Grassmannians of arbitrary rank

Simon Huggenberger

Abstract

We introduce a generalization of Grassmannians of projective spaces that allows us to consider subspaces of any (possibly infinite) rank as points of the Grassmannian. We show that the spaces that we obtain, carry in a natural way the structure of a twin building.

Introduction

Grassmannians are point-line spaces arising from projective spaces by considering the subspaces of a certain finite rank. In this article we introduce a generalization of this concept that allows us to consider subspaces of possibly infinite rank. It turns out that the right approach is to take always two such generalizations, and connect them by an opposition relation. Such a structure will be called a partial twin Grassmannian.

In section 3 we introduce a method for constructing a pair of connected chamber systems out of any partial twin Grassmannian. In this fashion, the chambers turn out to be chains of subspaces of the underlying projective space. More precisely, these chains are maximal under the condition that every element has a successor (except for those which are hyperplanes) and a predecessor (except for those which are singletons). However, we do not use all such maximal chains since otherwise Grassmannians of infinite rank would in general give rise to a disconnected chamber system, which is of course not desirable. See [KS96] for a deeper insight into this question.

Received by the editors in April 2011 - In revised form in November 2015.
Communicated by H. Van Maldeghem.
2010 Mathematics Subject Classification : 14M15, 51A45, 51E24, 51M35.
Key words and phrases : Twin buildings, Grassmannians, incidence geometry of infinite rank.

In section 4 we show that the chamber systems introduced in section 3 are, in fact, buildings. Since the chamber systems always come in pairs, the buildings also come in pairs, and it is natural to ask whether these pairs form a twin building. This indeed is the case as we show in section 5 .

1 Preliminaries and notations

A point-line space $\mathscr{S}=(\mathcal{P}, \mathcal{L})$ is a pair consisting of a set \mathcal{P}, whose elements are called points and a set $\mathcal{L} \subset \mathfrak{P}(\mathcal{P})$ of subsets of \mathcal{P} with cardinality at least 2 , which are called lines. If all points are subsets of a common set V, we sometimes regard a line as the union of its points and hence as a subset of V. Points on a common line are called collinear. We write $p_{0} \perp p_{1}$ to denote that p_{0} and p_{1} are collinear. If $p_{0} \perp p_{1}$, then we call p_{0} a neighbour of p_{1}. By p^{\perp} we denote the set of all neighbours of a point p, called the perp of p. For a set of points M we denote by $M^{\perp}:=\bigcap_{p \in M} p^{\perp}$ the perp of M, i.e. the set of all common neighbours.

A subspace of a point-line space $\mathscr{S}=(\mathcal{P}, \mathcal{L})$ is a point-line space $\mathscr{S}^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}\right)$ with $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ and $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ such that every line in $\mathcal{L} \backslash \mathcal{L}^{\prime}$ has at most one point with \mathcal{P}^{\prime} in common and every line in \mathcal{L}^{\prime} is contained in \mathcal{L}. We write $\mathscr{S}^{\prime} \leq \mathscr{S}$, if \mathscr{S}^{\prime} is a subspace of \mathscr{S} and $\mathscr{S}^{\prime}<\mathscr{S}$ if \mathscr{S}^{\prime} is properly contained. Since \mathscr{S}^{\prime} is determined by its point set, we call \mathcal{P}^{\prime} itself a subspace. Correspondingly, we treat \mathscr{S} sometimes as its own point set. A proper subspace is called a hyperplane if it intersects every line. For a set of points M, we denote by $\langle M\rangle$ the smallest subspace which contains M, called the span of M. For a family of points p_{0}, \ldots, p_{s} and a family of sets of points M_{0}, \ldots, M_{r} we will write $\left\langle p_{0}, \ldots, p_{s}, M_{0}, \ldots, M_{r}\right\rangle$ rather than $\left\langle\left\{p_{0}, \ldots, p_{s}\right\} \cup M_{0} \cup \cdots \cup M_{r}\right\rangle$.

A partially linear space ${ }^{1}$ is a point-line space such that no two different lines have two different points in common. Clearly, subspaces of partially linear spaces are again partially linear. For two distinct collinear points p and q of a partially linear space, the unique line joining p and q is denoted by $p q$. A point-line space where every two points are collinear is called singular. Singular partially linear spaces are called linear. The rank of a singular space \mathscr{S} is denoted by $\operatorname{rk}(\mathscr{S})$ and equals $\alpha-2$, where α is the supremum over the lengths of well-ordered chains of subspaces of \mathscr{S}. Hence, the rank of the empty space is -1 and the rank of a singleton is 0 . For a point-line space \mathscr{S} let $\mathfrak{S}(\mathscr{S}):=\left\{X \leq \mathscr{S} \mid X \subseteq X^{\perp}\right\}$ denote the set of all singular subspaces of \mathscr{S}. The singular rank of \mathscr{S} is defined as $\operatorname{srk}(\mathscr{S}):=\sup \{\operatorname{rk}(X) \mid X \in \mathfrak{S}(\mathscr{S})\}$.

A (possibly degenerate) projective space is a linear space satisfying the following property:
(VY) For every pair (l, k) of disjoint lines and every point $p \in \mathcal{P} \backslash(l \cup k)$ there is at most one line through p meeting both l and k.

A projective space is called degenerate if it contains at most one line or at least one short line, i.e. a line of cardinality 2. Very often, projective spaces are required to be non-degenerate, but we will explicitly allow projective spaces to be degenerate.

[^0]It is obvious by the definition that every subspace of a projective space is again a projective space.

Let \mathscr{S} be a projective space and let $\left(\mathscr{S}_{i}\right)_{i \in I}$ be the family of all subspaces of \mathscr{S} that are maximal under the condition of not containing any short line, where I is a suitable index set. Then for $i \in I$, the subspace \mathscr{S}_{i} is either a point, a line with at least three points or a non-degenerate projective space. It is known (see for instance [Seg48]) that \mathscr{S} equals the direct sum $\bigoplus_{i \in I} \mathscr{S}_{i}$, where the direct sum is defined as follows: the point set of the direct sum is the disjoint union of the point sets of all components; the line set of the direct sum is the union of the line sets of the components plus all short lines with points of distinct components. A direct sum of projective spaces is again a projective space.

Let \mathscr{S} be a projective space and let $X \subseteq \mathscr{S}$ be a set of points. If $p \notin\langle X \backslash\{p\}\rangle$ for every point $p \in X$, we call X independent. An independent set of points $B \subseteq \mathscr{S}$ with $\langle B\rangle=\mathscr{S}$ is called a basis. In a projective space every independent set of points is a subset of a basis. Furthermore, every basis of \mathscr{S} has cardinality $\operatorname{rk}(\mathscr{S})+1$. For a direct sum $\mathscr{S}=\bigoplus_{i \in I} \mathscr{S}_{i}$ of projective spaces, every basis of \mathscr{S} is a union of bases of all components \mathscr{S}_{i} and vice versa.

Let V be a subspace of \mathscr{S} and let B be a basis of \mathscr{S} with $\langle B \cap V\rangle=V$. Then we call $\operatorname{crk}_{\mathscr{S}}(V):=|B \backslash V|$ the corank of V in \mathscr{S}. Let U be another subspace of \mathscr{S}. Then $\operatorname{crk}_{U}(U \cap V)=\operatorname{crk}_{\langle U, V\rangle} V$.

Let U and V be two subspaces of a projective space \mathscr{S} such that $U \cap V$ has finite corank in both U and V. Then we call U and V commensurate, denoted by $U \gtrless V$. If U and V are commensurate with $\operatorname{crk}_{U}(U \cap V)=\operatorname{crk}_{V}(U \cap V)$, we write $U \gtreqless V$.

A Grassmannian of a projective space \mathscr{S} is a point-line space whose point set \mathcal{P} consists of all subspaces of \mathscr{S} of rank $k \in \mathbb{N}$ and whose lines are the maximal subsets of \mathcal{P} whose elements intersect in a common subspace of rank $k-1$ and are contained in a common subspace of rank $k+1$. To be more specific, this point-line space is also called a Grassmannian of k-spaces. The Grassmannian of 0 -spaces is canonically isomorphic to \mathscr{S}.

For a projective space of infinite rank \mathscr{S}, there is an analogous way to define a point-line space whose points are the subspaces of corank k. The so-obtained point-line space can be seen as the Grassmannian of corank- k-spaces. Thus, the Grassmannian of corank-1-spaces is just the dual of \mathscr{S}.

2 Grassmannians of arbitrary rank

In this section we introduce point-line spaces that are constructed out of projective spaces and are a natural generalization of Grassmannians. Our new construction will allow us to take subspaces of infinite rank and infinite corank as elements of the point set. In order to make this possible, we first introduce the concept of twin spaces.

Definition 2.1. Let $\mathscr{S}^{+}=\left(\mathcal{P}^{+}, \mathcal{L}^{+}\right)$and $\mathscr{S}^{-}=\left(\mathcal{P}^{-}, \mathcal{L}^{-}\right)$be two disjoint partially linear spaces. Further let $R \subseteq\left(\mathcal{P}^{+} \times \mathcal{P}^{-}\right) \cup\left(\mathcal{P}^{-} \times \mathcal{P}^{+}\right)$be a symmetric, total relation on $\mathcal{P}^{+} \cup \mathcal{P}^{-}$(called the opposition relation) such that for every pair $(p, l) \in\left(\mathcal{P}^{+} \times \mathcal{L}^{-}\right) \cup\left(\mathcal{P}^{-} \times \mathcal{L}^{+}\right)$, the following holds:
(OP) If p is opposite to some point of l, then there is exactly one point $q \in l$ such that p is not opposite to q.
Then we call the pair $\left(\mathscr{S}^{+}, \mathscr{S}^{-}\right)$a twin space with opposition relation R.
Let U be a subspace of a projective space \mathscr{S}. Then we call a subspace $V \leq \mathscr{S}$ a complement of U if and only if U and V are disjoint and $\langle U, V\rangle=\mathscr{S}$. Since conversely, by this definition U is a complement of V, we call U and V complementary subspaces.

Definition 2.2. Let \mathscr{S} be a projective space and let U_{+}and U_{-}be non-trivial subspaces of \mathscr{S} that are complementary. For $\sigma \in\{+,-\}$, set $\mathfrak{U}^{\sigma}:=\{V \leq \mathscr{S} \mid$ $\left.V \gtreqless U_{\sigma}\right\}$. Further set:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{m}}^{\sigma} & :=\left\{\left\{Z \in \mathfrak{U}^{\sigma} \mid X \cap Y<Z<\langle X, Y\rangle\right\} \mid\{X, Y\} \subseteq \mathfrak{U}^{\sigma} \wedge \operatorname{crk}_{X}(X \cap Y)=1\right\} \\
R & :=\left\{(M, N),(N, M) \mid(M, N) \in \mathfrak{U}^{+} \times \mathfrak{U}^{-} \wedge M \cap N=\varnothing\right\}
\end{aligned}
$$

Then we call the pair $\left(\left(\mathfrak{U}^{+}, \mathcal{L}_{\mathrm{m}}^{+}\right),\left(\mathfrak{U}^{-}, \mathcal{L}_{\mathrm{m}}^{-}\right)\right)$with the opposition relation R the twin Grassmannian of \mathscr{S} with respect to $\left(U_{+}, U_{-}\right)$.

For $\sigma \in\{+,-\}$, let $\mathcal{P}_{\mathrm{m}}^{\sigma} \subseteq \mathfrak{U}^{\sigma}$ be a subset that contains U_{σ} such that the following conditions are satisfied:
(TG1) For every subspace $V \in \mathcal{P}_{\mathrm{m}}^{\sigma}$, there is a subspace $W \in \mathcal{P}_{\mathrm{m}}^{-\sigma}$ such that $V \cap W=\varnothing$.
(TG2) $\left\langle V \mid V \in \mathcal{P}_{\mathrm{m}}^{\sigma}\right\rangle=\mathscr{S}$.
(TG3) Let V and W be two elements of $\mathcal{P}_{\mathrm{m}}^{\sigma}$. Then $\left\{X \in \mathfrak{U}^{\sigma} \mid V \cap W \leq X \leq\right.$ $\langle V, W\rangle\} \subseteq \mathcal{P}_{\mathrm{m}}^{\sigma}$.
For $\sigma \in\{+,-\}$, set $\mathcal{L}_{\mathrm{m}}^{\prime \sigma}:=\left\{L \in \mathcal{L}_{\mathrm{m}}^{\sigma} \mid L \subseteq \mathcal{P}_{\mathrm{m}}^{\sigma}\right\}$ and $R^{\prime}:=R \cap\left(\left(\mathcal{P}_{\mathrm{m}}^{+} \cup\right.\right.$ $\left.\left.\mathcal{P}_{\mathrm{m}}^{-}\right) \times\left(\mathcal{P}_{\mathrm{m}}^{-} \times \mathcal{P}_{\mathrm{m}}^{+}\right)\right)$. Then $\left(\left(\mathcal{P}_{\mathrm{m}}^{+}, \mathcal{L}_{\mathrm{m}}^{\prime+}\right),\left(\mathcal{P}_{\mathrm{m}}^{-}, \mathcal{L}_{\mathrm{m}}^{\prime-}\right)\right)$ with the opposition relation R^{\prime} is called a partial twin Grassmannian of \mathscr{S} with respect to $\left(U_{+}, U_{-}\right)$.

We will see later on that every (partial) twin Grassmannian is a twin space. Therefore we call a twin space a (partial) twin Grassmannian if it is isomorphic to a (partial) twin Grassmannian of a projective space. Throughout this section \mathscr{S} is always a projective space and U_{+}and U_{-}are non-trivial subspaces of \mathscr{S} that are complementary. For $\sigma \in\{+,-\}$, we set $\mathfrak{U} \mathbb{U}^{\sigma}:=\left\{V \leq \mathscr{S} \mid V \gtreqless U_{\sigma}\right\}$.

The following proposition shows that the concept of partial twin Grassmannians is more general than the one of twin Grassmannians. We will discuss later on the advantages of using the more general concept.

Proposition 2.3. Every twin Grassmannian of \mathscr{S} is a partial twin Grassmannian of \mathscr{S}.
Proof. (TG2) and (TG3) are clearly fulfilled. Hence, it remains to verify (TG1). Let V be a subspace of \mathscr{S} that is commensurate to U_{+}. Then $V^{\prime}:=\left\langle U_{+}, V\right\rangle$ is a subspace with $\operatorname{crk}_{V^{\prime}} V=\operatorname{crk}_{V^{\prime}} U_{+}=\operatorname{crk}_{U_{+}}\left(V \cap U_{+}\right)=\operatorname{crk}_{V}\left(V \cap U_{+}\right)=: r$. Since U_{+}and U_{-}are complements, this implies $\operatorname{rk}\left(V^{\prime} \cap U_{-}\right)=r-1$. Thus, U_{-} contains a complement W^{\prime} of V^{\prime} with $\mathrm{crk}_{U_{-}} W^{\prime}=r$.

Let $W^{\prime \prime} \leq U_{+}$be a subspace of rank $r-1$ that is disjoint from $V \cap U_{+}$and set $W:=\left\langle W^{\prime}, W^{\prime \prime}\right\rangle$. Then $\operatorname{crk}_{V}\left(V \cap U_{+}\right)=r$ together with $\left\langle V, W^{\prime \prime}\right\rangle=\langle V, V \cap$
$\left.U_{+}, W^{\prime \prime}\right\rangle=\left\langle V, U_{+}\right\rangle=V^{\prime}$ implies that $W^{\prime \prime}$ is a complement of V in V^{\prime}. Since W^{\prime} and V^{\prime} are complements in \mathscr{S}, we obtain $W \cap V^{\prime}=W^{\prime \prime}$ and therefore $W \cap V=\varnothing$. On the other hand $\langle W, V\rangle=\left\langle W^{\prime}, W^{\prime \prime}, V\right\rangle=\left\langle W^{\prime}, V^{\prime}\right\rangle=\mathscr{S}$ and consequently, W and V are complements in \mathscr{S}.

