type (t0, . . . , tn). Then we call w = t0t1 · · · tn ∈ 〈S∆〉 the
Weyl distance from C to D, denoted by δ+(C, D). By l(w) := n we denote the
length of w with respect to (〈S∆〉, S∆).
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Note that if δ(C, D) = w, then δ(D, C) = w−1. This is an immediate conse-
quence of Proposition 5.1. Let B be a building and let (W, S) be a Coxeter system
such that B has a Weyl distance defined by (W, S). Then we call B of type (W, S).

We now introduce twin buildings following [AS08, 5.8].

Definition 5.3. Let (W, S) be a Coxeter system and let B+ and B− be the sets
of chambers of buildings C+ and C− of type (W, S) together with a codistance
function

δ : (B+ × B−) ∪ (B− × B+) → W

satisfying the following conditions for each pair of chambers (C, D) ∈ Bσ × B−σ,
where σ ∈ {+,−}, w := δ(C, D) and δσ denotes the Weyl distance of Bσ.

(TW1) δ(C, D) = δ(D, C)−.

(TW2) Let C′ ∈ Bσ with δσ(C′, C) = s ∈ S and l(sw) < l(w). Then δ(C′, D) =
sw.

(TW3) For any s ∈ S, there exists a chamber C′ ∈ Bσ with δσ(C′, C) = s and
δ(C′, D) = sw.

Then we call (C+,C−) a twin building of type (W, S) with codistance function δ.

To prove that (∆+, ∆−) is a twin building of type (〈S∆〉, S∆), we define a codis-
tance function for (∆+, ∆−) with values in 〈S∆〉 and show that it satisfies the ax-
ioms (TW1), (TW2) and (TW3).

For σ ∈ {+,−}, let C ∈ Cσ and D ∈ C−σ. Since Mσ differs in only finitely
many elements from C and M−σ differs in only finitely many elements from D,
there are subspaces U ∈ C and V ∈ C of S such that for every subspace W ∈ C
with W ≥ V or W ≤ U there is a complementary subspace W ′ in S with W ′ ∈ D.
Let U′ ∈ D and V ′ ∈ D be the complementary subspaces to U and V, respectively.

Set S := V ∩ U′. Then S is a complement to U in V and a complement to V ′

in U′. Now let D′ := {W ∈ C | W ≤ U ∨ W ≥ V} ∪ {〈S ∩ W, U〉 | W ∈ D} be
the chamber that arises by substituting the subspaces of C between U and V by
subspaces that are the span of U and S ∩ W with W ∈ D and V ′ ≤ W ≤ U′. Note
that for every subspace W ′ ∈ C with U ≤ W ′ ≤ V ′ there is exactly one subspace
W ∈ D and V ′ ≤ W ≤ U′ such that W ′ R 〈U, S ∩ W〉. We define a partial map

ψσ : Cσ × Mσ × Mσ × C−σ → Cσ such that ψ(C, U, V, D) := D′. In the following,
we will write ψ rather than ψσ.

In the following lemma for two integers i < j, we denote by wi,j ∈ 〈S∆〉 the
involution that exchanges i + k and j − k for every k ∈ N with 2k < i − j.

Lemma 5.4. Let C ∈ C+ and D ∈ C−. Further let U ∈ C and V ∈ C be subspaces of S

such that for every subspace W ∈ C with W ≥ V or W ≤ U there is a complementary
subspace W ′ in S with W ′ ∈ D. Set i := typ(U) and j := typ(V) and let U′ ∈ C
with typ(U′) = i − 1 and V ′ ∈ C with typ(V ′) = j + 1. Then

δ+ (C, ψ(C, U, V, D)) · wi+1,j = δ+
(

C, ψ(C, U′, V, D)
)

· wi,j

= δ+
(

C, ψ(C, U, V ′, D)
)

· wi+1,j+1.
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Proof. By Wk we denote the element of C of type k. Analogously, we denote the
element of D of type k by W ′

k. Let (W, B) ∈ T+ such that Σ := Σ(W, B) is an apart-
ment that contains both C and ψ(C, U′, V, D). Since both, C and ψ(C, U′, V, D)
contain the subspaces V and V ′, we can choose B such that the point of B∩V ′rV
is the unique point of V ′ ∩W ′

j , which we denote by p. Set S := V ∩W ′
i−1. Further

set Sk := S ∩ W ′
j−k for 0 < k ≤ j − i + 1 and set S0 = ∅. Then rk(Sk) = k − 1 for

every k ≤ j − i + 1.
Note that Sk = V ∩ W ′

j−k and 〈p, Sk〉 = V ′ ∩ W ′
j−k for k ≤ j − i + 1. Thus, the

element of ψ(C, U, V, D) of type i + k equals 〈U, Sk〉 = 〈U, 〈U′ , Sk〉〉 for k ≤ j − i.
Since both U and 〈U′, Sk〉 are contained in S(U, B), Lemma 4.11 implies 〈U, Sk〉 ∈
S(U, B) and therefore ψ(C, U, V, D) ∈ Σ. Finally, for k ≤ j− i, the element of type
i + k + 1 of ψ(C, U, V ′, D) is 〈U, p, Sk〉. Since p ∈ B and 〈U, Sk〉 ∈ S(U, B), we
conclude 〈U, p, Sk〉 ∈ S(U, B). Hence, ψ(C, U, V ′, D) is an element of Σ.

