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Abstract

We examine the relation of the set of peak points with several boundaries
defined in the spectrum of a given topological algebra relative to a subspace
of it. In this respect, we show that the peak points are contained in the
Choquet boundary and, under suitable conditions, are dense in the Šilov
boundary. Furthermore, the set of points at issue coincide with the Bishop
boundary if, and only if, it constitutes a weakly boundary set. On the other
hand, in appropriate topological algebras, the Bishop, Choquet and strong
boundaries coincide with the peak points, so that they are dense in the Šilov
boundary. Finally there are topological algebras for which all the above
boundaries and points remain invariant, under restriction of the Gel’fand
transform algebras to subsets of the spectra of the topological algebras
involved, containing the Šilov boundary.

1 Introduction

In this paper we employ the notion of a peak subset of the spectrum of a topo-
logical algebra, extending the relevant situation, as appeared, for instance, in E.
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Bishop [4] and H. G. Dales [9] within the context of “function algebras” on a com-
pact metrizable space. In this framework, one proves that the intersections of
peak sets are sets of the same type, while the peak points are dense in the Šilov
boundary; in effect, their set constitutes the unique minimal boundary called, Bishop
boundary (ibid.).

Precisely, we generalize the above for an arbitrary topological algebra E, with
non-empty spectrum, defining the notion of a peak subset of its spectrum M(E),
with respect to a subspace H of E. We thus prove that the family of peak sets
of E, relative to H, is closed under finite intersections; in particular, when the
“Gel’fand transform” space H∧ is a σ-complete subspace of E∧, then, it is closed for
countable intersections, as well (Lemmas 4.1, 4.2). The latter result is extended to
arbitrary intersections, provided peak sets and weakly peak sets relative to H coincide
(Corollaries 4.3, 4.5). The same sets, when reduced to singletons, are called peak
and weakly peak points relative to H, respectively. This coincidence is still attained,
within appropriate condition for spectrum (Corollary 4.4).

Investigating the relation of peak points with the various boundaries in the
spectrum of a topological algebra E, relative to a subspace H of it, we remark that
the aforementioned points are, in general, contained in the relative Choquet bound-
ary of E, while, under suitable conditions, are dense in the relative Šilov boundary
of E (Lemma 5.1, Theorems 3.1, 3.5 and Corollary 4.9 along with Remark 4.10).

On the other hand, when the set of peak points is a weakly boundary set of E
relative to H, then, it is precisely the relative Bishop boundary of E (Theorem 6.3,
Corollary 6.4). Of course, the relative Choquet, peak and strong boundary points
that coincide, under appropriate conditions (Theorem 5.5, Corollary 5.7), consti-
tute, in suitable topological algebras, relative weakly boundary sets. So, the latter
sets are identified with the relative Bishop boundary and, consequently, are dense
in the relative Šilov boundary (Corollary 6.7).

Finally, we prove that in certain topological algebras the various boundaries
and points, as above, remain invariant when we restrict the Gel’fand transform
algebra of the given algebra to subsets of its spectrum that contain the Šilov
boundary (Theorems 7.4, 7.6, 7.9).

2 Preliminaries

In all that follows, by a topological algebra E we mean a topological C-vector space,
which is also an algebra with a separately continuous multiplication, having a
non-empty spectrum or Gel’fand space M(E), endowed with the Gel’fand topology.
The Gel’fand map is given by

(2.1)
GE : E −→ C(M(E)) : x 7−→ GE(x) ≡ x̂ : M(E) −→ C

: f 7−→ x̂( f ) := f (x).

The image of GE, denoted by E∧, is called the Gel’fand transform algebra of E and
is topologized as a locally m-convex algebra by the inclusion E∧ ⊆ Cc(M(E)), where
the algebra C(M(E)) carries the topology “c” of compact convergence in M(E)
[26, p. 19, Example 3.1]. If B stands for the Borel σ-algebra generated by the closed
subsets of M(E) and Mc(M(E)) denotes the vector space of regular complex Borel
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measures on M(E) with compact supports, then, one gets (ibid. p. 474, Lemma 2.1)

Mc(M(E)) = (Cc(M(E)))′ , (2.2)

within an isomorphism of C-vector spaces defined by

lµ(h) =
∫

M(E)
hdµ, (2.3)

for every h ∈ Cc(M(E)). Furthermore, M+
c (M(E)) is the subspace of Mc(M(E))

of all positive measures on M(E), in the sense that

µ(h) ≥ 0, f or every 0 ≤ h ∈ Cc(M(E)). (2.4)