The following remark concerns some immediate consequences of the axioms (TG1) and (TG3).
Remark 2.4. Let V be a subspace with $V \gtreqless U_{+}$and let W be a subspace with $W \gtreqless U_{-}$such that $V \cap W=\varnothing$. Set $V^{\prime}:=V \cap U_{+}$and $W^{\prime}:=W \cap U_{-}$. Then $\operatorname{crk}_{V}\left(V^{\prime}\right)=\operatorname{crk}_{U_{+}}\left(V^{\prime}\right) \operatorname{and~crk}_{W}\left(W^{\prime}\right)=\operatorname{crk}_{U_{-}}\left(W^{\prime}\right)$ and hence, $\operatorname{crk}_{\langle V, W\rangle}\left(\left\langle V^{\prime}, W^{\prime}\right\rangle\right)$ $=\operatorname{crk}_{\left\langle U_{+}, U_{-}\right\rangle}\left(\left\langle V^{\prime}, W^{\prime}\right\rangle\right)$. With $\left\langle U_{+}, U_{-}\right\rangle=\mathscr{S}$ this implies $\langle V, W\rangle=\mathscr{S}$. Therefore, the subspaces V and W of (TG1) are always complements.

From (TG3) and the definition of the lines of the twin Grassmannian it follows directly that every partial twin Grassmannian with respect to $\left(U_{+}, U_{-}\right)$is a subspace of the twin Grassmannian with respect to $\left(U_{+}, U_{-}\right)$. A second consequence of (TG3) is that for a partial twin Grassmannian $\left(\left(\mathcal{P}_{\mathrm{m}}^{+}, \mathcal{L}_{\mathrm{m}}^{+}\right),\left(\mathcal{P}_{\mathrm{m}}^{-}, \mathcal{L}_{\mathrm{m}}^{-}\right)\right)$, both point-line spaces $\left(\mathcal{P}_{\mathrm{m}}^{+}, \mathcal{L}_{\mathrm{m}}^{+}\right)$and $\left(\mathcal{P}_{\mathrm{m}}^{-}, \mathcal{L}_{\mathrm{m}}^{-}\right)$are connected.

Axiom (TG2) plays a special role. As we will see in the following remark, omitting it does not change anything about the definition of partial twin Grassmannians in itself, but it would change the definition of a partial twin Grassmannian of a given projective space. Nevertheless, we cling to this axiom since it turns out to be useful.

Remark 2.5. For $\sigma \in\{+,-\}$, let $\mathcal{P}_{1}^{\sigma} \subseteq \mathfrak{U}^{\sigma}$ be a subset with $U_{\sigma} \in \mathcal{P}_{1}^{\sigma}$ such that (TG1) and (TG3) are fulfilled, but (TG2) is not. Then \mathcal{P}_{1}^{σ} is a subspace of \mathscr{D}^{σ}, where $\left(\mathscr{D}^{+}, \mathscr{D}^{-}\right)$is the twin Grassmannian of \mathscr{S} with respect to $\left(U_{+}, U_{-}\right)$. Set $\mathscr{S}^{\prime}:=\left\langle U \mid U \in \mathcal{P}_{1}^{+}\right\rangle$. Further set $\mathcal{P}_{0}^{-}:=\left\{V \cap \mathscr{S}^{\prime} \mid V \in \mathcal{P}_{1}^{-}\right\}$. Let $U \in \mathcal{P}_{1}^{+}$and $V \in \mathcal{P}_{1}^{-}$such that U and V are complements. Then U and $V \cap \mathscr{S}^{\prime}$ are complements in \mathscr{S}^{\prime}. Let $\left(\mathscr{D}_{0}^{+}, \mathscr{D}_{0}^{-}\right)$be the twin Grassmannian of \mathscr{S}^{\prime} with respect to ($U_{+}, U_{-} \cap \mathscr{S}^{\prime}$).

For two elements V and W of \mathcal{P}_{1}^{-}there are complementary subspaces V^{\prime} and W^{\prime} in \mathcal{P}_{1}^{+}. Since V^{\prime} and W^{\prime} are complements of $V \cap \mathscr{S}^{\prime}$ and $W \cap \mathscr{S}^{\prime}$ in \mathscr{S}^{\prime} and furthermore $V^{\prime} \gtreqless W^{\prime}$, we conclude $V \cap \mathscr{S}^{\prime} \gtreqless W \cap \mathscr{S}^{\prime}$. Therefore we obtain $\mathcal{P}_{0}^{-} \subseteq \mathscr{D}_{0}^{-}$. Furthermore, $\operatorname{rk}(U \cap\langle V, W\rangle)=\operatorname{crk}_{\langle V, W\rangle}(V)-1$ since U is complementary to V. This implies $\operatorname{crk}_{\langle V, W\rangle \cap \mathscr{S}^{\prime}}\left(V \cap \mathscr{S}^{\prime}\right)=\operatorname{crk}_{\langle V, W\rangle}(V)$ and consequently, $\operatorname{crk}_{V \cap \mathscr{S}^{\prime}}\left(V \cap W \cap \mathscr{S}^{\prime}\right)=\operatorname{crk}_{V}(V \cap W)$. Hence, $\mathcal{P}_{1}^{-} \rightarrow \mathcal{P}_{0}^{-}: X \mapsto X \cap \mathscr{S}^{\prime}$ maps the subspace \mathcal{P}_{1}^{-}of \mathscr{D}^{-}isomorphically onto a subspace of \mathscr{D}_{0}^{-}.

Let $X^{\prime} \leq \mathscr{S}^{\prime}$ be a subspace with $X^{\prime} \gtreqless V \cap \mathscr{S}^{\prime}$ such that $V \cap W \cap \mathscr{S}^{\prime} \leq X^{\prime} \leq$ $\langle V, W\rangle \cap \mathscr{S}^{\prime}$. Then for $X:=\left\langle X^{\prime}, V \cap W\right\rangle$, we obtain $X \gtreqless V$ with $V \cap W \leq X \leq$ $\langle V, W\rangle$ and hence, (TG3) implies $X \in \mathcal{P}_{1}^{-}$. Since $X^{\prime}=X \cap \mathscr{S}^{\prime}$, we conclude $X^{\prime} \in \mathcal{P}_{0}^{-}$and that (TG3) holds for \mathcal{P}_{0}^{-}. Therefore, $\mathcal{P}_{1}^{-} \rightarrow \mathcal{P}_{0}^{-}: X \mapsto X \cap \mathscr{S}^{\prime}$ is surjective and consequently, \mathcal{P}_{0}^{-}is a subspace of \mathscr{D}_{0}^{-}that is isomorphic to \mathcal{P}_{1}^{-}and fulfils (TG1) and (TG3).

Suppose $\mathscr{S}^{\prime \prime}:=\left\langle U \mid U \in \mathcal{P}_{0}^{-}\right\rangle<\mathscr{S}^{\prime}$. Then we set $\mathcal{P}_{0}^{+}:=\left\{V \cap \mathscr{S}^{\prime \prime} \mid\right.$ $\left.V \in \mathcal{P}_{1}^{+}\right\}$. By repeating the arguments we conclude that restricting the elements of \mathcal{P}_{1}^{+}and \mathcal{P}_{1}^{-}to the subspace $\mathscr{S}^{\prime \prime}$ leads to a structure that induces a pair of
point-line spaces isomorphic to $\left(\mathcal{P}_{1}^{+}, \mathcal{P}_{1}^{-}\right)$such that complementary subspaces are mapped onto complementary subspaces. Since now (TG1), (TG2) and (TG3) are all fulfilled, we conclude that the subspaces contained in \mathcal{P}_{0}^{+}and \mathcal{P}_{0}^{-}are the points of a partial twin Grassmannian. Therefore (TG2) can be seen as a condition that makes sure that \mathscr{S} is "entirely used".

In the following $\mathscr{S}_{\mathrm{m}}:=\left(\left(\mathcal{P}_{\mathrm{m}}^{+}, \mathcal{L}_{\mathrm{m}}^{+}\right),\left(\mathcal{P}_{\mathrm{m}}^{-}, \mathcal{L}_{\mathrm{m}}^{-}\right)\right)$is a partial twin Grassmannian of \mathscr{S} with respect to $\left(U_{+}, U_{-}\right)$. For $\sigma \in\{+,-\}$, we set $\mathscr{S}_{\mathrm{m}}^{\sigma}:=\left(\mathcal{P}_{\mathrm{m}}^{\sigma}, \mathcal{L}_{\mathrm{m}}^{\sigma}\right)$. Moreover, we denote by $\mathscr{D}=\left(\mathscr{D}^{+}, \mathscr{D}^{-}\right)$the twin Grassmannian of \mathscr{S} with respect to $\left(U_{+}, U_{-}\right)$.

Proposition 2.6. Every partial twin Grassmannian is a twin space.
Proof. Let R be the opposition relation of the partial twin Grassmannian \mathscr{S}_{m}. By (TG1) R is a symmetric, total relation on $\mathcal{P}_{\mathrm{m}}^{+} \cup \mathcal{P}_{\mathrm{m}}^{-}$. Let $U \in \mathcal{P}_{\mathrm{m}}^{+}$and $V \in \mathcal{P}_{\mathrm{m}}^{-}$ such that U and V are complements. Further let $W \in \mathcal{P}_{\mathrm{m}}^{-}$be a subspace such that V and W are distinct collinear points in $\mathscr{S}_{\mathrm{m}}^{-}$and let $L \in \mathcal{L}_{\mathrm{m}}^{-}$with $\{V, W\} \subseteq L$. Then V and W intersect in a common hyperplane. Hence, U and $\langle V, W\rangle$ intersect in a single point p since U is a complement to V. We conclude that $\langle p, V \cap W\rangle$ is the only element of L that is not disjoint from U. Thus, R fulfils the condition of an opposition relation of twin spaces. By the definition of the lines of a twin Grassmannian we conclude that \mathscr{S}_{m} is partially linear.

Let \mathfrak{F} be the set of finite subsets of $\mathcal{P}_{\mathrm{m}}^{+}$and set $\mathscr{S}^{\prime}:=\bigcup_{F \in \mathfrak{F}}\langle F\rangle$, where $\langle F\rangle$ is understood as the span in \mathscr{S}. Then \mathscr{S}^{\prime} is a subspace of \mathscr{S} since the union of two finite sets is again finite. This implies $\left\langle U \mid U \in \mathcal{P}_{\mathrm{m}}^{+}\right\rangle \leq \mathscr{S}^{\prime}$ and hence, $\mathscr{S}^{\prime}=\mathscr{S}$ by (TG2). We will make use of this fact for proving the following lemma.

Lemma 2.7. Let p be a point of \mathscr{S}. Then there are elements $U \in \mathcal{P}_{\mathrm{m}}^{+}$and $V \in \mathcal{P}_{\mathrm{m}}^{-}$such that $p \in U \cap V$.

Proof. Since $\left\langle U \mid U \in \mathcal{P}_{\mathrm{m}}^{+}\right\rangle=\mathscr{S}$, there is a finite set $F:=\left\{U_{i} \mid 0 \leq i<n\right\} \subseteq \mathcal{P}_{\mathrm{m}}^{+}$ where $n \in \mathbb{N}$ such that $p \in\langle F\rangle$. For $0 \leq j<n$, set $\mathscr{S}_{j}:=\left\langle U_{i} \mid i \leq j\right\rangle$. We prove by induction over j that every point of \mathscr{S}_{j} is contained in a subspace $U \in \mathcal{P}_{\mathrm{m}}^{+}$.

For $j=0$ there is nothing to prove since $\mathscr{S}_{0}=U_{0}$. Now assume the claim holds for $j<n-1$. We may assume $U_{j+1} \not \leq \mathscr{S}_{j}$ since otherwise $\mathscr{S}_{j+1}=\mathscr{S}_{j}$. Let $q \in \mathscr{S}_{j+1} \backslash \mathscr{S}_{j}$. Then there are points $r \in U_{j+1}$ and $s \in \mathscr{S}_{j}$ such that q is on the line $r s$. By the induction hypothesis we know that there is a subspace $W \in \mathcal{P}_{\mathrm{m}}^{+}$such that $s \in W$. Since $r \in\left\langle U_{j+1}, W\right\rangle$, (TG3) implies that there is a subspace $U \in \mathcal{P}_{\mathrm{m}}^{+}$ with $\left\langle q, U_{j+1} \cap W\right\rangle \leq U$. A similar argument for $\mathcal{P}_{\mathrm{m}}^{-}$proves the claim.

Lemma 2.8. Let $n \in \mathbb{N}$ and let $\left(U_{i}\right)_{0 \leq i \leq n}$ be a family of elements of $\mathcal{P}_{\mathbf{m}}^{+}$. Then every subspace $V \in \mathfrak{U}^{+}$with $\bigcap_{0 \leq i \leq n} U_{i} \leq V \leq\left\langle U_{i} \mid 0 \leq i \leq n\right\rangle$ is an element of $\mathcal{P}_{\mathrm{m}}^{+}$.

Proof. We prove the claim by induction over n. For $n=0$ there is nothing to prove and for $n=1$ this is just (TG3). Hence we may assume $n>1$ and that every subspace $V \in \mathfrak{U}^{+}$with $\bigcap_{0 \leq i<n} U_{i} \leq V \leq\left\langle U_{i} \mid 0 \leq i<n\right\rangle$ is an element of $\mathcal{P}_{\mathrm{m}}^{+}$. Moreover, we may assume that $\bigcap_{0 \leq i \leq j} U_{i} \leq U_{k} \leq\left\langle U_{i} \mid 0 \leq i \leq j\right\rangle$ does not hold for $0 \leq j<k \leq n$. Set $S:=\bigcap_{0 \leq i<n} U_{i}$ and $W:=\left\langle U_{i} \mid 0 \leq i<n\right\rangle$. In the proof we distinguish three situations:
(I) First consider the case $S \leq U_{n}$ and $U_{n} \not \leq W$. Since $U_{0} \gtreqless U_{n}$, there is a natural number $m \in \mathbb{N}$ and a family of points $\left(p_{i}\right)_{0 \leq i<m}$ in $U_{n} \backslash W$ such that $\left\langle p_{i}, W \mid 0 \leq i<m\right\rangle=\left\langle U_{n}, W\right\rangle$. Let H be a subspace with $U_{n} \cap W \leq H \leq W$ and $\operatorname{crk}_{W}(H)=\operatorname{crk}_{W}\left(U_{0}\right)+1$ and let $V^{\prime} \leq W$ such that V^{\prime} contains H as a hyperplane. Then $V^{\prime} \in \mathfrak{U}^{+}$and thus, $V^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$by the induction hypothesis. Set $V_{i}:=\left\langle p_{i}, H\right\rangle$ for $0 \leq i<m$. Then $V^{\prime} \cap U_{n} \leq V_{i} \leq\left\langle V^{\prime}, U_{n}\right\rangle$ and thus, $V_{i} \in \mathcal{P}_{\mathrm{m}}^{+}$ by (TG3). Furthermore, $S \cap U_{n}=S \cap\left(\bigcap_{0 \leq i<m} V_{i}\right)=S$ since $S \leq U_{n} \cap W$ and $\left\langle W, U_{n}\right\rangle=\left\langle W, V_{i} \mid 0 \leq i<m\right\rangle$. Therefore we may restrain ourselves to the case $m=1$.