By Lemma 4.4(c) there is for every 0 ≤ k ≤ j − i exactly one point pk ∈ B with
pk ∈ 〈U′, Sk+1〉r 〈U′, Sk〉. Since pk /∈ U for every k < j − i and 〈sk, U′ | k ≤ j − i〉,

we obtain pj−i ∈ U r U′ by Lemma 4.4(c). This implies (ψ(C, U, V, D))(π0 ,B) =

ψ(C, U, V ′, D) for π0 = si+1si+2 · · · sj. Let π ∈ 〈S∆〉 such that C(π,B) = ψ(C, U, V,
D). By Lemma 4.7, there is a gallery of type (sj, sj−1, . . . , si+1) from ψ(C, U, V, D)

to ψ(C, U, V ′, D). Since π−1 has j − i inversions, sjsj−1 · · · si+1 is a reduced word

and hence, δ+(C, ψ(C, U, V, D)) = π−1 by Proposition 5.1. By calculation, we

obtain C(π0π,B) = ψ(C, U, V ′, D) and hence, δ+(C, ψ(C, U, V, D)) = π−1π0
−1.

With wi+1,j+1 = π0wi+1,j we calculate π−1wi+1,j = π−1π0
−1wi+1,j+1.

Analogously, (ψ(C, U, V, D))(π1 ,B) = ψ(C, U′, V, D) for π1 = sj−1sj−2 · · · si

and hence, δ+(C, ψ(C, U′, V, D)) = π−1π1
−1. Finally, π−1wi+1,j = π−1π1

−1wi,j

completes the proof.

Motivated by the previous lemma, we define a codistance function δ for
(∆+ , ∆−) in the following way:

Definition 5.5. For σ ∈ {+,−}, let C ∈ Cσ and D ∈ C−σ. Further let U ∈ C and
V ∈ C be subspaces of S such that for every subspace W ∈ C with W ≥ V or
W ≤ U there is a complementary subspace W ′ in S with W ′ ∈ D. Set i := typ(U)
and j := typ(V). Then

δ(C, D) := δσ (C, ψ(C, U, V, D)) · wi+1,j.

Correspondingly to what we defined for C+, let C ∈ C− and let (U, B) ∈ T−

such that C ∈ Σ(U, B). For i ∈ typ(M−) let Ui ∈ C be the the subspace of type i.
Further, for i ∈ typ(M− r {S }), let pi ∈ B be the unique point that is contained

in Ui−1 r Ui. Then for a permutation π ∈ 〈S∆〉, we define C(π,B) := {〈piπ , U−∞ |
i ≤ j〉 | j ∈ typ(C)}, where U−∞ :=

⋂

M−.

Proposition 5.6. Let C ∈ C+ and D ∈ C−. Then δ(C, D) = δ(D, C)−1.

Proof. Let Ui ∈ C and Vi ∈ D denote the subspaces of type i. Let l and k be
integers such that for every i with i ≤ l or i ≥ k, the subspaces Ui and Vi are
complementary in S . We may assume l ≤ k. Set S := Uk ∩ Vl. By Lemma
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4.9 we conclude that there is a basis B′ of S such that for every i ≤ k − l, the
set of points B′ ∩ Ul+i is a basis of S ∩ Ul+i and B′ ∩ Vk−i is a basis of S ∩ Vk−i.
Set D′ := ψ(C, Ul , Uk, D) and C′ := ψ(D, Vk, Vl, D). Finally, let B+ and B− be
independent sets of points of S such that (Ul , B+) ∈ T+, (Vk, B−) ∈ T− and
furthermore, Σ(Ul , B+) contains both C, and D′ and Σ(Vk, B−) contains both D
and C′. We may assume B′ ⊆ B+ ∩ B−.

For l < i ≤ k, we denote by pi the unique point of B′ ∩Ui rUi−1 and by qi we

denote the unique point of B′ ∩ Vi−1 r Vi. Let π ∈ 〈S∆〉 such that C(π,B+) = D′.
This implies that piπ is the unique point of B′ ∩ Vj−1 r Vj where j = k − (i −

l) + 1. Thus, piπ = qj. Now let ρ ∈ 〈S∆〉 such that D(ρ,B−) = C′. Then qjρ =

pi. This yields jρ = k − (iπ−1
− l) + 1. Since j = k − (i − l) + 1, we conclude

ρ = wl+1,kπ−1wl+1,k.
By Lemma 5.4 we calculate δ(C, D) = δ+(C, D′) · wl+1,k = π−1 · wl+1,k =

wl+1,k · ρ = (ρ−1 · wl+1,k)
−1 = (δ−(D, C′) · wl+1,k)

−1 = δ(D, C)−1.

Proposition 5.7. Let σ ∈ {+,−} and let C ∈ Cσ and D ∈ C−σ with δ(C, D) = w.
Then for every i ∈ typ(C) there exists a chamber C′ ∈ Cσ with δσ(C′, C) = si and
δ(C′, D) = si · δ(C, D).