Now, given a subspace H of E and an f ∈ M(E), we call representing measure
of f with respect to H, a measure µ ≡ µ f ∈ M+

c (M(E)), such that

µ f (x̂) ≡
∫

M(E)
x̂dµ f = δ f (x̂) := x̂( f ) ≡ f (x), x ∈ H, (2.5)

or, equivalently,
µ f (Rex̂) = δ f (Rex̂) := Rex̂( f ), x ∈ H. (2.6)

The set of representing measures of f with respect to H is denoted by r+c ( f )H ≡
rH( f ), and when it is reduced to the singleton {δ f }, the latter being, of course,
such a measure, then, f is said to be a Choquet point of E relative to H, or a relative
Choquet point of E. The set of the latter points is defined as the Choquet boundary
of E relative to H, or relative Choquet boundary of E, denoted by ChH(E) (cf. [14] or
[16]). If E has an identity contained in H, one proves that

(2.7)
co(τH(M(E))) = {φ ∈ (H∧)′ : φ(x̂) = µ(x̂), x ∈ H,

f or some µ ∈ S+
M(E)

(1)}

and
Ext(co(τH(M(E)))) ⊆ τH(M(E)); (2.8)

here co and Ext stand for closed convex hull and extreme points respectively, while
S+
M(E)

(1) denotes the measures of M+
c (M(E)) with total variation norm 1,

(2.9)

τH : M(E) −→ (H∧)′s : H∧ −→ C

: x̂ 7→ τH( f )(x̂) := x̂( f ) ≡ f (x),

being a continuous map. The latter becomes a homeomorphism into when H
separates the points of M(E), yielding that

ChH(E) = τ−1
H (Ext(co(τH(M(E))))) (2.10)

(cf. [14] or [16]). Yet, the presence of the identity in H makes the representing
measures probability measures, in the sense that, for every f ∈ M(E), one has

µ f (M(E)) = µ f (1E∧) = 1, µ f ∈ rH( f ). (2.11)
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Furthermore, the Šilov boundary of E relative to H, or the relative Šilov boundary of
E, denoted by ∂H(E), is the least boundary set of E relative to H, or the least relative
boundary set of E; that is, the smallest closed subset of M(E), on which every
x̂, x ∈ H, attains its maximum absolute value [26, p. 189, Definitions 2.1 and 2.2]
or [14, p. 6, Definition 1.4, (1.16)]. Its elements,

(2.12)

the relative Šilov points, are characterized by the fact that for every
open neighbourhood V of f in M(E), there exists x ∈ H, such that
Mx̂ ⊆ V, with

Mx̂ = { f ∈ M(E) : |x̂( f )| = sup
h∈M(E)

|x̂(h)| ≡ pM(E)(x̂) ≡ α},

being a closed subset of M(E), by the continuity of x̂, x ∈ H [26, p. 190, (2.4) and
Lemma 2.1] or [14, p. 8, (1.20) and p. 9, Proposition 1.4]. Moreover, the relation
Mx̂ = |x̂|−1({α}) implies that Mx̂ is a Gδ-set. The existence of ∂H(E) is accomplished
in a unital topological algebra with M(E) compact and H a subspace of E containing
the constants and separating the points of M(E) [3, p. 484, Theorem] or [14, p. 10,
Theorem 1.1].

On the other hand, a subset B ⊆ M(E) is called a peak set of E relative to H, or
relative peak set of E, if there exists x ∈ H, such that

x̂ = α|B and |x̂| < α|Bc , (2.13)

where obviously α ∈ R ∗
+ and Bc ≡ M(E) \ B. Besides an f ∈ M(E) is said to be a

peak point of E relative to H, or a relative point of E, if the singleton { f} is a relative
peak set of E; thus, if there exists x ∈ H, with

x̂( f ) = α and |x̂| < α|{ f }c . (2.14)

The function x̂ in (2.13) and (2.14) is called peaking function, while the sets of
relative peak points and sets of E are denoted by PH(E) and PH(E), respectively
(cf. [14]).

Remark 2.1. In (2.13) and (2.14), we can have 1 instead of α, by considering
y = 1

α x ∈ H. Based on (2.13) and the continuity of x̂, x ∈ H, one has, of course,

that every relative peak set B of E is closed, since B = x̂−1({α}), while the defined
element x ∈ H satisfies

‖x̂‖∞ ≡ pM(E)(x̂) = sup
h∈M(E)

|x̂(h)| = α.