Let $V \in \mathfrak{U}^{+}$with $S \leq V \leq\left\langle p_{0}, W\right\rangle$. If $V \leq W$ we obtain $V \in \mathcal{P}_{m}^{+}$by the induction hypothesis. Thus, we may assume $V \nsubseteq W$. Then $V \cap W$ is a hyperplane of V since W is a hyperplane of $\left\langle p_{0}, W\right\rangle$. First assume $p_{0} \notin V$. Then $\left\langle p_{0}, V\right\rangle$ intersects W in a subspace $V_{W} \in \mathfrak{U}^{+}$. Since $S \leq V \cap W$, we obtain $V_{W} \in \mathcal{P}_{\mathrm{m}}^{+}$by the induction hypothesis. Furthermore, V and V_{W} have the hyperplane $V \cap W$ in common. Now (TG3) implies $V \in \mathcal{P}_{\mathrm{m}}^{+}$if and only if $\left\langle p_{0}, V \cap W\right\rangle \in \mathcal{P}_{\mathrm{m}}^{+}$. Thus, we may assume $p_{0} \in V$.

For $V=U_{n}$ there is nothing to prove. Hence, we may assume that there is a point $p \in V \cap W \backslash U_{n}$. Let H be a hyperplane of $U_{n} \cap W$ containing $U_{n} \cap V \cap W$ and let $q \in W \backslash\left\langle p, U_{n}\right\rangle$. The latter is possible since $U_{0} \neq U_{1}$ and hence, $\operatorname{crk}_{W}\left(U_{n} \cap W\right) \geq 2$. Set $V^{\prime}:=\langle p, q, H\rangle$. Then $V^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$by the induction hypothesis and consequently $U_{n}^{\prime}:=\left\langle p_{0}, p, H\right\rangle \in \mathcal{P}_{\mathrm{m}}^{+}$by (TG3) since $V^{\prime} \cap U_{n}=H \leq U_{n}^{\prime} \leq\left\langle V^{\prime}, U_{n}\right\rangle$. With $U_{n} \cap V \leq\left\langle p_{0}, H\right\rangle \leq U_{n}^{\prime}$ and $p \in U_{n}^{\prime}$ we obtain $\operatorname{crk}_{V}\left(U_{n}^{\prime} \cap V\right)=\operatorname{crk}_{V}\left(U_{n} \cap V\right)-1$. Thus, repeating this argument implies $V \in \mathcal{P}_{\mathrm{m}}^{+}$.
(II) Now consider the case $U_{n} \leq W$ and $S \not \leq U_{n}$. Since $S \leq U_{0}$ there is a hyperplane H of U_{0} with $U_{0} \cap U_{n} \leq H$ and $S \not \approx H$. We obtain $\langle S, H\rangle=U_{0}$ and $S \cap U_{n} \leq H$. Hence, for a point $p \in U_{n} \backslash U_{0}$, we conclude $S \not \leq\langle p, H\rangle=: U_{n}^{\prime}$ and therefore $U_{0} \cap U_{n}^{\prime}=H$. Set $S^{\prime}:=S \cap U_{n}^{\prime}$. Since H intersects S in a hyperplane, we obtain $\operatorname{crk}_{S}\left(S^{\prime}\right)=1$. Furthermore, $S \cap U_{n} \leq H$ implies $S \cap U_{n} \leq S^{\prime}$ and therefore $\operatorname{crk}_{S^{\prime}}\left(S \cap U_{n}\right)=\operatorname{crk}_{S}\left(S \cap U_{n}\right)-1$. Hence, by the finiteness of $\operatorname{crk}_{S}\left(S \cap U_{n}\right)$ we may constrain ourselves to the case $\operatorname{crk}_{S}\left(S \cap U_{n}\right)=1$.

Let $V \in \mathfrak{U}^{+}$with $S \cap U_{n} \leq V \leq W$. We show $V \in \mathcal{P}_{\mathrm{m}}^{+}$. Therefore we may assume $V \neq U_{n}$. If $S \leq V$, the claim follows from the induction hypothesis. Hence, we may assume $S \not \leq V$ and thus, $S \cap U_{n}=S \cap V$ since $S \cap U_{n}$ is a hyperplane of S. If $S \leq\left\langle V, U_{n}\right\rangle$, then for a subspace $T \leq\left\langle V, U_{n}\right\rangle$ that is a complement of $\left\langle S, U_{n}\right\rangle$ in $\left\langle V, U_{n}\right\rangle$, we obtain $V^{\prime}:=\langle T, S\rangle \gtreqless U_{n}$ since U_{n} is a hyperplane of $\left\langle S, U_{n}\right\rangle$. Now $V^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$by the induction hypothesis. With $\left\langle V^{\prime}, U_{n}\right\rangle=\left\langle V, U_{n}\right\rangle$ and $V \cap U_{n} \leq V^{\prime}$, we conclude $V \cap U_{n}=V^{\prime} \cap U_{n}$. Hence, $V \in \mathcal{P}_{\mathrm{m}}^{+}$follows from (TG3).

It remains to consider the case $S \not \leq\left\langle V, U_{n}\right\rangle$. Since $S \cap U_{n}<S<U_{0}$, there is a non-empty subspace $T \leq V$ with $T \cap S=\varnothing$ such that $H:=\langle T, S \cap V\rangle$ is a hyperplane of V with $H \nexists \bar{U}_{n} \cap V$. Thus, $V^{\prime}:=\langle T, S\rangle \gtreqless V$ and consequently, $V^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$by the induction hypothesis. If $V \cap U_{n} \leq H$, let $p \in U_{n} \backslash H$. If $V \cap$ $U_{n} \not \leq H$, let $p \in V \cap U_{n} \backslash H$. Set $U_{n}^{\prime}:=\langle p, H\rangle$. Then $U_{n} \cap V \leq U_{n}^{\prime}$ and hence $H \not \leq U_{n} \cap V$ implies $U_{n} \cap V<U_{n}^{\prime} \cap V$. Since $V^{\prime} \cap\left\langle V, U_{n}\right\rangle=H$, we obtain $V^{\prime} \cap U_{n} \leq V \cap U_{n}$ and therefore $U_{n}^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$by (TG3). Thus, $V \in \mathcal{P}_{\mathrm{m}}^{+}$by another induction.
(III) Finally, consider $S \not \leq U_{n} \not \leq W$. As in (I) there is a natural number $m \in \mathbb{N}$ and a family of points $\left(p_{i}\right)_{0 \leq i<m}$ in $U_{n} \backslash W$ such that $\left\langle p_{i}, W \mid 0 \leq i<m\right\rangle=$ $\left\langle U_{n}, W\right\rangle$. Let H be a hyperplane of U_{0} containing S. Set $V_{i}:=U_{i}$ for $0 \leq i<n$ and $V_{i+n}:=\left\langle p_{i}, H\right\rangle$ for $0 \leq i<m$. Then $\left\langle V_{i} \mid 0 \leq i<m+n\right\rangle=\left\langle W, U_{n}\right\rangle$ and $\bigcap_{0 \leq i<n+m} V_{i}$. Hence, (I) implies $V \in \mathcal{P}_{\mathrm{m}}^{+}$for every $V \in \mathfrak{U}^{+}$with $S \leq V \leq\left\langle W, U_{n}\right\rangle$. Now the claim follows by (II) since $U_{n} \leq\left\langle V_{i} \mid 0 \leq i<m+n\right\rangle$ and $\bigcap_{0 \leq i \leq n+m} V_{i}=$ $S \cap U_{n}$.

The following proposition is axiom (TG3) in a much stronger version.
Proposition 2.9. Let $n \in \mathbb{N}$ and let $\left(U_{i}\right)_{0 \leq i \leq n}$ be a family of elements of $\mathcal{P}_{\mathrm{m}}^{+}$. Then every subspace $V \in \mathfrak{U}^{+}$with $\bigcap_{0 \leq i \leq n} U_{i} \leq V$ is an element of $\mathcal{P}_{\mathrm{m}}^{+}$.

Proof. Set $S:=\bigcap_{0 \leq i \leq n} U_{i}$. Since U_{0} is commensurate to every element of $\mathcal{P}_{\mathrm{m}}^{+}$, the intersection $U_{0} \cap \bar{U}_{i}$ has finite corank in U_{0} for every $i \leq n$. Since n is finite, this implies $U_{0} \gtrless S$. Now let $V \in \mathfrak{U}^{+}$with $S \leq V$. Then $\operatorname{crk}_{V}(S)=\operatorname{crk}_{U_{0}}(S)$. Hence by Lemma 2.7, there is a family $\left(U_{i}\right)_{n<i \leq m}$ of elements of $\mathcal{P}_{\mathrm{m}}^{+}$such that $V \leq\left\langle S, U_{i} \mid n<i \leq m\right\rangle$, where $m \in \mathbb{N}$ with $n \leq m$. Now $\bigcap_{0<i<m} U_{i} \leq V \leq\left\langle U_{i}\right|$ $0 \leq i \leq m\rangle$ and the claim follows from Lemma 2.8.

The following corollary shows that if the rank of U_{+}is finite then the pointline space $\mathscr{S}_{\mathrm{m}}^{+}$is uniquely determined. More precisely, $\mathscr{S}_{\mathrm{m}}^{+}$is the Grassmannian of $\operatorname{rk}\left(U_{+}\right)$-spaces of \mathscr{S} in this case. This justifies to regard partial twin Grassmannians as a generalization of Grassmannians.

Corollary 2.10. Let $\mathrm{rk}\left(U_{+}\right)<\infty$. Then $\mathscr{S}_{\mathrm{m}}^{+}=\mathscr{D}^{+}$.
Proof. Let $V \in \mathfrak{U}^{+}$and take an arbitrary element W_{0} of $\mathcal{P}_{\mathrm{m}}^{+}$. Set $S_{0}:=W_{0}$. By Lemma 2.7 there is for every point $p \in S_{0} \backslash V$ a subspace $W \in \mathcal{P}_{\mathrm{m}}^{-}$with $p \in W$. Hence by (TG1), there is a subspace $W_{1} \in \mathcal{P}_{\mathrm{m}}^{+}$with $p \notin W_{1}$ and we obtain $S_{1}:=S_{0} \cap W_{1}<S_{0}$. Since $\operatorname{rk}\left(S_{0}\right)<\infty$, we may repeat this argument to obtain a finite family $\left(W_{i}\right)_{0 \leq i \leq n}$ of elements of $\mathcal{P}_{\mathrm{m}}^{+}$such that $\bigcap_{0 \leq i \leq n} W_{i} \leq V$. Now the claim follows from Proposition 2.9.

The analogous statement for finite corank does not hold as the following example shows:

Example 2.11. Let V be a vector space over the field \mathbb{Q} of dimension \aleph_{0} and let $V^{*}:=\operatorname{Hom}(V, K)$ be the dual space of V. Let $B:=\left\{b_{i} \mid i \in \mathbb{N}\right\}$ be a basis of V and let $B^{*}:=\left\{f_{i} \mid i \in \mathbb{N}\right\}$ be the set of linearly independent vectors of V^{*} such that $f_{i}\left(b_{i}\right)=1$ for every $i \in \mathbb{N}$ and $f_{i}\left(b_{j}\right)=0$ for every $j \in \mathbb{N} \backslash\{i\}$.

Let \mathcal{P} be the set of 1-dimensional subspaces of V and let \mathcal{L} be the set of 2-dimensional subspaces of V. Then $(\mathcal{P}, \mathcal{L})$ is a projective space. Further let \mathfrak{U} be the set of all hyperplanes of $(\mathcal{P}, \mathcal{L})$ such that the corresponding hyperplane in V is the kernel of an element of $\left\langle B^{*}\right\rangle$. Note that $\left\langle B^{*}\right\rangle \not \leq V^{*}$ and hence \mathfrak{U} does not contain all hyperplanes of $(\mathcal{P}, \mathcal{L})$. More precisely, $|\mathfrak{U}|=\aleph_{0}$, whereas $(\mathcal{P}, \mathcal{L})$ possesses $2^{\aleph_{0}}$ hyperplanes.

Let $k \in \mathbb{N}$. Then $U^{+}:=\left\langle\left\langle b_{i}\right\rangle \mid 0 \leq i \leq k\right\rangle \leq(\mathcal{P}, \mathcal{L})$ is a subspace of rank k. Further $U_{-}:=\left\langle\left\langle b_{i}\right\rangle \mid i>k\right\rangle$ is a subspace of corank $k+1$ in $(\mathcal{P}, \mathcal{L})$ and a complement to U_{-}. Note that U_{-}can be obtained as the intersection of finitely many
elements of \mathfrak{U}. Let $\left(\mathscr{S}^{+}, \mathscr{S}^{-}\right)$be the twin Grassmannian of $(\mathcal{P}, \mathcal{L})$ with respect to $\left(U_{+}, U_{-}\right)$. We will show that the points of \mathscr{S}^{-}that can be obtained as intersection of finitely many elements of \mathfrak{U} form a subspace of \mathscr{S}^{-}which we denote by \mathscr{S}_{0}^{-}. Furthermore, we will show that $\left(\mathscr{S}^{+}, \mathscr{S}_{0}^{-}\right)$is a partial twin Grassmannian of $(\mathcal{P}, \mathcal{L})$ with respect to $\left(U_{+}, U_{-}\right)$.

Let $n \in \mathbb{N}$ and let $a_{i} \in \mathbb{Q}$ for $0 \leq i \leq n$ with $a_{n} \neq 0$. Then the vector $\sum_{i \leq n} a_{i} b_{i}$ is not contained in the kernel of $\sum_{i \leq n} a_{i} f_{i}$. This implies that every element of \mathscr{S}^{+}has a complement in \mathscr{S}_{0}^{-}and vice versa. Furthermore, for $i \leq n$, let $g_{i} \in\left\langle B^{*}\right\rangle$. Then $g \mapsto \operatorname{ker}(g)$ maps the elements of $\left\langle g_{i} \mid i \leq n\right\rangle$ bijectively onto the hyperplanes of V that contain $\bigcap_{i \leq n} \operatorname{ker}\left(g_{i}\right)$. From these facts it follows that \mathscr{S}_{0}^{-}is a subspace of \mathscr{S}^{-}and $\left(\mathscr{S}^{+}, \mathscr{S}_{0}^{-}\right)$is a partial twin Grassmannian.

The point-line space \mathscr{S}_{0}^{-}contains \aleph_{0} points, whereas \mathscr{S}^{-}contains $2^{\aleph_{0}}$ points. Moreover, \mathscr{S}^{+}and \mathscr{S}_{0}^{-}are isomorphic since V and $\left\langle B^{*}\right\rangle$ are isomorphic. There are no twin Grassmannians such that both parts are isomorphic to \mathscr{S}^{+}. Therefore it is essential to consider the more general concept of partial twin Grassmannians rather than restraining ourselves to twin Grassmannians.

Remark 2.12. Let $(\mathcal{P}, \mathcal{L})$ be as in Example 2.11. Further let U_{+}and U_{-}be complementary subspaces of $(\mathcal{P}, \mathcal{L})$ that are both of infinite rank. Finally let $\left(\mathscr{S}^{+}, \mathscr{S}^{-}\right)$ be the twin Grassmannian of $(\mathcal{P}, \mathcal{L})$ with respect to $\left(U_{+}, U_{-}\right)$. Then both \mathscr{S}^{-}and \mathscr{S}^{+}are infinite Grassmannians in the sense of [Kac90, Exercise 14.32, p. 339].
Remark 2.13. Partial twin Grassmannians can be seen as a generalization of Grassmannians. This is because every subspace of a projective space has a complement and hence, every Grassmannian of k-spaces is together with the Grassmannian of corank- $(k+1)$-spaces a twin Grassmannian.