Moreover, let C′ ∈ Cσ with δσ(C′, C) = si and l(siw) < l(w). Then δ(C′, D) =
siw.

Proof. By analogous reasons, we restrain ourselves to the case σ = +. As usual,
let Uj ∈ C and Vj ∈ D denote the subspaces of type j and let l and k be integers
such that for every j with j ≤ l or j ≥ k, the subspaces Uj and Vj are complemen-
tary in S . We may assume l < i < k.

Let B ⊆ S such that (Ul , B) ∈ T+ and both C and D′ := ψ(C, Ul , Uk, D) are
elements of Σ(Ul , B). Then δ+(C, D′) = w · wl+1,k by Lemma 5.4. Hence, as a

consequence of Lemma 4.7 and the fact that Σ(Ul , B) is thin, C(wl+1,kw−1,B) = D′

and therefore, (D′)(wwl+1,k,B) = C. Set C′′ := (D′)(siπ,B). Then δ+(C′′, D′) =
si · w · wl+1,k and thus, δ(C′′, D) = si · w by Lemma 5.4. This proves the first part
of the claim.

It is straightforward to show that l(w) equals the number of inversions of w.
Furthermore, wl+1,k has (k − l)(k − l − 1)/2 inversions and the number of inver-
sions of π := wwl+1,k is (k− l)(k− l − 1)/2− l(w). Since l(siw) < l(w), we obtain
by analogous reasons that the number of inversions of siπ is
(k − l)(k − l − 1)/2 − l(w) + 1. By Lemma 4.7 we know C and C′′ are si-adja-
cent.

Let pi and pi+1 denote the points of B with pi ∈ Ui r Ui−1 and pi+1 ∈
Ui+1 r Ui. Further let n and m be the integers such that pi ∈ Un r Un−1 and

pi+1 ∈ Um r Um−1. Then (n)π−1
= i and (m)π−1

= i + 1, since C(π−1,B) = D′ and
consequently, iπ = n and (i + 1)π = m. Since siπ has one inversion more than π,
this yields m > n.

Let V ′
j denote the element of D′ of type j. Then

〈Ui−1, V ′
j ∩ Ui+1〉 = Ui−1 if j < n

〈Ui−1, V ′
j ∩ Ui+1〉 = Ui if n ≤ j < m

〈Ui−1, V ′
j ∩ Ui+1〉 = Ui+1 if j ≥ m .
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Let U′
i ∈ C denote the element of type i. Since 〈Ui−1, V ′

m ∩ Ui+1〉 = Ui+1, we
know that V ′

m ∩ Ui−1 has corank 2 in V ′
m ∩ Ui+1. Hence, there is a point p′i in

V ′
j ∩ U′

i r Ui−1. Since C′ 6= C, we know 〈p′i , Ui−1〉 6= Ui and therefore p′i /∈ Ui.

Thus, B′ := (B r {pi+1}) ∪ {p′i} is again independent and hence,
p′i ∈ Um r Um−1. This implies that both C′ and D′ are contained in Σ(Ul , B′).

We calculate (D′)(siπ,B′) = C′ and as above, δ+(C′, D′) = si · w · wl+1,k and conse-
quently, δ(C′, D) = siw.

Theorem 5.8. The pair (∆+ , ∆−) is a twin building of type (〈S∆〉, S∆) with codistance
function δ.

Proof. By Theorem 4.14 we know that both ∆+ and ∆− are buildings. By Propo-
sition 5.1 both buildings are of type (〈S∆〉, S∆). Thus, the claim follows by the
Propositions 5.6 and 5.7.

6 Final remarks

In section 3 we introduced the sets of chambers C+ and C−. It is straightforward
to show that

⋂

C =
⋂

C′ holds for every two chambers C and C′ of C+. Fur-
thermore, for a chamber D ∈ C− the subspaces

⋂

C and
⋃

D are complementary
subspaces in S and so are

⋃

C and
⋂

D. Set S
′ := (

⋃

C) ∩ (
⋃

D).
Intersecting each element of every chamber of C+ ∪ C− with S ′ leads to a

pair of chamber systems that is isomorphic to (C+ ∪ C−). Since S ′ has countable
rank, we could have restrained ourselves to the case where S has countable rank.
Furthermore, we could restrain ourselves to the case

⋂

M+ = ∅ and
⋃

M+ = S .
This restriction is only for the part where we dealing with chamber system, hence,
starting with section 3. For a partial twin Grassmannians of a projective space S0

with respect to (U0, V0) the rank of U0 and the corank of U0 in S0 matters even in
the infinite case.

In section 4 we introduced set of pairs T+ each consisting of a subspace U
and a countable set of points B. It is possible to be more restrictive at this point.
Choose a pair (U, B0) ∈ T+). Now define T+

0 := {(V, B) ∈ T+ | |B r B0| < ∞}.
Let T−

0 be defined analogously.
It is easy to check that all proofs remain valid if we would have used T+

0 and
T−

0 in place of T+ and T−. The only difference is that the set of apartments would
be much smaller.
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