Of course, the empty set is not a relative peak set. Now, a set (or point), when an
intersection of relative peak sets of E, is defined as a weakly peak set (or point) of
E relative to H, or a relative weakly peak set (or point) of E. The set of the respective
objects is denoted by Pw

H(E)) (or Pw
H(E)). By the preceding relation, one concludes

that

(2.15)
every relative peak set (or point) of E is of the form Mx̂, for some x ∈ H,
while the converse is not in general true (see [25, p. 160]).
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In particular, if the relative Šilov boundary ∂H(E) of E exists, then, due to the
characterization of its elements (cf. (2.12)), one gets

B ∩ ∂H(E) 6= ∅, B ∈ PH(E), (2.16)

and consequently,
PH(E) ⊆ ∂H(E). (2.17)

A strong boundary point of E relative to H, or a relative strong point of E, is an
f ∈ M(E), for every open neighbourhood U of which, there exists x ∈ H, such
that

x̂( f ) = α = ‖x̂‖∞ and |x̂| < α|Uc , (2.18)

where, of course, α ∈ R ∗
+. The set of the latter points is called the strong boundary

of E relative to H, or the relative strong boundary of E, and denoted by sH(E). By
taking y = 1

α x ∈ H in (2.18), we can have 1 instead of α. Yet, in conjunction with
(2.12), one concludes that

(2.19)
for every f ∈ sH(E), there exists x ∈ H, with f ∈ Mx̂ ⊆ U, so that
sH(E) ⊆ ∂H(E).

A continuous map φ : M(E) → X, where X is a complex manifold, is called a
weakly spectral map relative to H, if for every holomorphic function h on X, one has
[26, p. 295]

h ◦ φ = x̂, f or some x ∈ H. (2.20)

The latter is actually applied for an infinite dimensional complex manifold; as a mat-
ter of fact, we consider a given (complex) normed space as a complex manifold,
as above (cf. [28, p. 16, Definition 1] or [26, p. 315, Definition 10.2]). Furthermore,

if (xi)i∈I is a set of topological generators of E, so that one has E = C0[(xi)i∈I ], the
following canonical map is defined

φ : M(E) −→ C
I : f 7−→ φ( f ) ≡ (x̂i( f ))i∈I , (2.21)

being a continuous bijection onto its image [26, p. 292]. Finally, we say that a topo-
logical algebra E is Weierstrass relative to a subspace H of it, if M(E) is a Weierstrass
space with respect to H∧, in the sense that every |x̂|, x ∈ H, realizes its supremum
at a point of M(E). Based on (2.12), we obtain the following characterization

(2.22)
a topological algebra E is Weierstrass relative to a subspace H of it, if,
and only if, Mx̂ 6= ∅, for every x ∈ H.

Yet E is called H-bounded, whenever x̂ is bounded, for every x ∈ H. Evidently,
according to (2.22), a Weierstrass algebra E relative to H is H-bounded. Besides, we
recall that E is a σ-complete (or else sequentially complete) topological algebra, if this is
the case for the respective topological vector space E (i.e., every Cauchy sequence
in E converges).

Given a subset H of a topological vector space E, a closed real hyperplane M
is called a supporting hyperplane of H, if H ∩ M 6= ∅ and H lies in one of the two
closed half-spaces defined by M, while the elements of H ∩ M are called points of
support of H. Moreover, an x ∈ H ⊆ E is said to be an exposed point of H, if x is the
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only point of support for a supporting hyperplane M of H; that is H ∩ M = {x}.
The set of exposed points of H is denoted by Exp(H). In case H is a locally
compact convex subset of a normed space E containing no line, then, the exposed
points of H are dense in its extreme points Ext(H), that is (cf. [22, p. 91, Theorem
(2.3)])

Exp(H) = Ext(H). (2.23)

In this context, an x ∈ H is said to be an extreme point of H, if for every y1, y2 ∈ H,
such that x = λy1 + (1 − λ)y2, with 0 < λ < 1, one has y1 = x = y2.