Conversely, Corollary 2.10 implies that whenever U_{+}has finite rank then \mathscr{D}^{+} is a Grassmannian in the usual sense. Hence, the two parts of a partial twin Grassmannian can be seen as Grassmannians of α-spaces, where α is an arbitrary cardinal. However, the reader should keep in mind that if α is infinite and equals the rank of \mathscr{S}, then the corank β of the considered subspaces can be of any possible cardinal between 1 and α. Hence, in this case, it does not suffice to mention the rank of the considered subspace. As long as β is smaller than α one can talk about a Grassmannian of corank- β-spaces. If β equals α one should mention both the rank and the corank.
Remark 2.14. The only case where \mathfrak{U}^{+}and \mathfrak{U}^{-}are not disjoint is $\operatorname{rk}(\mathscr{S})<\infty$ and $\operatorname{rk}\left(U_{+}\right)=\operatorname{rk}\left(U_{-}\right)$. Moreover, by Corollary 2.10 this implies that $\mathcal{P}_{\mathrm{m}}^{+}$and $\mathcal{P}_{\mathrm{m}}^{-}$are disjoint or equal.

3 Chamber systems

An abstract simplicial complex Δ is a collection of sets such that $B \in \Delta$ for any subset B with $B \subseteq A \in \Delta$. A partially ordered set of sets that is isomorphic to a simplicial complex is also called a simplicial complex. A simplicial complex possesses a smallest element that we denote by 0 . An element that only contains 0 properly is called a vertex. An arbitrary element A of a simplicial complex Δ is called a simplex. A subcomplex Δ^{\prime} of a simplicial complex Δ is a subset of Δ such
that Δ^{\prime} is again a simplicial complex. Let A be a simplex of a simplicial complex Δ. Then the set of all simplices of Δ containing A is again a simplicial complex called the residue of A in Δ and denoted by $\operatorname{res}_{\Delta}(A)$ or simply by $\operatorname{res}(A)$ if there is no confusion about the underlying simplicial complex.

A simplicial complex Δ is called a chamber complex if every element of Δ is contained in a maximal element of Δ and if for two maximal elements C and C^{\prime} of Δ, there exists a finite sequence $\left(C_{i}\right)_{0 \leq i \leq m}$ such that $\left|C_{i} \backslash C_{i+1}\right|=$ $\left|C_{i+1} \backslash C_{i}\right|=1$ for every $i<m$. The maximal elements of a chamber complex are called chambers. Two chambers C and C^{\prime} are called adjacent if $\left|C \backslash C^{\prime}\right|=1$ and a finite sequence $\left(C_{i}\right)_{0 \leq i \leq m}$ such that C_{i} and C_{i+1} are adjacent for every $i<m$ is called a gallery from C_{0} to C_{m}. A chamber complex is call thick (respectively thin) if for any two adjacent chambers C and C^{\prime} the subset $C \cap C^{\prime}$ is contained in at least three (respectively exactly two) chambers. It follows immediately that in a chamber complex every two chambers have the same cardinality. Moreover, $|C \backslash 0|=\left|C^{\prime} \backslash 0\right|=: \alpha$ for every two chambers C and C^{\prime}. We call α the rank of Δ.

As in the previous section let $\mathscr{S}_{\mathrm{m}}:=\left(\left(\mathcal{P}_{\mathrm{m}}^{+}, \mathcal{L}_{\mathrm{m}}^{+}\right),\left(\mathcal{P}_{\mathrm{m}}^{-}, \mathcal{L}_{\mathrm{m}}^{-}\right)\right)$be a partial twin Grassmannian of a projective space $\mathscr{S}=(\mathcal{P}, \mathcal{L})$ with respect to $\left(U_{+}, U_{-}\right)$. Let $\mathfrak{F}^{\sigma} \subseteq \mathfrak{P}\left(\mathcal{P}_{\mathrm{m}}^{\sigma}\right)$ be the set of finite subsets of $\mathcal{P}_{\mathrm{m}}^{\sigma}$ and set $\mathfrak{S}^{\sigma}:=\{\bigcap X,\langle\cup X\rangle \mid$ $\left.X \in \mathfrak{F}^{\sigma}\right\} \subseteq \mathfrak{P}(\mathcal{P})$ for $\sigma \in\{+,-\}$. Note that every two elements of \mathfrak{S}^{σ} are commensurate. Furthermore, if $\operatorname{rk}\left(U_{\sigma}\right)<\infty$, we obtain $\varnothing \in \mathfrak{S}^{\sigma}$ and $\mathscr{S} \in \mathfrak{S}^{-\sigma}$.

Lemma 3.1. Let S and V be subspaces of \mathscr{S} such that $S \leq V$ and $\operatorname{crk}_{V}(S)<\infty$. Then $S \in \mathfrak{S}^{+}$implies $V \in \mathfrak{S}^{+}$.

Proof. Let B be a set of $\operatorname{crk}_{V}(S)$ points such that $\langle B, S\rangle=V$.
First assume $S=\langle\bigcup M\rangle$ for a finite subset M of $\mathcal{P}_{\mathrm{m}}^{+}$. Let $U \in M$. Let $b \in B$. For every $b \in B$ there is a subspace $U_{b} \in \mathcal{P}_{\mathrm{m}}^{+}$that contains b by Lemma 2.7. By (TG3) we may assume that U and U_{b} have a hyperplane in common. We conclude $V=\langle B, S\rangle=\left\langle\cup_{b \in B} U_{b} \cup \cup M\right\rangle \in \mathfrak{S}^{+}$.

Now assume $S=\bigcap M$ for a finite subset M of $\mathcal{P}_{\mathrm{m}}^{+}$. Let $U \in \mathfrak{U}^{+}$be a subspace with $S \leq U$ such that $U \leq V$ or $V \leq U$ holds. By Proposition 2.9 we know $U \in \mathcal{P}_{\mathrm{m}}^{+}$. For $U \leq V$, we are in the situation above. Thus, we may assume $V<U$. Then there is a set $N \subseteq \mathfrak{U}^{+}$of cardinality $\operatorname{crk}_{U}(V)+1$ such that $V=\bigcap N$. Proposition 2.9 implies $N \subseteq \mathcal{P}_{\mathrm{m}}^{+}$since every element of N contains S. This implies $V \in \mathfrak{S}^{+}$.

Remark 3.2. Let $V \in \mathfrak{S}^{+}$and let $S \leq V$ with $\operatorname{crk}_{V}(S)<\infty$. Then $V \in \mathfrak{S}^{+}$does not necessarily imply $S \in \mathfrak{S}^{+}$. Indeed, suppose it would; $\operatorname{since}^{\operatorname{crk}_{\mathscr{S}}}\left(U_{+}\right)<\infty$ implies $\mathscr{S} \in \mathfrak{S}^{+}$, we would have $\mathcal{P}_{\mathrm{m}}^{+}=\mathfrak{U}^{+}$whenever $\operatorname{crk}_{\mathscr{S}}\left(U_{+}\right)<\infty$. This contradicts what we have seen in Example 2.11.

We now introduce a type function for the elements of \mathfrak{S}^{+}and \mathfrak{S}^{-}: Let $\sigma \in\{+,-\}$; then we define the type function typ: $\mathfrak{S}^{\sigma} \rightarrow \mathbb{Z}$ such that:

$$
\begin{array}{ll}
\operatorname{tgp}(U):=0 & \\
\operatorname{typ}(V):=\sigma n & \text { if } \operatorname{crk}_{V}(U)=n \text { and } \\
\operatorname{typ}(V):=-\sigma n & \text { if } \operatorname{crk}_{U}(V)=n
\end{array}
$$

for subspaces $U \in \mathcal{P}_{\mathrm{m}}^{\sigma}$ and $V \in \mathfrak{S}^{\sigma}$.

Note that by this definition, two subspaces $W \in \mathfrak{S}^{+}$and $W^{\prime} \in \mathfrak{S}^{-}$that are complementary in \mathscr{S} are of the same type.

Let I be an index set and let $\left\{C_{i} \mid i \in I\right\}$ be a family of chains of \mathfrak{S}^{+}such that for two distinct indices i and j of I, either $C_{i} \subset C_{j}$ or $C_{j} \subset C_{i}$. Then $\bigcup_{i \in I}$ is again a chain of \mathfrak{S}^{+}. Thus, Zorn's Lemma implies that \mathfrak{S}^{+}possesses maximal chains. For $\sigma \in\{+,-\}$, let \mathfrak{M}^{σ} denote the set of maximal chains of $\mathfrak{S}^{\sigma} \backslash\{\varnothing, \mathscr{S}\}$. Since any two subspaces that are elements of \mathfrak{S}^{σ} are commensurate, every element of \mathfrak{M}^{σ} is a set M that contains a unique subspace $U \in \mathfrak{S}^{\sigma}$ with typ $(U)=n$ for every $n \in \operatorname{typ}\left(\mathfrak{S}^{\sigma} \backslash\{\varnothing, \mathscr{S}\}\right)$. For a chain $M \in \mathfrak{M}^{\sigma}$, we denote by $\bar{M}:=M \cup\left(\mathfrak{S}^{\sigma} \cap\right.$ $\{\varnothing, \mathscr{S}\})$ the corresponding maximal chain of \mathfrak{S}^{σ}.

Two chains $M_{+} \in \mathfrak{M}^{+}$and $M_{-} \in \mathfrak{M}^{-}$are called opposite if and only if for every subspace $V_{+} \in M_{+}$, there is a subspace $V_{-} \in M_{-}$that is a complement to V_{+}in \mathscr{S}. By the definition of M_{+}and M_{-}we know that this definition is symmetric.

Lemma 3.3. Let $M_{+} \in \mathfrak{M}^{+}$and let $N_{-} \subseteq \mathfrak{S}^{-}$be a chain such that for every subspace $V \in N_{-}$there is a complementary subspace $U \leq \mathscr{S}$ with $U \in M_{+}$. Then there is a chain $M_{-} \in \mathfrak{M}^{-}$with $N_{-} \subseteq M_{-}$that is opposite M_{+}.

Proof. First assume $N_{-}=\varnothing$. Let $U_{0} \in M_{+} \cap \mathcal{P}_{\mathrm{m}}^{+}$. Then by (TG1) there is a subspace $V_{0} \in \mathcal{P}_{\mathrm{m}}^{-}$that is complementary to U_{0} in \mathscr{S}. We show that there is a chain $M_{-} \in \mathfrak{M}^{-}$with $V_{0} \in M_{-}$that is opposite M_{+}. Hence, from now on we may assume $N_{-} \neq \varnothing$.

Now let $V_{0} \in N_{-}$such that V_{0} is not a hyperplane of any element of $N_{-} \cup \mathscr{S}$. Further let $U_{0} \in M_{+}$be the subspace that is a complement to V_{0} in \mathscr{S}. Let $U_{1} \in M_{+}$be the element that is a hyperplane of U_{0}. Then $\left\langle U_{1}, V_{0}\right\rangle$ is a hyperplane of \mathscr{S}. If U_{0} is not the maximal element of N_{-}, let $V_{2} \in N_{-}$be the smallest subspace with $V_{2}>V_{0}$. Then V_{2} is the complement to an element of M_{-}and hence $\left\langle U_{1}, V_{2}\right\rangle=\mathscr{S}$. Thus, there is a point $p \in V_{2} \backslash\left\langle U_{1}, V_{0}\right\rangle$. If U_{0} is the maximal element of N_{-}, let p be an arbitrary point of $\mathscr{S} \backslash\left\langle U_{1}, V_{0}\right\rangle$. Then $V_{1}:=\left\langle p, V_{0}\right\rangle$ is a complement to U_{1} in \mathscr{S} and $V_{1} \in \mathfrak{S}^{-}$by Lemma 3.1. Thus, $N_{-} \cup\left\{V_{1}\right\}$ is a chain of \mathfrak{S}^{-}such that every element of N_{-}is the complement in \mathscr{S} to an element in M_{+}. Hence by induction, it remains to prove the claim for non-empty chains N_{-} such that every element of N_{-}is the hyperplane of an element either of N_{-}or of \mathscr{S}.

If N_{-}has no smallest element, N_{-}is maximal and we are done. Thus, we may assume that N_{-}has a smallest element V_{0}. Further we may assume $\operatorname{rk}\left(V_{0}\right)>0$ since otherwise we are done. Let U_{0} and U_{1} be the elements of M_{+}such that U_{0} is a complement to V_{0} in \mathscr{S} and a hyperplane of U_{1}. Then U_{1} and V_{0} intersect in a point p. By Lemma 2.7 there is a subspace $W^{\prime} \in \mathcal{P}_{\mathrm{m}}^{+}$that contains p and hence by (TG1) there is a subspace $W \in \mathcal{P}_{\mathrm{m}}^{-}$with $p \notin W$. If $V_{0} \geq V$ for a subspace $V \in \mathcal{P}_{\mathrm{m}}^{-}$, we set $S:=V \cap W$; otherwise we set $S:=V_{0} \cap S$. In both cases we obtain $S \in \mathfrak{S}^{-}$. Since $S \leq V_{0}$ and $p \notin S$, there is a hyperplane V_{1} of V_{0} with $p \notin V_{0}$ and $S \leq V_{1}$. Now V_{1} is a complement of U_{1} in \mathscr{S} and we conclude $V_{1} \in \mathfrak{S}^{-}$by Lemma 3.1. Now the claim follows by induction.

Note that for every chain $M_{+} \in \mathfrak{M}^{+}$there is an opposite chain $M_{-} \in \mathfrak{M}^{-}$ since in the previous lemma N_{-}might be empty. In the following let $M_{+} \in \mathfrak{M}^{+}$
and $M_{-} \in \mathfrak{M}^{-}$be opposite chains. By the previous lemma we may assume $U_{+} \in M_{+}$and $U_{-} \in M_{-}$. For $\sigma \in\{+,-\}$, let $\mathfrak{C}^{\sigma}:=\left\{M \in \mathfrak{M}^{\sigma}| | M \backslash M_{\sigma} \mid<\right.$ $\infty\}$ be the set of all maximal chains of \mathfrak{S}^{σ} that differ from M_{σ} in finitely many positions.

Proposition 3.4. For every chain $N_{+} \in \mathfrak{C}^{+}$, there is a chain $N_{-} \in \mathfrak{C}^{-}$that is opposite N_{+}.

Proof. We may assume $N_{+} \neq M_{+}$since otherwise we are done by setting $N_{-}:=M_{-}$. Since $N_{+} \backslash M_{+}$is a finite set, there are subspaces U_{0} and U_{1} in N_{+} such that $U \in N_{+}$for every $U \in M_{+}$with $U<U_{0}$ or $U>U_{1}$. Let V_{0} and V_{1} be the elements of M_{-}such that $\left(U_{0}, V_{0}\right)$ and $\left(U_{1}, V_{1}\right)$ are pairs of complements in \mathscr{S}. By Lemma 3.3 there is a chain $N_{-} \in \mathfrak{M}^{-}$with $N_{-} \supseteq M_{-} \backslash\left\{V \in M_{-} \mid V_{1} \leq V \leq V_{0}\right\}$ that is opposite N_{+}. The claim follows with $\operatorname{crk}_{V_{0}}\left(V_{1}\right)<\infty$.

For $\sigma \in\{+,-\}$, we denote by Δ^{σ} the set of all chains of \mathfrak{S}^{σ} that are subchains of an element of \mathfrak{C}^{σ}. In other words, a chain C of \mathfrak{S}^{σ} is an element of Δ^{σ} if and only if $\left|C \backslash M_{\sigma}\right|<\infty$ and $C \cap\{\varnothing, \mathscr{S}\}=\varnothing$. Clearly, Δ^{σ} is a simplicial complex.

Theorem 3.5. The simplicial complex Δ^{+}is a chamber complex, where \mathfrak{C}^{+}is the set of chambers.

Proof. By definition every element of Δ^{+}is contained in an element of \mathfrak{C}^{+}. Hence, it suffices to check that for every $C \in \mathfrak{C}^{+}$there is a gallery $\left(C_{i}\right)_{0 \leq i \leq n}$ from $C_{0}=C$ to $C_{n}=M_{+}$.

We may assume $C \neq M_{+}$. Let $V_{1} \in C$ such that $V_{1} \notin M_{+}$and $U \in M_{+}$for every $U \in C$ with $U<V_{1}$. Let V_{0} be the hyperplane of V_{1} that is an element of both \bar{C} and \bar{M}_{+}. For $i \in \mathbb{N}$ and $i<\operatorname{crk}_{\mathscr{L}}\left(V_{0}\right)$ let $U_{i} \in \bar{M}_{+}$and $V_{i} \in \bar{C}$ such that $\operatorname{crk}_{U_{i}}\left(V_{0}\right)=\operatorname{crk}_{V_{i}}\left(V_{0}\right)=i$. Further let $k \in \mathbb{N}$ be minimal such that $U \in \bar{M}_{+}$for every $U \in \bar{C}$ with $U \geq V_{k}$ and set $C^{\prime}:=C \backslash\left\{V_{i} \mid 0<i<k\right\}=M_{+} \backslash\left\{U_{i} \mid\right.$ $0<i<k\}$.

For $0<i<k$, we define recursively subspaces V_{i}^{\prime} in the following way: If $V_{i} \leq U_{k-1}$, set $V_{i}^{\prime}:=V_{i}$. Otherwise set $V_{i}^{\prime}:=V_{i+1} \cap U_{k-1}$. In the second case $V_{i} \leq V_{i+1}$ implies $V_{i+1} \not \leq U_{k-1}$. Moreover, since $V_{i+1} \leq U_{k}$ and U_{k-1} is a hyperplane of U_{k}, we conclude that U_{k-1} intersects V_{i+1} in a hyperplane. Thus, in any case V_{i}^{\prime} is a hyperplane of V_{i+1} and a subspace of U_{k-1}. Setting $V_{0}^{\prime}:=V_{0}$ we obtain that V_{i-1}^{\prime} is a subspace of all V_{i}, V_{i+1} and U_{k-1}. Thus, in any case V_{i-1}^{\prime} is a subspace of V_{i}^{\prime}. This implies that $C_{0}:=C$ and $C_{i}:=C^{\prime} \cup\left\{V_{j}^{\prime} \mid 0<j \leq i\right\} \cup\left\{V_{j} \mid i<j<k\right\}$ for $0<i<k$ are all elements of \mathfrak{C}^{+}. Moreover, $\left|C_{i} \backslash C_{i+1}\right|=\left|C_{i+1} \backslash C_{i}\right| \leq 1$ for $i<k-1$.

Note that $V_{k-1}^{\prime}=U_{k-1}$. Hence, $U \in \bar{M}_{+}$for every $U \in \bar{C}_{k-1}$ with $U \geq V_{k-1}^{\prime}$ and $U \leq V_{0}$. Thus, repeating the previous construction at most $k-2$ more times finishes the proof.

4 Buildings

Recall that in Definition 2.2 the projective space may have short lines. Considering only non-degenerate projective spaces, some of the following results can be obtained by applying the results of [Müh98] and [DMVM12]. We will show that the restriction to the non-degenerate case is not necessary. It suffices to claim the axiom (VY).

A morphism of simplicial complexes is a map $\varphi: \Delta \rightarrow \Delta^{\prime}$ from a simplicial complex into another such that for any simplex $A \in \Delta$ the poset $\{X \in \Delta \mid X \leq A\}$ is mapped isomorphically onto $\left\{X \in \Delta^{\prime} \mid X \leq A^{\varphi}\right\}$. Note that φ induces a map from the set of vertices of Δ into the set of vertices of Δ^{\prime} which determines φ uniquely. A morphism of chamber complexes is a morphism of simplicial complexes such that chambers are mapped onto chambers.

Definition 4.1. Let Δ be a simplicial complex and let \mathfrak{A} be a set of subcomplexes of Δ. The pair (Δ, \mathfrak{A}) is called a building of which the elements of \mathfrak{A} are called apartments if the following conditions hold:
(B1) Δ is thick.
(B2) The elements of \mathfrak{A} are thin chamber complexes.
(B3) Any two elements of Δ belong to an apartment.
(B4) If two apartments Σ and Σ^{\prime} contain two common simplices A and A^{\prime}, there exists an isomorphism of Σ onto Σ^{\prime} which leaves A, A^{\prime} and all simplices contained in one of them invariant.
A pair (Δ, \mathfrak{A}) is called a weak building if it satisfies the axioms (B2), (B3) and (B4).
Let \mathscr{S} be a projective space and for $\sigma \in\{+,-\}$, let $U_{\sigma}, M_{\sigma}, \mathfrak{C}^{\sigma}$ and Δ^{σ} be as in the previous section. By \mathfrak{I} we denote the set of all independent sets of points of \mathscr{S}. Now let $\mathfrak{T}^{\sigma} \subseteq \overline{M_{\sigma}} \times \mathfrak{I}$ be the set of all pairs (U, B) for which there exists a subspace $V \in \overline{M_{\sigma}}$ such that the following conditions are fulfilled:
(T1) For any two subspaces $\{X, Y\} \subseteq\left\{W \in \overline{M_{\sigma}} \mid W \leq U \vee W \geq V\right\}$ with $X \leq Y$, the identity $\operatorname{crk}_{Y}(X)=B \cap Y \backslash X$ holds.
(T2) For every point $p \in B$, there are subspaces X and Y in $\overline{M_{\sigma}}$ with $p \in Y \backslash X$.
Remark 4.2. Let $(U, B) \in \mathfrak{T}^{+}$and let $V \in \overline{M_{+}}$such that (T1) and (T2) are fulfilled. Then obviously, (T1) and (T2) are fulfilled for (U, B) and every V^{\prime} with $V^{\prime} \in \overline{M_{+}}$ and $V^{\prime} \geq V$. It follows that there exists a minimal subspace $V \in \overline{M_{\sigma}}$ under the condition that (T1) and (T2) are fulfilled and $V \geq U$.

Motivated by this remark we denote for a pair $(U, B) \in \mathfrak{T}^{+}$the smallest subspace V with $U \leq V \in \overline{M_{\sigma}}$ for which (T1) and (T2) are fulfilled by $V_{\mu}(U, B)$.
Remark 4.3. Let U_{0} and V_{0} be two arbitrary elements of $\overline{M_{+}}$with $U_{0} \leq V_{0}$. For $0 \leq i \leq \operatorname{rk}\left(U_{0}\right)$, let $U_{i+1} \in \overline{M_{+}}$be the subspace with $\operatorname{crk}_{U_{0}}\left(U_{i+1}\right)=i+1$ and let p_{i} be any point of $U_{i} \backslash U_{i+1}$. For $0 \leq i<\operatorname{crk}_{\mathscr{S}}\left(V_{0}\right)$ let $V_{i+1} \in \overline{M_{+}}$be the subspace with $\mathrm{crk}_{V_{i+1}}\left(V_{0}\right)=i+1$ and let q_{i} be any point of $V_{i+1} \backslash V_{i}$. Further let $B_{0} \subseteq V_{0} \backslash U_{0}$ be an independent set of points with $\left|B_{0}\right|=\operatorname{crk}_{V_{0}}\left(U_{0}\right)$. Set
$B:=B_{0} \cup\left\{p_{i} \mid i \leq \operatorname{rk}\left(U_{0}\right)\right\} \cup\left\{q_{i} \mid i<\operatorname{crk}_{\mathscr{S}}\left(V_{0}\right)\right\}$. Then $\left(U_{0}, B\right) \in \mathfrak{T}$. Moreover, every element of \mathfrak{T} can be obtained in this way.

For a pair $(U, B) \in \mathfrak{T}^{\sigma}$, we set

$$
\begin{aligned}
& \mathfrak{S}(U, B):=\left\{\langle I, W\rangle|I \subseteq B \wedge| I \mid<\infty, W \in \overline{M_{\sigma}} \wedge W \leq U\right\} \quad \text { and } \\
& \Sigma(U, B):=\left\{C \in \Delta^{\sigma} \mid C \subseteq \mathfrak{S}(U, B)\right\}
\end{aligned}
$$

Lemma 4.4. Let $(U, B) \in \mathfrak{T}^{+}$and set $\mathfrak{F}:=\{I \subseteq B| | I \mid<\infty\}$.
(a) Let $X \in M_{+}$with $X \leq U$ or $X \geq V_{\mu}(U, B)$. Then $X \in \mathfrak{S}(U, B)$.
(b) Let V and W be elements of $\overline{M_{+}}$with $W \leq V \leq U$. Then $\{\langle I, W\rangle \mid I \in \mathfrak{F}\} \supseteq$ $\{\langle I, V\rangle \mid I \in \mathfrak{F}\}$.
(c) Let V and W be elements of $\mathfrak{S}(U, B)$ with $W \leq V$. Then $\langle B \cap V \backslash W, W\rangle=V$ and $|B \cap V \backslash W|=\operatorname{crk}_{V}(W)$.

Proof. Claim (a) is a direct consequence of (T1) and the fact that B is independent. By the same arguments there is a set of points $I \in \mathfrak{F}$ such that $V=\langle I, W\rangle$ for elements V and W of $\overline{M_{+}}$. This proves claim (b). Now let V and W be arbitrary elements of $\mathfrak{S}(U, B)$ with $W \leq V$. Then (b) implies that there is a subspace $X \in \overline{M_{+}}$such that $\{\langle I, W\rangle \mid I \in \mathfrak{F}\}$ contains both V and W. Now (c) follows since B is independent.

We proceed by introducing certain groups that play an import role in the theory of buildings. See also [AS08, section 2.4] for the following definition.

Definition 4.5. Let (W, S) be a pair consisting of a group W and a set S of reflections such that W admits the presentation $\left\langle S \mid(s t)^{m_{s, t}}=1\right\rangle$, where $m_{s, t}$ is the order of $s t \in W$ and for any pair $(s, t) \in S \times S$, there is a relation. Then we call (W, S) a Coxeter system and W a Coxeter group.

Remark 4.6. We denote by $\operatorname{Sym}_{0}(\mathbb{Z})$ the subgroup of the symmetric group $\operatorname{Sym}(\mathbb{Z})$ that contains all permutations $\pi \in \operatorname{Sym}(\mathbb{Z})$ for which $\left\{z \in \mathbb{Z} \mid z \neq z^{\pi}\right\}$ is finite. Let $s_{i} \in \operatorname{Sym}_{0}(\mathbb{Z})$ be the transposition that exchanges i and $i+1$ and fixes all other numbers. Then $\left(\operatorname{Sym}_{0}(\mathbb{Z}),\left\{s_{i} \mid i \in \mathbb{Z}\right\}\right)$ is a Coxeter system.

In the following we are interested in permutations of the set typ $\left(\overline{M_{+}} \backslash\{\varnothing\}\right)$; note that this set might differ from \mathbb{Z}. Therefore we denote by S_{Δ} the set of all transpositions s_{i} with $i \in \operatorname{typ}\left(M_{+}\right)$. Then $\left\langle S_{\Delta}\right\rangle$ is the subgroup of $\operatorname{Sym}_{0}(\mathbb{Z})$ that stabilises $\mathbb{Z} \backslash \operatorname{typ}\left(\overline{M_{+}} \backslash\{\varnothing\}\right)$ pointwise. Note that there are the following four cases:

$$
\begin{aligned}
& \overline{M_{+}} \backslash\{\varnothing\}=\{-n, \ldots, m\} \\
& \overline{M_{+}} \backslash\{\varnothing\}=\{i \in \mathbb{Z} \mid i \geq-n\} \\
& \overline{M_{+}} \backslash\{\varnothing\}=\{i \in \mathbb{Z} \mid i \leq m\} \\
& \overline{M_{+}} \backslash\{\varnothing\}=\mathbb{Z},
\end{aligned}
$$

where n and m are positive Integers. One of the first two cases occurs when the underlying point-line space is a Grassmannian in the usual sense. The third case
occurs for Grassmannian of corank- m-spaces and the last case occurs whenever both $\operatorname{rk}\left(M_{+}\right)$and $\operatorname{crk}_{\mathscr{S}}\left(M_{+}\right)$are infinite.

Let $C \in \mathfrak{C}^{+}$be a chamber and for $i \in \operatorname{typ}(\bar{C})$, let $U_{i} \in \bar{C}$ denote the element of type i. Further let $(U, B) \in \mathfrak{T}^{+}$such that $C \in \Sigma(U, B)$. Then for every $i \in \operatorname{typ}(\bar{C} \backslash\{\varnothing\})$, there is exactly one point $p_{i} \in B$ with $p_{i} \in U_{i} \backslash U_{i-1}$.

Now let $\pi \in\left\langle S_{\Delta}\right\rangle$ be a permutation. Then there is exactly one chamber D in $\Sigma(U, B)$ such that $p_{i \pi} \in V_{i} \backslash V_{i-1}$, where $V_{j} \in \bar{D}$ denotes the element of type j for every $j \in \operatorname{typ}(\bar{C})$. We define $C^{(\pi, B)}:=D$.

Lemma 4.7. Let $C \in \mathfrak{C}^{+} \cap \Sigma(U, B)$, where $(U, B) \in \mathfrak{T}^{+}$, and let $\pi \in\left\langle S_{\Delta}\right\rangle$. Then for every $i \in \mathbb{Z}$, the chambers $C^{(\pi, B)}$ and $C^{\left(s_{i} \pi, B\right)}$ are adjacent and differ in the element of type i.

Proof. For $i \in \operatorname{typ}(\bar{C})$, let $U_{i} \in \bar{C}, V_{i} \in \overline{C^{(\pi, B)}}$ and $W_{i} \in \overline{C^{\left(s_{i} \pi, B\right)}}$ be the subspaces of type i. Further let $(U, B) \in \mathfrak{T}^{+}$such that $C \in \Sigma(U, B)$ and let $p_{i} \in B$ denote the point with $p_{i} \in U_{i} \backslash U_{i-1}$. Now let $i \in \operatorname{typ}(C)$ and let $j \in \operatorname{typ}(C) \backslash\{i, i+1\}$. Then $j^{s_{i}}=j$ and hence, $p_{j^{s} i} \pi=p_{j^{\pi}}$. Analogously, $p_{i^{s_{i}} \pi}=p_{(i+1)^{\pi}}$ and $p_{(i+1)^{s_{i}} \pi}=p_{i^{\pi}}$. This implies $V_{j}=W_{j}$ for every $j \in \mathbb{Z} \backslash\{i\}$.

Proposition 4.8. Let $(U, B) \in \mathfrak{T}^{+}$. Then $\Sigma(U, B)$ is a thin chamber complex whose set of chambers is $\mathfrak{C}^{+} \cap \Sigma(U, B)$.

Proof. Let $A \in \Sigma(U, B)$. Since $A \in \Delta^{+}$, there are subspaces $U^{\prime} \leq U$ and $V^{\prime} \geq$ $V_{\mu}(U, B)$ in $\overline{M_{+}}$such that $U^{\prime}<X<V^{\prime}$ for every $X \in A \backslash \overline{M_{+}}$. By Lemma 4.4(a) we obtain $X \in \mathfrak{S}(U, B)$ for every subspace $X \in M_{+}$with $X \leq U^{\prime}$ or $X \geq V^{\prime}$. Furthermore, $A^{\prime}:=A \cup\left\{X \in M_{+} \mid X \leq U^{\prime} \vee X \geq V^{\prime}\right\}$ is a chain and therefore an element of $\Sigma(U, B)$.