3 Relative peak and Šilov points

We have already mentioned that every relative peak point is a relative Šilov point
(cf. (2.17)). In this section we prove that, in a suitable topological algebra, the
relative Šilov points adhere to relative peak points. First, we note that every (relative)
peak set does not necessarily contain a (relative) peak point, even though this is
the case for a Banach function algebra on a metrizable space [9, p. 126, §3]. How-
ever, under appropriate conditions, every neighbourhood of a (relative) peak set
contains a (relative) peak point, as the next result proves. In this concern, we say
that the exponential map acts on the Gel’fand transform algebra E∧ of a given topological
algebra E, if for every x ∈ E, there is y ∈ E, such that exp(x̂) ≡ ex̂ = ŷ.

Theorem 3.1. Let E be a unital topological algebra, H a subspace of E containing the
constants and separating the points of M(E), and ChH(E) the relative Choquet boundary
of E, such that

B ∩ ChH(E) 6= ∅, f or every B ∈ PH(E), (3.1)

while the exponential map acts on H∧ ⊆ E∧. Moreover, let (xi)i∈I be a system of gen-
erators of E, φ : M(E) → CI the canonical continuous injection, X a normed subspace
of CI , and µ : M(E) → X a homeomorphism into, being also a weakly spectral map
relative to H, such that the closed convex hull of µ(M(E)) is locally compact in X, with
no lines in it. Furthermore, assume that µ is the restriction of a continuous 1-1 linear
map µ′ : (H∧)′s → X on M(E) ≡ φ(M(E)) ⊆ CI . Then, every neighbourhood of a
relative peak set of E contains a relative peak point of E.

Proof. If B ∈ PH(E), by (3.1) there exists f ∈ B ∩ ChH(E), with (cf. (2.8), (2.10))
τH( f ) ∈ Ext(co(τH(M(E)))). By the following commutative diagram,

(3.2)

(H∧)′s ⊇ τH(M(E))

❄

✻

M(E)

✲

✲ φ(M(E))) ⊆ CI

X

τH τ−1
H µ µ

φ

µ̃

µ′

❅
❅
❅
❅
❅
❅
❅❅❘

❄

one gets
µ ≈ µ̃ = µ′|τH(M(E))=M(E)=φ(M(E)), (3.3)
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hence µ( f ) = µ′(τH( f )) ∈ Ext(co(µ(M(E)))) ⊆ X and also µ( f ) ∈ µ(B). Tak-
ing a neighbourhood U of B in M(E), then, µ(U) is a neighbourhood of µ(B) in
µ(M(E)), so, for some neighbourhood V of µ(B) in X, one has

µ(U) = V ∩ µ(M(E)). (3.4)

Thus, V ∩ co(µ(M(E))) is a neighbourhood of µ( f ) in co(µ(M(E))), and, in view
of (2.23), contains an exposed point of co(µ(M(E))), say z. By (2.8), (3.3) and
(3.4), z ∈ V ∩ µ(M(E)) = µ(U), hence f1 ≡ µ−1(z) ∈ U, which is a relative
peak point of E : Indeed, if M is a closed supporting hyperplane of co(µ(M(E))),
with M ∩ co(µ(M(E))) = {z}, assume that M = {x ∈ XR : h(x) = λ} and
µ(M(E))\{z} ⊆ {x ∈ XR : h(x) < λ}, where XR is the underlying real vector
space of X, h : XR → R is a continuous linear form on XR and λ is a constant.
Considering the respective complex-valued continuous linear form on X,

h1 : X −→ C : x 7−→ h1(x) := h(x)− ih(ix),

by the hypothesis for µ (cf. also (2.20)), there exists y ∈ H, such that h1 ◦ µ = ŷ.
By defining x̂ = exp(ŷ − h1(z)) ∈ H∧, we have x̂( f1) = 1 and |x̂(g)| < 1, for
every g 6= f1, proving that f1 is a relative peak point of E in U.

In particular, if the topological algebra E is finitely generated, say n-generated,
then, in the previous theorem, we can take Cn instead of the normed space X,
and the map φ in place of µ. So, by applying a relevant argument with that one
in the proof of Theorem 3.1, we get at the next. (In this respect, we consider finite
dimensional complex manifolds).

Corollary 3.2. Let E be a unital n-generated topological algebra, H a subspace of E
containing the constants and separating the points of M(E), and ChH(E) the relative
Choquet boundary of E, such that

B ∩ ChH(E) 6= ∅, B ∈ PH(E), (3.5)

while the exponential map acts on H∧ ⊆ E∧. Moreover, let φ : M(E) → C
n be a

homeomorphism (into), which is also a weakly spectral map relative to H, and derives
from the restriction of a continuous 1-1 linear map φ′ : (H∧)′s → Cn on M(E) ≡
φ(M(E)), such that the closed convex hull of φ(M(E) in Cn contains no lines. Then,
every neighbourhood of a relative peak set of E contains a relative peak point of E.