Let W^{\prime} and W be two elements of A^{\prime} with $U^{\prime} \leq W^{\prime}<W \leq V^{\prime}$ such that there is no subspace $X \in A^{\prime}$ with $W^{\prime}<X<W$. By Lemma 4.4(c) we know that W^{\prime} and W are both contained in $\left\{\left\langle I, U^{\prime}\right\rangle|I \subseteq B \wedge| I \mid<\infty\right\}$ and furthermore, $\left|B \cap W \backslash W^{\prime}\right|=\operatorname{crk}_{W}\left(W^{\prime}\right)$. Thus, there are subspaces $W_{i} \in\left\{\left\langle I, U^{\prime}\right\rangle \mid I \subseteq B \wedge\right.$ $|I|<\infty\}$ for $0<i<\operatorname{crk}_{W}\left(W^{\prime}\right)$ with $W^{\prime} \leq W_{i}<W$ such that $\operatorname{crk}_{W_{i}}\left(W^{\prime}\right)=i$. Adding for each choice of W^{\prime} and W the subspaces W_{i} to A^{\prime} leads to a chain C that is contained in $\mathfrak{C}^{+} \cap \Sigma(U, B)$. Since C is maximal in Δ^{+}it is also maximal in $\Sigma(U, B)$. Thus, $\mathfrak{C}(U, B):=\mathfrak{C}^{+} \cap \Sigma(U, B)$ is the set of maximal elements of $\Sigma(U, B)$.

Let C and C^{\prime} be two elements of $\mathfrak{C}(U, B)$. Then again there are subspaces $U^{\prime}<U$ and $V^{\prime}>V_{\mu}(U, B)$ in $\overline{M_{+}}$such that $M_{C}:=\left\{X \in M_{+} \mid X \leq U^{\prime} \vee X \geq\right.$ $\left.V^{\prime}\right\} \subseteq C \cap C^{\prime}$. Thus, there is a permutation $\pi \in\left\langle S_{\Delta}\right\rangle$ such that $C^{(\pi, B)}=C^{\prime}$. It follows from Remark 4.6 and Lemma 4.7 that there is a sequence of adjacent chambers from C to C^{\prime}. This proves that $\Sigma(U, B)$ is a chamber complex whose set of chambers is $\mathfrak{C}(U, B)$.

Now assume that C and C^{\prime} are adjacent. Then there are subspaces $W \in C$ and $W^{\prime} \in C^{\prime}$ such that $C \backslash\{W\}=C^{\prime} \backslash\left\{W^{\prime}\right\}$. Let X and Y be the elements of C with $\operatorname{crk}_{X}(W)=\operatorname{crk}_{W}(Y)=1$. Then $X=\left\langle W, W^{\prime}\right\rangle$ and $Y=W \cap W^{\prime}$. By Lemma 4.4(c) there are exactly two points p and q in $B \cap X \backslash Y$ and hence, every element of $\mathfrak{C}(U, B)$ containing $C \backslash\{W\}$ contains either $\langle p, Y\rangle$ or $\langle q, Y\rangle$. We conclude that Σ is a thin chamber complex.

Let $(U, B) \in \mathfrak{T}^{+}$. Then for a subspace $W \in M_{+}$with $U<W<V_{\mu}(U, B)$, the singleton $\{W\}$ is a vertex of $\Sigma(U, B)$ if and only if $\langle W \cap B, U\rangle=W$. This implies that M_{+}is not necessarily a chamber of $\Sigma(U, B)$.

Lemma 4.9. Let \mathscr{S} be a projective space of finite rank n and let $\left\{C_{i} \mid 0 \leq i \leq n\right\}$ and $\left\{D_{i} \mid 0 \leq i \leq n\right\}$ be chains of subspaces of \mathscr{S} with $\operatorname{rk}\left(C_{i}\right)=\operatorname{rk}\left(D_{i}\right)=i$ and let $C_{-1}=$ $D_{-1}=\varnothing$. Set $\pi:\{0, \ldots, n\} \rightarrow\{0, \ldots, n\}$ such that $i^{\pi}=\min \left\{j \leq n \mid\left\langle C_{i-1}, D_{j}\right\rangle \geq\right.$ $\left.C_{i}\right\}$. Then π is a permutation. Furthermore, $i=\min \left\{j \leq n \mid\left\langle C_{j}, D_{i^{\pi}-1}\right\rangle \geq D_{i \pi}\right\}$.

Proof. Since $\left\langle C_{i-1}, D_{n}\right\rangle \geq C_{i}$ for every $i \leq n$, we obtain $i^{\pi} \in\{0, \ldots, n\}$. Suppose there are indices $0 \leq j<i<n$ with $j^{\pi}=i^{\pi}=: k$. Then there are points $p \in C_{j} \backslash C_{j-1}$ and $q \in C_{i} \backslash C_{i-1}$ that are both contained in $D_{k} \backslash D_{k-1}$. This implies $p \neq q$. Thus, the line $p q$ intersects the hyperplane D_{k-1} of D_{k} in a point $r \neq p$. With $q \in C_{i} \backslash C_{i-1}$ and $p \in C_{i-1}$, we obtain $r \notin C_{i-1}$ and therefore $r \in\left(C_{i} \cap D_{k-1}\right) \backslash C_{i-1}$, a contradiction to the definition of i^{π}. Thus, π is a permutation.

Analogously, there is a permutation ψ such that $i^{\psi}=\min \left\{j \leq n \mid\left\langle C_{j}, D_{i-1}\right\rangle \geq\right.$ $\left.D_{i}\right\}$ for every $i \leq n$. Since there is a point $p \in C_{i} \backslash C_{i-1}$ with $p \in D_{i^{\pi}} \backslash D_{i^{\pi}-1}$. Hence, $\left(i^{\pi}\right)^{\psi} \leq i$. This implies that the permutation $\psi \circ \pi$ is the identity. The claim follows.

Proposition 4.10. For any two simplices C and D of Δ^{+}there is a pair $(U, B) \in \mathfrak{T}^{+}$ such that $\{C, D\} \subseteq \Sigma(U, B)$.

Proof. Since both C and D are contained in a chamber of Δ^{+}, it suffices to prove the claim for the case that both C and D are chambers. Let U and V be elements of $C \cap D$ such that $\{X \in C \mid X \leq U \vee X \geq V\} \subseteq D \cap M_{+}$. If $C=D=M_{+}$, we choose $U=V=U_{+}$.

Set $k:=\operatorname{crk}_{V}(U)$. For $0 \leq i \leq k$, let $X_{i} \in C$ and $Y_{i} \in D$ be the subspaces with $\operatorname{crk}_{X_{i}}(U)=\operatorname{crk}_{Y_{i}}(U)=i$. Let $S \leq V$ be a subspace of rank $k-1$ that is complementary to U in V. Then $\operatorname{rk}\left(S \cap X_{i}\right)=\operatorname{rk}\left(S \cap Y_{i}\right)=i-1$. Thus we may apply Lemma 4.9 to conclude that there are points r_{i} for $0 \leq i<k$ and a permutation π of $\{0, \ldots, k-1\}$ such that $r_{i} \in S \cap X_{i+1} \cap Y_{i \pi+1}$ and $r_{i} \notin X_{i} \cup Y_{i \pi}$. This implies $X_{i}=\left\langle r_{j}, U \mid j<i\right\rangle$ and $Y_{i}=\left\langle r_{j}, U \mid j^{\pi}<i\right\rangle$ for $i \leq k$.

Now for $i \in \mathbb{N}$ with $i \leq \operatorname{rk}(U)$, let $U_{i+1} \in \bar{M}_{+}$be the subspace with $\operatorname{crk}_{U}\left(U_{i+1}\right)=i+1$ and choose a point $p_{i} \in U_{i} \backslash U_{i+1}$. Correspondingly, for $i \in \mathbb{N}$ and $i<\operatorname{crk}_{\mathscr{S}}(V)$, let $V_{i+1} \in \bar{M}_{+}$be the subspace with $\operatorname{crk}_{V_{i+1}}(V)=i+1$ and let $q_{i} \in V_{i+1} \backslash V_{i}$. Set $B:=\left\{r_{i} \mid i<k\right\} \cup\left\{p_{i} \mid i \leq \operatorname{rk}(U)\right\} \cup\left\{q_{i} \mid i<\operatorname{crk}_{\mathscr{S}}(V)\right\}$. Then $(U, B) \in \mathfrak{T}^{+}$and C and D are both contained in $\Sigma(U, B)$.

Lemma 4.11. Let $(U, B) \in \mathfrak{T}^{+}$. Further let V and W be elements of $\mathfrak{S}(U, B)$. Then $V \cap W$ and $\langle V, W\rangle$ are again contained in $\mathfrak{S}(U, B)$.

Proof. By definition of $\mathfrak{S}(U, B)$ there is a maximal subspace $U^{\prime} \in \overline{M_{+}}$with $U^{\prime} \leq$ $V \cap W$. By Lemma 4.4(c) there are finite subsets B_{V} and B_{W} of $B \backslash U^{\prime}$ such that $V=\left\langle B_{V}, U^{\prime}\right\rangle$ and $W=\left\langle B_{W}, U^{\prime}\right\rangle$. This implies $\langle V, W\rangle=\left\langle B_{V} \cup B_{W}, U^{\prime}\right\rangle \in$ $\mathfrak{S}(U, B)$. Since B is an independent set of points, we conclude $\left|B_{W} \backslash B_{V}\right|=$ $\operatorname{crk}_{\langle V, W\rangle}(V)=\operatorname{crk}_{W}(V \cap W)$. Thus, $\operatorname{crk}_{V \cap W}\left(U^{\prime}\right)=\left|B_{W}\right|-\left|B_{W} \backslash B_{V}\right|=\left|B_{W} \cap B_{V}\right|$ and therefore $V \cap W=\left\langle B_{V} \cap B_{W}, U^{\prime}\right\rangle \in \mathfrak{S}(U, B)$.

Lemma 4.12. Let $(U, B) \in \mathfrak{T}^{+}$and let $U^{\prime} \in \overline{M_{+}}$with $U^{\prime} \leq U$. Then $\Sigma\left(U^{\prime}, B\right)=$ $\Sigma(U, B)$.

Proof. As a direct consequence of Lemma 4.4(b) we conclude $\mathfrak{S}\left(U^{\prime}, B\right)=\mathfrak{S}(U, B)$. The claim follows.

Proposition 4.13. Let C and D be two simplices of Δ^{+}and let $\left(U_{0}, B_{0}\right)$ and $\left(U_{1}, B_{1}\right)$ be two pairs of \mathfrak{T}^{+}such that $\{C, D\} \subseteq \Sigma\left(U_{0}, B_{0}\right) \cap \Sigma\left(U_{1}, B_{1}\right)$. Then there is an isomorphism $\varphi: \Sigma\left(U_{0}, B_{0}\right) \rightarrow \Sigma\left(U_{1}, B_{1}\right)$ that leaves every simplex that is contained in C or D invariant.

Proof. First of all, we may assume $U_{0}=U_{1}=: U$ by Lemma 4.12. Moreover, since both C and D are elements of Δ^{+}we may assume $X>U$ for every subspace $X \in(C \cup D) \backslash M_{+}$. Correspondingly, let $V \in \overline{M_{+}}$such that $X<V$ for every subspace $X \in(C \cup D) \backslash M_{+}$. If $C \cup D \subseteq M_{+}$, we set $V:=U$. We denote by P_{C} (resp. P_{D}) the set of all pairs $\left(W, W^{\prime}\right)$, where W and W^{\prime} are subspaces contained in C (resp. D) such that $U \leq W<W^{\prime} \leq V$ and $X \geq W^{\prime}$ for every $X \in C$ (resp. $X \in D)$ with $X>W$.

We may prove the claim for simplices $\left\{C^{\prime}, D^{\prime}\right\} \subseteq \Sigma\left(U, B_{0}\right) \cap \Sigma\left(U, B_{1}\right)$ with $C \subseteq C^{\prime}$ and $D \subseteq D^{\prime}$. Hence, by Lemma 4.4(a) we may assume $\left\{X \in M_{+} \mid\right.$ $X \leq U \vee X \geq V\} \subseteq C \cap D$. Let $\left(X_{0}, X_{1}\right) \in P_{C}$ and let $\left(Y_{0}, Y_{1}\right) \in P_{D}$. By Lemma 4.11 we know that $X^{\prime}:=\left\langle X_{0}, X_{1} \cap Y_{0}\right\rangle$ is contained in both $\mathfrak{S}\left(U, B_{0}\right)$ and $\mathfrak{S}\left(U, B_{1}\right)$. Furthermore, X^{\prime} is comparable to every element of C. Thus, we may assume $X^{\prime} \in C$ or, equivalently, that $X_{1} \cap Y_{0} \nsubseteq X_{0}$ implies $\left\langle X_{0}, X_{1} \cap Y_{0}\right\rangle=X_{1}$. Analogously, we may assume that $Y_{1} \cap X_{0} \nsubseteq Y_{0}$ implies $\left\langle Y_{0}, Y_{1} \cap X_{0}\right\rangle=Y_{1}$. We refer to this assumption as ($*$).

Let $\left(X_{0}, X_{1}\right) \in P_{C}$ and let $\left(Y_{0}, Y_{1}\right) \in P_{D}$ such that Y_{1} is minimal under the condition $\left(X_{1} \backslash X_{0}\right) \cap Y_{1} \neq \varnothing$. By $(*)$ this is equivalent to ($X_{1} \cap Y_{0} \leq X_{0}$ and $\left.\left\langle X_{0}, X_{1} \cap Y_{1}\right\rangle=X_{1}\right)$. This yields $\operatorname{crk}_{X_{1} \cap Y_{1}}\left(X_{1} \cap Y_{0}\right)=\operatorname{crk}_{X_{1}}\left(X_{0}\right)$. By Lemma 4.11 we know that $X_{1} \cap Y_{0}$ and $X_{1} \cap Y_{1}$ are both contained in $\mathfrak{S}\left(U, B_{0}\right) \cap \mathfrak{S}\left(U, B_{1}\right)$. Thus for $i \in\{0,1\}$, Lemma 4.4(c) implies $\left|B_{i} \cap X_{1} \cap Y_{1} \backslash Y_{0}\right|=\left|B_{i} \cap X_{1} \backslash X_{0}\right|$. Since $\left\langle X_{0}, X_{1} \cap Y_{1}\right\rangle=X_{1}$ and $X_{1} \cap Y_{0} \leq X_{0}$, we conclude $B_{i} \cap X_{1} \cap Y_{1} \backslash Y_{0}=$ $B_{i} \cap X_{1} \backslash X_{0}$.

Particularly, this implies $B_{i} \cap X_{1} \backslash X_{0} \subseteq B_{i} \cap Y_{1} \backslash Y_{0}$ for $i \in\{0,1\}$. By analogous reasons, there is a pair $\left(X_{0}^{\prime}, X_{1}^{\prime}\right) \in P_{C}$ such that $B_{i} \cap Y_{1} \backslash Y_{0} \subseteq$ $B_{i} \cap X_{1}^{\prime} \backslash X_{0}^{\prime}$. Since $X_{1} \backslash X_{0}$ and $X_{1}^{\prime} \backslash X_{0}^{\prime}$ are either equal or disjoint, this yields $\left(X_{0}^{\prime}, X_{1}^{\prime}\right)=\left(X_{0}, X_{1}\right)$ and thus, $B_{i} \cap X_{1} \backslash X_{0}=B_{i} \cap Y_{1} \backslash Y_{0}$. We conclude that mapping $\left(X_{0}, X_{1}\right)$ to $\left(Y_{0}, Y_{1}\right)$ induces a bijection ψ from P_{C} onto P_{D} such that $B_{i} \cap W_{1} \backslash W_{0}=B_{i} \cap W_{1}^{\psi} \backslash W_{0}^{\psi}$ for every $\left(W_{0}, W_{1}\right) \in P_{C}$ and $i \in\{0,1\}$.

Set $\bar{C}:=C \cup\left(\{\varnothing, \mathscr{S}\} \cap \mathfrak{S}\left(U, B_{0}\right)\right)$. We define a map $\varphi^{\prime}: B_{0} \rightarrow B_{1}$ such that for every two successive subspaces $X_{0}<X_{1}$ of \bar{C} the following holds: If $X_{1} \leq U$ or $X_{0} \geq V$, the unique point of $B_{0} \cap X_{1} \backslash X_{0}$ is mapped on the unique point of $B_{1} \cap X_{1} \backslash X_{0}$. Otherwise $\left(X_{0}, X_{1}\right) \in P_{C}$ and the points of $B_{0} \cap X_{1} \backslash X_{0}$ are mapped bijectively onto the points of $B_{1} \cap X_{1} \backslash X_{0}$. Finally, we define a map $\varphi: \mathfrak{S}\left(U, B_{0}\right) \rightarrow \mathfrak{S}\left(U, B_{1}\right)$ such that $\langle I, W\rangle^{\varphi}=\left\langle I^{\varphi^{\prime}}, W\right\rangle$ for every finite subset $I \subseteq B_{0}$ and every subspace $W \in \overline{M_{+}}$with $W \leq U$. It is straightforward to check that this map induces a well-defined isomorphism from $\Sigma\left(U, B_{0}\right)$ onto $\Sigma\left(U, B_{1}\right)$ that leaves every simplex that is contained in C or D invariant.

For $\sigma \in\{+,-\}$, we set $\mathfrak{A}^{\sigma}:=\left\{\Sigma(U, B) \mid(U, B) \in \mathfrak{T}^{\sigma}\right\}$.
Theorem 4.14. For $\sigma \in\{+,-\}$, the pair $\left(\Delta^{\sigma}, \mathfrak{A}^{\sigma}\right)$ is a weak building. Moreover, $\left(\Delta^{\sigma}, \mathfrak{A}^{\sigma}\right)$ is a building if and only if all short lines of \mathscr{S} intersect $\cap \overline{M_{\sigma}}$ or $\mathscr{S} \backslash \cup \overline{M_{\sigma}}$.
Proof. Axioms (B2), (B3) and (B4) follow from the Propositions 4.8, 4.10 and 4.13. Thus, $\left(\Delta^{\sigma}, \mathfrak{A}^{\sigma}\right)$ is a weak building.

Set $S:=\bigcap M_{\sigma}$ and $T:=\bigcup M_{\sigma}$. First assume that every line of T that is disjoint to S is a thick line. Let C and C^{\prime} be two adjacent chambers of Δ^{σ} and let V and V^{\prime} be the subspaces of \mathscr{S} with $C \backslash C^{\prime}=\{V\}$ and $C^{\prime} \backslash C=\left\{V^{\prime}\right\}$. Set $U:=V \cap V^{\prime}$ and $W:=\left\langle V, V^{\prime}\right\rangle$. Then $\operatorname{crk}_{W}(U)=2$. Hence, there is a line $l \leq W$ that is disjoint to U. Since $U \geq S$ and $W \leq T$, this implies that l is thick. Now for every point $p \in l$, the subspace $V_{p}:=\langle p, U\rangle$ intersects l in p. Moreover, $(C \backslash\{V\}) \cup\left\{V_{p}\right\} \in \mathfrak{C}^{\sigma}$. Thus, Δ^{σ} is thick.

Now assume there is a short line l with $l \subseteq T \backslash S$. Then there are subspaces $U \in \overline{M_{\sigma}}$ and $W \in \overline{M_{\sigma}}$ with $l \subseteq W \backslash U$. Thus, there is a chamber $C \in \mathfrak{C}^{\sigma}$ such that U and $\langle l, U\rangle$ are elements of \bar{C}. Let p and q be the two points of l. We may assume $\langle p, U\rangle \in C$. Then there are exactly two chambers in \mathfrak{C}^{σ} that contain $C \backslash\{\langle l, U\rangle\}$. Thus, Δ^{σ} is not thick.

5 Twin buildings

Throughout this section, let $\Delta^{\sigma}, \mathfrak{C}^{\sigma}, \mathfrak{A}^{\sigma}$ and \mathfrak{T}^{σ} be defined as in the previous section, where $\sigma \in\{+,-\}$. Moreover, let $s_{i} \in S_{\Delta}$ be the permutation that exchanges i and $i+1$.

In order to introduce twin buildings, we define a certain distance function on \mathfrak{C}^{+}that is based on the Coxeter system $\left(\left\langle S_{\Delta}\right\rangle, S_{\Delta}\right)$ in the following way: Let C and D be two adjacent chambers of \mathfrak{C}^{+}. Further let $V \in C$ be the subspace that is not contained in D. We say that C and D are s_{i}-adjacent, where $i=\operatorname{typ}(V)$. Now let $\left(C_{i}\right)_{i \leq n}$ be a gallery, such that C_{i} and C_{i+1} are t_{i}-adjacent with $t_{i} \in S_{\Delta}$ for $i<n$. Then we call the gallery $\left(C_{i}\right)_{i \leq n}$ of type $\left(t_{i}\right)_{i<n}$. A gallery from C to D is called minimal if there is no shorter gallery from C to D.

Let (W, S) be a Coxeter system. A word $t_{0} t_{1} \cdots t_{n}$, where $n \in \mathbb{N}$ and $t_{i} \in S$ for $i \leq n$ is called a reduced word if for every word $r_{0} r_{1} \cdots r_{m}=t_{0} t_{1} \cdots t_{n} \in W$ with $r_{i} \in S$, we have $m \geq n$.
Proposition 5.1. Let C and D be two chambers of \mathfrak{C}^{+}and let $\left(C_{i}\right)_{i \leq n}$ and $\left(D_{i}\right)_{i \leq n}$ be two minimal galleries from C to D. Further let $\left(C_{i}\right)_{i \leq n}$ be of type $\left(t_{i}\right)_{i<n}$ and let $\left(D_{i}\right)_{i \leq n}$ be of type $\left(r_{i}\right)_{i<n}$. Then $t_{0} t_{1} \cdots t_{n-1}=r_{0} r_{1} \cdots r_{n-1}$ and both are reduced words of (W, S). Proof. This is an immediate consequence of [AS08, Lemma 5.16].

This result motivates the following definition. We define the Weyl distance only for the buildings we are dealing with in this context although this a fundamental concept for buildings in general.
Definition 5.2. Let C and D be two chambers of \mathfrak{C}^{+}such that there is a minimal gallery from C to D of type $\left(t_{0}, \ldots, t_{n}\right)$. Then we call $w=t_{0} t_{1} \cdots t_{n} \in\left\langle S_{\Delta}\right\rangle$ the Weyl distance from C to D, denoted by $\delta_{+}(C, D)$. By $l(w):=n$ we denote the length of w with respect to $\left(\left\langle S_{\Delta}\right\rangle, S_{\Delta}\right)$.

Note that if $\delta(C, D)=w$, then $\delta(D, C)=w^{-1}$. This is an immediate consequence of Proposition 5.1. Let B be a building and let (W, S) be a Coxeter system such that B has a Weyl distance defined by (W, S). Then we call B of type (W, S).

We now introduce twin buildings following [AS08, 5.8].
Definition 5.3. Let (W, S) be a Coxeter system and let \mathfrak{B}^{+}and \mathfrak{B}^{-}be the sets of chambers of buildings \mathfrak{C}^{+}and \mathfrak{C}^{-}of type (W, S) together with a codistance function

$$
\delta:\left(B^{+} \times B^{-}\right) \cup\left(B^{-} \times B^{+}\right) \rightarrow W
$$

satisfying the following conditions for each pair of chambers $(C, D) \in B^{\sigma} \times B^{-\sigma}$, where $\sigma \in\{+,-\}, w:=\delta(C, D)$ and δ_{σ} denotes the Weyl distance of B^{σ}.
(TW1) $\delta(C, D)=\delta(D, C)^{-}$.
(TW2) Let $C^{\prime} \in B^{\sigma}$ with $\delta_{\sigma}\left(C^{\prime}, C\right)=s \in S$ and $l(s w)<l(w)$. Then $\delta\left(C^{\prime}, D\right)=$ sw.
(TW3) For any $s \in S$, there exists a chamber $C^{\prime} \in B^{\sigma}$ with $\delta_{\sigma}\left(C^{\prime}, C\right)=s$ and $\delta\left(C^{\prime}, D\right)=s w$.

Then we call $\left(\mathfrak{C}^{+}, \mathfrak{C}^{-}\right)$a twin building of type (W, S) with codistance function δ.
To prove that $\left(\Delta^{+}, \Delta^{-}\right)$is a twin building of type $\left(\left\langle S_{\Delta}\right\rangle, S_{\Delta}\right)$, we define a codistance function for $\left(\Delta^{+}, \Delta^{-}\right)$with values in $\left\langle S_{\Delta}\right\rangle$ and show that it satisfies the axioms (TW1), (TW2) and (TW3).

For $\sigma \in\{+,-\}$, let $C \in \mathfrak{C}^{\sigma}$ and $D \in \mathfrak{C}^{-\sigma}$. Since M_{σ} differs in only finitely many elements from C and $M_{-\sigma}$ differs in only finitely many elements from D, there are subspaces $U \in C$ and $V \in C$ of \mathscr{S} such that for every subspace $W \in C$ with $W \geq V$ or $W \leq U$ there is a complementary subspace W^{\prime} in \mathscr{S} with $W^{\prime} \in D$. Let $U^{\prime} \in D$ and $V^{\prime} \in D$ be the complementary subspaces to U and V, respectively.

Set $S:=V \cap U^{\prime}$. Then S is a complement to U in V and a complement to V^{\prime} in U^{\prime}. Now let $D^{\prime}:=\{W \in C \mid W \leq U \vee W \geq V\} \cup\{\langle S \cap W, U\rangle \mid W \in D\}$ be the chamber that arises by substituting the subspaces of C between U and V by subspaces that are the span of U and $S \cap W$ with $W \in D$ and $V^{\prime} \leq W \leq U^{\prime}$. Note that for every subspace $W^{\prime} \in C$ with $U \leq W^{\prime} \leq V^{\prime}$ there is exactly one subspace $W \in D$ and $V^{\prime} \leq W \leq U^{\prime}$ such that $W^{\prime} \gtreqless\langle U, S \cap W\rangle$. We define a partial map $\psi_{\sigma}: \mathfrak{C}^{\sigma} \times M_{\sigma} \times M_{\sigma} \times \mathfrak{C}^{-\sigma} \rightarrow \mathfrak{C}^{\sigma}$ such that $\psi(C, U, V, D):=D^{\prime}$. In the following, we will write ψ rather than ψ_{σ}.

In the following lemma for two integers $i<j$, we denote by $w_{i, j} \in\left\langle S_{\Delta}\right\rangle$ the involution that exchanges $i+k$ and $j-k$ for every $k \in \mathbb{N}$ with $2 k<i-j$.

Lemma 5.4. Let $C \in \mathfrak{C}^{+}$and $D \in \mathfrak{C}^{-}$. Further let $U \in C$ and $V \in C$ be subspaces of \mathscr{S} such that for every subspace $W \in C$ with $W \geq V$ or $W \leq U$ there is a complementary subspace W^{\prime} in \mathscr{S} with $W^{\prime} \in D$. Set $i:=\operatorname{typ}(U)$ and $j:=\operatorname{typ}(V)$ and let $U^{\prime} \in C$ with $\operatorname{typ}\left(U^{\prime}\right)=i-1$ and $V^{\prime} \in C$ with $\operatorname{typ}\left(V^{\prime}\right)=j+1$. Then

$$
\begin{aligned}
\delta_{+}(C, \psi(C, U, V, D)) \cdot w_{i+1, j} & =\delta_{+}\left(C, \psi\left(C, U^{\prime}, V, D\right)\right) \cdot w_{i, j} \\
& =\delta_{+}\left(C, \psi\left(C, U, V^{\prime}, D\right)\right) \cdot w_{i+1, j+1}
\end{aligned}
$$

Proof. By W_{k} we denote the element of C of type k. Analogously, we denote the element of D of type k by W_{k}^{\prime}. Let $(W, B) \in \mathfrak{T}^{+}$such that $\Sigma:=\Sigma(W, B)$ is an apartment that contains both C and $\psi\left(C, U^{\prime}, V, D\right)$. Since both, C and $\psi\left(C, U^{\prime}, V, D\right)$ contain the subspaces V and V^{\prime}, we can choose B such that the point of $B \cap V^{\prime} \backslash V$ is the unique point of $V^{\prime} \cap W_{j}^{\prime}$, which we denote by p. Set $S:=V \cap W_{i-1}^{\prime}$. Further set $S_{k}:=S \cap W_{j-k}^{\prime}$ for $0<k \leq j-i+1$ and set $S_{0}=\varnothing$. Then $\operatorname{rk}\left(S_{k}\right)=k-1$ for every $k \leq j-i+1$.

Note that $S_{k}=V \cap W_{j-k}^{\prime}$ and $\left\langle p, S_{k}\right\rangle=V^{\prime} \cap W_{j-k}^{\prime}$ for $k \leq j-i+1$. Thus, the element of $\psi(C, U, V, D)$ of type $i+k$ equals $\left\langle U, S_{k}\right\rangle=\left\langle U,\left\langle U^{\prime}, S_{k}\right\rangle\right\rangle$ for $k \leq j-i$. Since both U and $\left\langle U^{\prime}, S_{k}\right\rangle$ are contained in $\mathfrak{S}(U, B)$, Lemma 4.11 implies $\left\langle U, S_{k}\right\rangle \in$ $\mathfrak{S}(U, B)$ and therefore $\psi(C, U, V, D) \in \Sigma$. Finally, for $k \leq j-i$, the element of type $i+k+1$ of $\psi\left(C, U, V^{\prime}, D\right)$ is $\left\langle U, p, S_{k}\right\rangle$. Since $p \in B$ and $\left\langle U, S_{k}\right\rangle \in \mathfrak{S}(U, B)$, we conclude $\left\langle U, p, S_{k}\right\rangle \in \mathfrak{S}(U, B)$. Hence, $\psi\left(C, U, V^{\prime}, D\right)$ is an element of Σ.

By Lemma 4.4(c) there is for every $0 \leq k \leq j-i$ exactly one point $p_{k} \in B$ with $p_{k} \in\left\langle U^{\prime}, S_{k+1}\right\rangle \backslash\left\langle U^{\prime}, S_{k}\right\rangle$. Since $p_{k} \notin U$ for every $k<j-i$ and $\left\langle s_{k}, U^{\prime} \mid k \leq j-i\right\rangle$, we obtain $p_{j-i} \in U \backslash U^{\prime}$ by Lemma 4.4(c). This implies $(\psi(C, U, V, D))^{\left(\pi_{0}, B\right)}=$ $\psi\left(C, U, V^{\prime}, D\right)$ for $\pi_{0}=s_{i+1} s_{i+2} \cdots s_{j}$. Let $\pi \in\left\langle S_{\Delta}\right\rangle$ such that $C^{(\pi, B)}=\psi(C, U, V$, $D)$. By Lemma 4.7, there is a gallery of type $\left(s_{j}, s_{j-1}, \ldots, s_{i+1}\right)$ from $\psi(C, U, V, D)$ to $\psi\left(C, U, V^{\prime}, D\right)$. Since π^{-1} has $j-i$ inversions, $s_{j} s_{j-1} \cdots s_{i+1}$ is a reduced word and hence, $\delta_{+}(C, \psi(C, U, V, D))=\pi^{-1}$ by Proposition 5.1. By calculation, we obtain $C^{\left(\pi_{0} \pi, B\right)}=\psi\left(C, U, V^{\prime}, D\right)$ and hence, $\delta_{+}(C, \psi(C, U, V, D))=\pi^{-1} \pi_{0}{ }^{-1}$. With $w_{i+1, j+1}=\pi_{0} w_{i+1, j}$ we calculate $\pi^{-1} w_{i+1, j}=\pi^{-1} \pi_{0}^{-1} w_{i+1, j+1}$.