We show now that although sets of the form Mx̂, x ∈ H, need not be relative
peak sets, they do contain relative peak sets (cf. [7, p. 105], [32, p. 139, Corollary
(3.3.11)]).

Lemma 3.3. Let E be a unital topological algebra and H a subspace of E containing the
constants. Then, for every x ∈ H, with Mx̂ 6= ∅, there exists a relative peak set B of E,
such that B ⊆ Mx̂.

Proof. If x ∈ H, with Mx̂ 6= ∅, let α = suph∈M(E) |x̂(h)| ≡ ‖x̂‖∞. Setting

y =
1

2
(eitx + α) ∈ H, (3.6)
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we can take t = iln( f (x)α−1), so that f (y) = α, with f ∈ M(E). In particular, for
a fixed f0 ∈ Mx̂ (and the corresponding t, hence y), we consider the non-empty
set

B = { f ∈ Mx̂ : ŷ( f ) = α} ⊆ Mx̂. (3.7)

(Concerning B, we remark that by taking f0 ∈ Mx̂, as above, for every f ∈ M(E),
with f (y) = α, we get f ∈ Mx̂). Then, B is a relative peak set of E, with peaking
function

ẑ =
1

2
(α−1ŷ + 1E∧) ∈ H∧.

In fact, ẑ = 1|B, while ‖ŷ‖∞ = α (cf. (3.6), (3.7))). Now, if |ẑ(g)| = 1, for some
g ∈ M(E), one obtains the equalities

|α−1ŷ(g) + 1| = 2 and |α−1ŷ(g)| = 1,

yielding that ŷ(g) = α, hence g ∈ B. Since ‖ẑ‖∞ = 1, one gets |ẑ| < 1|Bc , proving
that B is a relative peak set of E.

Remark 3.4. In the preceding proof, one can show in a similar way that the func-
tion ŷ, determining B, peaks on it, due to the relation (2.13).

We come now to the main theorem of this section, extending the relevant one
in [9, p. 123, Theorem (2.3)] and in [14, p. 193, Theorem 7.1], as well.

Theorem 3.5. Considering the context of Theorem 3.1, the set PH(E) of relative peak
points of E is dense in the relative Šilov boundary of E; that is, one has

PH(E) = ∂H(E). (3.8)

Proof. By (2.17), one has only to prove that ∂H(E) ⊆ PH(E). Indeed, if
f ∈ ∂H(E), then, for every open neighbourhood V of f , there exists x ∈ H,
such that Mx̂ ⊆ V, hence (Lemma 3.3), there is B ∈ PH(E), with B ⊆ Mx̂ ⊆ V.
According to Theorem 3.1, V contains a g ∈ PH(E), that is, the Šilov point f
adheres to PH(E), proving the assertion.

4 On the hypotheses of Theorem 3.1

Concerning the condition (3.1), we note that, in the classical case, this is satisfied
due to the more general fact that every relative weakly peak set of E contains a relative
Choquet point of E [34, p. 27, Corollary 2.9]. In this respect, we first examine
hereditary properties referring to relative peak sets. Cf. also [25, p. 160, Theorem
1] and [37, p. 162, Exercise 33.7.a].

Lemma 4.1. Let E be a topological algebra and H a subspace of it. Then, every finite
intersection of relative peak sets is a set of the same type. In particular, if M(E) is
compact, then,

(4.1)
for every neighbourhood U of a relative weakly peak set F, there exists a
relative peak set B, such that F ⊆ B ⊆ U.
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Proof. Let F =
⋂k

n=1 Bn, with Bn ∈ PH(E) and peaking functions x̂n, xn ∈ H,
respectively. That is, we have

x̂n = 1|Bn = ‖x̂n‖∞ and |x̂n| < 1|Bc
n
, (4.2)

for every n = 1, 2, ...., k (cf. Remark 2.1). By setting

x =
1

k

k

∑
n=1

xn,

we get x ∈ H, with x̂ = 1|F, while for g /∈ F, there exists n0 ∈ {1, 2, ..., k}, such
that g /∈ Bn0. Hence |x̂n0(g)| < 1, implying |x̂| < 1|Fc, so that F ∈ PH(E). Now,
taking F ∈ Pw

H(E), that is, F =
⋂

α∈I Bα, with Bα ∈ PH(E), α ∈ I, and U an
open neighbourhood of F, then, by the compactness of M(E), there exists a finite
subcovering of it, say {U, Bc

αi
(i = 1, ..., n)}, such that

⋂n
i=1 Bαi

⊆ U. Thus,

F =
⋂

α∈I

Bα ⊆
n⋂

i=1

Bαi
≡ B ⊆ U,

with B ∈ PH(E), as before, yielding the assertion.

A countable intersection of relative peak sets becomes a relative peak set in a class
of topological algebras having the “Gel’fand transforms” of the subspaces considered σ-
complete. The latter is accomplished when the subspaces concerned are closed
and the Gel’fand transform algebras of the algebras involved σ-complete. (In
this context, see [9, p. 126, Proposition (2.6)], [26, p. 275, Lemma 5.2 or p. 276,
Theorem 5.1, 5] and [10, p. 110, Example 3]). In the same class of algebras, one
obtains (4.1) by considering a Gδ-set in place of the open neighbourhood U (see
[12, p. 56, Lemma 12.2]).

Lemma 4.2. Let E be a topological algebra and H a subspace of it, with H∧ ⊆ E∧

σ-complete. Then, every countable intersection of relative peak sets of E is such a one. In
particular, if M(E) is Lindelöf, then,

(4.3)
for every Gδ-set W, containing a relative weakly peak set F of E, there
exists a relative peak set B of E, such that F ⊆ B ⊆ W.

Proof. Let F =
⋂∞

n=1 Bn, with Bn ∈ PH(E), and peaking functions x̂n,

xn ∈ H, n ∈ N (cf. also (4.2)). By considering φ = ∑
∞
n=1 2−nx̂n, we have,

by hypothesis for H∧, that φ = x̂, for some x ∈ H, which peaks on F, so that
F is a relative peak set. On the other hand, taking F ∈ Pw

H(E) contained in

a Gδ-set W, then, F =
⋂

α∈I Bα, with Bα ∈ PH(E), and W =
⋂∞

n=1 Wn, Wn

open in M(E). By the assumption for M(E), there is, for its open covering
{Wn, Bc

α, α ∈ I}, a countable subcovering {Wn, Bc
αin

, i ∈ N}. Thus, setting

Bn ≡
⋂∞

i=1 Bαin
⊆ Wn, one gets that Bn ∈ PH(E), and F ⊆ Bn ⊆ Wn, n ∈ N. Then,

F ⊆ B ≡
⋂∞

n=1 Bn ⊆
⋂∞

n=1 Wn ≡ W, where B ∈ PH(E), as before.

We remark that the second part of Lemma 4.1 derives from the preceding
lemma, at the cost, however, of the σ-completeness of H∧. Furthermore, in the
context of Lemma 4.2, a relative weakly peak set becomes a relative peak one, if
it is also Gδ, a basic property of relative peak sets (cf. [7, p. 96, Lemma 2.3.1]).
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Corollary 4.3. Let E be a topological algebra, H a subspace of E, and B ⊆ M(E).
Moreover, assume the following two assertions:

1) B is a relative peak set of E.
2) B is a Gδ relative weakly peak set of E.

Then, 1) ⇒ 2), while 2) ⇒ 1) if, in addition, E satisfies (4.3) (take, for instance, M(E)
Lindelöf and H∧ ⊆ E∧ σ-complete).

Proof. 1)⇒2): A relative peak set is also a relative weakly one, and if x̂, x ∈ H, is
the peaking function, then, B = x̂−1({α}), that is, a Gδ-set. 2)⇒1): It is obvious
by Lemma 4.2.

Concerning Gδ-property, we recall that in a Hausdorff topological space, satisfying
the first axiom of countability, every singleton is a Gδ-point. On the other hand, in a
topological space every zero set of a continuous complex-valued function f , and more
generally every set of the form f−1(c), with c a constant, is a Gδ-set, while in a perfectly
normal space every closed subset is, by definition, Gδ (cf. [30, p. 33, Definition 4.15]).
On the basis of the preceding and of Corollary 4.3, we get at the following.

Corollary 4.4. In a topological algebra E, satisfying (4.3) with respect to a subspace H,
and having spectrum M(E) first countable, relative peak points and relative weakly peak
points coincide.