Analogously, $(\psi(C, U, V, D))^{\left(\pi_{1}, B\right)}=\psi\left(C, U^{\prime}, V, D\right)$ for $\pi_{1}=s_{j-1} s_{j-2} \cdots s_{i}$ and hence, $\delta_{+}\left(C, \psi\left(C, U^{\prime}, V, D\right)\right)=\pi^{-1} \pi_{1}^{-1}$. Finally, $\pi^{-1} w_{i+1, j}=\pi^{-1} \pi_{1}^{-1} w_{i, j}$ completes the proof.

Motivated by the previous lemma, we define a codistance function δ for $\left(\Delta^{+}, \Delta^{-}\right)$in the following way:

Definition 5.5. For $\sigma \in\{+,-\}$, let $C \in \mathfrak{C}^{\sigma}$ and $D \in \mathfrak{C}^{-\sigma}$. Further let $U \in C$ and $V \in C$ be subspaces of \mathscr{S} such that for every subspace $W \in C$ with $W \geq V$ or $W \leq U$ there is a complementary subspace W^{\prime} in \mathscr{S} with $W^{\prime} \in D$. Set $i:=\operatorname{typ}(U)$ and $j:=\operatorname{typ}(V)$. Then

$$
\delta(C, D):=\delta_{\sigma}(C, \psi(C, U, V, D)) \cdot w_{i+1, j} .
$$

Correspondingly to what we defined for \mathfrak{C}^{+}, let $C \in \mathfrak{C}^{-}$and let $(U, B) \in \mathfrak{T}^{-}$ such that $C \in \Sigma(U, B)$. For $i \in \operatorname{typ}\left(M_{-}\right)$let $U_{i} \in C$ be the the subspace of type i. Further, for $i \in \operatorname{typ}\left(M_{-} \backslash\{\mathscr{S}\}\right)$, let $p_{i} \in B$ be the unique point that is contained in $U_{i-1} \backslash U_{i}$. Then for a permutation $\pi \in\left\langle S_{\Delta}\right\rangle$, we define $C^{(\pi, B)}:=\left\{\left\langle p_{i \pi}, U_{-\infty}\right|\right.$ $i \leq j\rangle \mid j \in \operatorname{typ}(C)\}$, where $U_{-\infty}:=\bigcap M_{-}$.

Proposition 5.6. Let $C \in \mathfrak{C}^{+}$and $D \in \mathfrak{C}^{-}$. Then $\delta(C, D)=\delta(D, C)^{-1}$.
Proof. Let $U_{i} \in C$ and $V_{i} \in D$ denote the subspaces of type i. Let l and k be integers such that for every i with $i \leq l$ or $i \geq k$, the subspaces U_{i} and V_{i} are complementary in \mathscr{S}. We may assume $l \leq k$. Set $S:=U_{k} \cap V_{l}$. By Lemma
4.9 we conclude that there is a basis B^{\prime} of S such that for every $i \leq k-l$, the set of points $B^{\prime} \cap U_{l+i}$ is a basis of $S \cap U_{l+i}$ and $B^{\prime} \cap V_{k-i}$ is a basis of $S \cap V_{k-i}$. Set $D^{\prime}:=\psi\left(C, U_{l}, U_{k}, D\right)$ and $C^{\prime}:=\psi\left(D, V_{k}, V_{l}, D\right)$. Finally, let B_{+}and B_{-}be independent sets of points of \mathscr{S} such that $\left(U_{l}, B_{+}\right) \in \mathfrak{T}^{+},\left(V_{k}, B_{-}\right) \in \mathfrak{T}^{-}$and furthermore, $\Sigma\left(U_{l}, B^{+}\right)$contains both C, and D^{\prime} and $\Sigma\left(V_{k}, B_{-}\right)$contains both D and C^{\prime}. We may assume $B^{\prime} \subseteq B_{+} \cap B_{-}$.

For $l<i \leq k$, we denote by p_{i} the unique point of $B^{\prime} \cap U_{i} \backslash U_{i-1}$ and by q_{i} we denote the unique point of $B^{\prime} \cap V_{i-1} \backslash V_{i}$. Let $\pi \in\left\langle S_{\Delta}\right\rangle$ such that $C^{\left(\pi, B_{+}\right)}=D^{\prime}$. This implies that $p_{i \pi}$ is the unique point of $B^{\prime} \cap V_{j-1} \backslash V_{j}$ where $j=k-(i-$ $l)+1$. Thus, $p_{i \pi}=q_{j}$. Now let $\rho \in\left\langle S_{\Delta}\right\rangle$ such that $D^{\left(\rho, B_{-}\right)}=C^{\prime}$. Then $q_{j}{ }^{\rho}=$ p_{i}. This yields $j^{\rho}=k-\left(i^{\pi^{-1}}-l\right)+1$. Since $j=k-(i-l)+1$, we conclude $\rho=w_{l+1, k} \pi^{-1} w_{l+1, k}$.

By Lemma 5.4 we calculate $\delta(C, D)=\delta_{+}\left(C, D^{\prime}\right) \cdot w_{l+1, k}=\pi^{-1} \cdot w_{l+1, k}=$ $w_{l+1, k} \cdot \rho=\left(\rho^{-1} \cdot w_{l+1, k}\right)^{-1}=\left(\delta_{-}\left(D, C^{\prime}\right) \cdot w_{l+1, k}\right)^{-1}=\delta(D, C)^{-1}$.
Proposition 5.7. Let $\sigma \in\{+,-\}$ and let $C \in \mathfrak{C}^{\sigma}$ and $D \in \mathfrak{C}^{-\sigma}$ with $\delta(C, D)=w$. Then for every $i \in \operatorname{typ}(C)$ there exists a chamber $C^{\prime} \in \mathfrak{C}^{\sigma}$ with $\delta_{\sigma}\left(C^{\prime}, C\right)=s_{i}$ and $\delta\left(C^{\prime}, D\right)=s_{i} \cdot \delta(C, D)$.

Moreover, let $C^{\prime} \in \mathfrak{C}^{\sigma}$ with $\delta_{\sigma}\left(C^{\prime}, C\right)=s_{i}$ and $l\left(s_{i} w\right)<l(w)$. Then $\delta\left(C^{\prime}, D\right)=$ $s_{i} w$.
Proof. By analogous reasons, we restrain ourselves to the case $\sigma=+$. As usual, let $U_{j} \in \bar{C}$ and $V_{j} \in \bar{D}$ denote the subspaces of type j and let l and k be integers such that for every j with $j \leq l$ or $j \geq k$, the subspaces U_{j} and V_{j} are complementary in \mathscr{S}. We may assume $l<i<k$.

Let $B \subseteq \mathscr{S}$ such that $\left(U_{l}, B\right) \in \mathfrak{T}^{+}$and both C and $D^{\prime}:=\psi\left(C, U_{l}, U_{k}, D\right)$ are elements of $\Sigma\left(U_{l}, B\right)$. Then $\delta_{+}\left(C, D^{\prime}\right)=w \cdot w_{l+1, k}$ by Lemma 5.4. Hence, as a consequence of Lemma 4.7 and the fact that $\Sigma\left(U_{l}, B\right)$ is thin, $C^{\left(w_{l+1, k} w^{-1}, B\right)}=D^{\prime}$ and therefore, $\left(D^{\prime}\right)^{\left(w w_{l+1, k}, B\right)}=C$. Set $C^{\prime \prime}:=\left(D^{\prime}\right)^{\left(s_{i} \pi, B\right)}$. Then $\delta_{+}\left(C^{\prime \prime}, D^{\prime}\right)=$ $s_{i} \cdot w \cdot w_{l+1, k}$ and thus, $\delta\left(C^{\prime \prime}, D\right)=s_{i} \cdot w$ by Lemma 5.4. This proves the first part of the claim.

It is straightforward to show that $l(w)$ equals the number of inversions of w. Furthermore, $w_{l+1, k}$ has $(k-l)(k-l-1) / 2$ inversions and the number of inversions of $\pi:=w w_{l+1, k}$ is $(k-l)(k-l-1) / 2-l(w)$. Since $l\left(s_{i} w\right)<l(w)$, we obtain by analogous reasons that the number of inversions of $s_{i} \pi$ is $(k-l)(k-l-1) / 2-l(w)+1$. By Lemma 4.7 we know C and $C^{\prime \prime}$ are s_{i}-adjacent.

Let p_{i} and p_{i+1} denote the points of B with $p_{i} \in U_{i} \backslash U_{i-1}$ and $p_{i+1} \in$ $U_{i+1} \backslash U_{i}$. Further let n and m be the integers such that $p_{i} \in U_{n} \backslash U_{n-1}$ and $p_{i+1} \in U_{m} \backslash U_{m-1}$. Then $(n)^{\pi^{-1}}=i$ and $(m)^{\pi^{-1}}=i+1$, since $C^{\left(\pi^{-1}, B\right)}=D^{\prime}$ and consequently, $i^{\pi}=n$ and $(i+1)^{\pi}=m$. Since $s_{i} \pi$ has one inversion more than π, this yields $m>n$.

Let V_{j}^{\prime} denote the element of D^{\prime} of type j. Then

$$
\begin{array}{ll}
\left\langle U_{i-1}, V_{j}^{\prime} \cap U_{i+1}\right\rangle=U_{i-1} & \text { if } j<n \\
\left\langle U_{i-1}, V_{j}^{\prime} \cap U_{i+1}\right\rangle=U_{i} & \text { if } n \leq j<m \\
\left\langle U_{i-1}, V_{j}^{\prime} \cap U_{i+1}\right\rangle=U_{i+1} & \text { if } j \geq m
\end{array}
$$

Let $U_{i}^{\prime} \in C$ denote the element of type i. Since $\left\langle U_{i-1}, V_{m}^{\prime} \cap U_{i+1}\right\rangle=U_{i+1}$, we know that $V_{m}^{\prime} \cap U_{i-1}$ has corank 2 in $V_{m}^{\prime} \cap U_{i+1}$. Hence, there is a point p_{i}^{\prime} in $V_{j}^{\prime} \cap U_{i}^{\prime} \backslash U_{i-1}$. Since $C^{\prime} \neq C$, we know $\left\langle p_{i}^{\prime}, U_{i-1}\right\rangle \neq U_{i}$ and therefore $p_{i}^{\prime} \notin U_{i}$. Thus, $B^{\prime}:=\left(B \backslash\left\{p_{i+1}\right\}\right) \cup\left\{p_{i}^{\prime}\right\}$ is again independent and hence, $p_{i}^{\prime} \in U_{m} \backslash U_{m-1}$. This implies that both C^{\prime} and D^{\prime} are contained in $\Sigma\left(U_{l}, B^{\prime}\right)$. We calculate $\left(D^{\prime}\right)^{\left(s_{i} \pi, B^{\prime}\right)}=C^{\prime}$ and as above, $\delta_{+}\left(C^{\prime}, D^{\prime}\right)=s_{i} \cdot w \cdot w_{l+1, k}$ and consequently, $\delta\left(C^{\prime}, D\right)=s_{i} w$.
Theorem 5.8. The pair $\left(\Delta^{+}, \Delta^{-}\right)$is a twin building of type $\left(\left\langle S_{\Delta}\right\rangle, S_{\Delta}\right)$ with codistance function δ.
Proof. By Theorem 4.14 we know that both Δ^{+}and Δ^{-}are buildings. By Proposition 5.1 both buildings are of type $\left(\left\langle S_{\Delta}\right\rangle, S_{\Delta}\right)$. Thus, the claim follows by the Propositions 5.6 and 5.7.

6 Final remarks

In section 3 we introduced the sets of chambers \mathfrak{C}^{+}and \mathfrak{C}^{-}. It is straightforward to show that $\cap C=\cap C^{\prime}$ holds for every two chambers C and C^{\prime} of \mathfrak{C}^{+}. Furthermore, for a chamber $D \in \mathfrak{C}^{-}$the subspaces $\cap C$ and $\cup D$ are complementary subspaces in \mathscr{S} and so are $\cup C$ and $\cap D$. Set $\mathscr{S}^{\prime}:=(\cup C) \cap(\cup D)$.

Intersecting each element of every chamber of $\mathfrak{C}^{+} \cup \mathfrak{C}^{-}$with \mathscr{S}^{\prime} leads to a pair of chamber systems that is isomorphic to $\left(\mathfrak{C}^{+} \cup \mathfrak{C}^{-}\right)$. Since \mathscr{S}^{\prime} has countable rank, we could have restrained ourselves to the case where \mathscr{S} has countable rank. Furthermore, we could restrain ourselves to the case $\cap M_{+}=\varnothing$ and $\cup M_{+}=\mathscr{S}$. This restriction is only for the part where we dealing with chamber system, hence, starting with section 3 . For a partial twin Grassmannians of a projective space \mathscr{S}_{0} with respect to $\left(U_{0}, V_{0}\right)$ the rank of U_{0} and the corank of U_{0} in \mathscr{S}_{0} matters even in the infinite case.

In section 4 we introduced set of pairs \mathfrak{T}^{+}each consisting of a subspace U and a countable set of points B. It is possible to be more restrictive at this point. Choose a pair $\left.\left(U, B_{0}\right) \in \mathfrak{T}^{+}\right)$. Now define $\mathfrak{T}_{0}^{+}:=\left\{(V, B) \in \mathfrak{T}^{+}| | B \backslash B_{0} \mid<\infty\right\}$. Let \mathfrak{T}_{0}^{-}be defined analogously.

It is easy to check that all proofs remain valid if we would have used \mathfrak{T}_{0}^{+}and \mathfrak{T}_{0}^{-}in place of \mathfrak{T}^{+}and \mathfrak{T}^{-}. The only difference is that the set of apartments would be much smaller.

References

[AS08] Peter Abramenko and Brown Kenneth S. Buildings: Theory and Applications, volume 248. Springer, New York, 2008.
[Bro83] Arjeh M. Brouwer, Andries E. ans Cohen. Some remarks on tits geometries. Ind. Math., 45:393-402, 1983.
[DMVM12] Alice Devillers, Bernhard Mühlherr, and Hendrik Van Maldeghem. Codistances of 3-spherical buildings. MATHEMATISCHE ANNALEN, 354(1):297-329, 2012.
[Kac90] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, 1990.
[KS96] Anna Kasikova and Ernest E. Shult. Chamber systems which are not geometric. Comm. Algebra, 24(11):3471-3481, 1996.
[Müh98] Bernhard Mühlherr. A rank 2 characterization of twinnings. European J. Combin., 19(5):603-612, 1998.
[Seg48] Beniamino Segre. Lezioni di Geometria Moderna. Vol. I. Fondamenti di Geometria Sopra un Corpo Qualsiasi. Nicola Zanichelli, Bologna, 1948.

Vakgroep Wiskunde
Universiteit Gent
Galglaan 2
B-9000 Gent ${ }^{2}$

[^1]
[^0]: ${ }^{1}$ The terminology partial linear space is more common, but grammatically incorrect.

[^1]: ${ }^{2}$ present address: Alexanderstrasse 12/1, D-72072 Tübingen