Corollary 4.5. Let E be a topological algebra satisfying (4.3) relative to a subspace H,
with spectrum M(E) perfectly normal. Then, the notions of relative peak sets and relative
weakly peak sets are identical.

In the sequel we give conditions guaranteeing relation (3.1) in Theorem 3.1.
First, we need the following extension of a relevant result in [7, p. 102, Theorem
2.4.1 or p. 104, Theoerm 2.4.2], [13, p. 428, Lemma 4.5], [33, p. 52, Lemma 7.22]
for function algebras on a compact space.

Lemma 4.6. Let E be a topological algebra and H a subalgebra of E, with H∧ ⊆ E∧

σ-complete. Moreover, assume that, for every Gδ-set W, containing an F ∈ Pw
H(E),

there exists B ∈ PH(E), such that F ⊆ B ⊆ W (cf. Lemma 4.2). Then, for every
x ∈ H, with ‖x̂‖∞ = β ∈ R+, there exists y ∈ H, such that

x̂ = ŷ|F and ‖ŷ‖∞ = ‖x̂‖F. (4.4)

Proof. Let x ∈ H with ‖x̂‖F = α. (Without loss of generality, we assume that
α > 1; otherwise, we consider y = 4

3α x ∈ H). Then, the sets

Un =
{

f ∈ M(E) : |x̂( f )| < α +
1

2n

}
, n ∈ N,

provide a decreasing sequence of open neighbourhoods of F, so, by hypothesis,
for every n ∈ N, there exists Bn ∈ PH(E), such that F ⊆ Bn ⊆ Un. Thus, for
every n ∈ N, there is xn ∈ H, with

x̂n = 1|F⊆Bn = ‖x̂n‖∞ and |x̂n| < 1|Uc
n⊆Bc

n
.
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Now, for every n ∈ N, we choose a positive integer k(n), such that

|x̂n|
k(n)

<
1

2nβ
|Uc

n
,

and we define

φ = x̂
∞

∑
n=1

2−nx̂
k(n)
n .

Since ∑
∞
n=1 2−n‖x̂n‖

k(n)
∞ = 1 < +∞, by the hypothesis for H∧, there exists y ∈ H,

such that φ = ŷ, hence x̂ = ŷ|F. If f ∈
⋂∞

n=1 Un, then, |x̂( f )| ≤ α, implying that

|ŷ( f )| ≤ α
∞

∑
n=1

2−n|x̂n( f )|k(n) ≤ α
∞

∑
n=1

2−n‖x̂n‖
k(n)
∞ = α. (4.5)

Moreover, if f /∈
⋂∞

n=1 Un, then, we have two cases:
i) There exists n0 ∈ N, with f ∈ Un0 and f /∈ Un for every n > n0, so that

|x̂n( f )|k(n) |x̂( f )| < ‖x̂n‖
k(n)
∞ (α + 2−n0) = α + 2−n0, n = 1, ..., n0,

and

|x̂n( f )|k(n)|x̂( f )| <
1

2nβ
‖x̂‖∞ = 2−n

< 2−n0, n > n0.

Hence,

|ŷ( f )| ≤ |x̂( f )|
( n0

∑
n=1

2−n|x̂n( f )|k(n) +
∞

∑
n=n0+1

2−n|x̂n( f )|k(n)
)

(4.6)

< (α + 2−n0)
n0

∑
n=1

2−n + 2−n0

∞

∑
n=n0+1

2−n

= (α + 2−n0)(1 − 2−n0) + 2−n02−n0

= α − (α − 1) 2−n0 < α.

ii) If f /∈ Un, for every n ∈ N, then,

|x̂n( f )|k(n)|x̂( f )| <
1

2nβ
‖x̂‖∞ = 2−n, n ∈ N,

implying that

|ŷ( f )| ≤ |x̂( f )|
∞

∑
n=1

2−n|x̂n( f )|k(n) ≤
∞

∑
n=1

2−2n =
1

3
< α. (4.7)

From (4.5), (4.6) and (4.7) one derives the desired relation ‖ŷ‖∞ = α = ‖x̂‖F.

We come now to the proof of the condition (3.1) in Theorem 3.1 (cf. also
[33, p. 52, “proof of Theorem”]).
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Theorem 4.7. Let E be a topological algebra, satisfying (4.3) relative to a unital separat-
ing subalgebra H of E, having H∧ ⊆ E∧ σ-complete. Then,

B ∩ ChH(E) 6= ∅, (4.8)

for every B ∈ PH(E).

Proof. Taking B ∈ PH(E), the family

A = {F ∈ Pw
H(E) : F ⊆ B} (4.9)

is inductively ordered, hence (Zorn’s Lemma) A has a minimal element, say F0.
Assuming that F0 is not a singleton, say F0 = { f0, g0}, then, by the hypothesis
for H, there exists x ∈ H, such that x̂(g0) = 1 and x̂( f0) = 0, hence ‖x̂‖F0

= 1. By
applying Lemma 4.6 for F0 and x, there exists y ∈ H, with

ŷ = x̂|F0
and ‖ŷ‖∞ = ‖x̂‖F0

= 1.

Setting now
K = { f ∈ M(E) : ŷ( f ) = 1}, (4.10)

we have F0 ∩ K = {g0} (since f0 /∈ K), and K ∈ PH(E), with peaking function

ẑ =
1

2

(
1E∧ + ŷ

)
∈ H∧. (4.11)

Indeed, ẑ = 1|K, while by assuming that |ẑ(g)| = 1, for g ∈ Kc, we get
|ŷ(g) + 1| = 2 and |ŷ(g)| = 1, yielding that ŷ(g) = 1, hence g ∈ K, a contradic-
tion. So, |ẑ| < 1|Kc, proving that K ∈ PH(E). This implies that F0 ∩ K = {g0} ∈
A, with {g0} $ F0, a contradiction to the minimality of F0. Thus, the minimal
elements of A are singletons. Finally, let { f ′} ⊆ B be a minimal element of A. By
hypothesis, for every neighbourhood U of f ′, there exists B′ ∈ PH(E), such that
f ′ ∈ B′ ⊆ U, hence, by 5)⇒1) in Theorem 5.5 below, f ′ ∈ ChH(E), which com-
pletes the proof.

Remark 4.8. Based on the preceding proof, we note that the empty set might be
considered as a minimal relative weakly peak set, while if such a set is non-empty,
the same is reduced to a singleton. Furthermore, if the spectrum of the algebra
involved satisfies the first axiom of countability, one concludes that the relative
weakly peak point f ′ ∈ B becomes a relative peak point (cf. Corollary 4.4).

Thus, we obtain the following extension of [7, p. 105, Corollary 2.4.6].

Corollary 4.9. Let E be a unital H-bounded topological algebra, with H a unital separat-
ing subalgebra of it, and H∧ ⊆ E∧ σ-complete, such that (4.3) be satisfied. Then, every
relative peak set of E contains a relative weakly peak point of E. In particular, if M(E)
fulfils the first axiom of countability, then, every relative peak set of E contains a relative
peak point.

Remark 4.10. Based on Corollary 4.9, one can repeat the proof in Theorem 3.5,
thus getting at a variant of the same result.
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A consequence of Lemma 4.6 and Theorem 4.7 is the next result [25, p. 161,
Lemma 1].

Corollary 4.11. Let E be a unital topological algebra and H a unital subalgebra, with H∧

a σ-complete subalgebra of E∧. Moreover, suppose that, for every Gδ-set W containing
an F ∈ Pw

H(E), there exists B ∈ PH(E), with F ⊆ B ⊆ W (cf. Lemma 4.2). Finally,
let x ∈ H, with

‖x̂‖F = |x̂( f0)| ≡ α = ‖x̂‖∞ ∈ R, (4.12)

for some f0 ∈ F (take, for instance, F compact). Then, the set

N = { f ∈ F : x̂( f ) = x̂( f0)} ⊆ F (4.13)

is a relative weakly peak set of E. In particular, if F ∈ PH(E), then, N ∈ PH(E), as
well.

Proof. If x̂( f0) = 0, then, ‖x̂‖F = 0, so that N = F. Now, if x̂( f0) 6= 0, by taking

ŷ =
1

2

(
1E∧ +

x̂

x̂( f0)

)
∈ H∧, (4.14)

we get that ‖ŷ‖F = ŷ( f0) = 1 = ‖ŷ‖∞. So,

N = { f ∈ F : ŷ( f ) = 1} ⊆ F,

and showing that

N = S ∩ F, (4.15)

where S ∈ PH(E), we have the assertion. By Lemma 4.6, there exists z ∈ H, such
that ŷ = ẑ|F and ‖ẑ‖∞ = ‖ŷ‖F = 1. Hence, the set

S = { f ∈ M(E) : ẑ( f ) = 1}

is a relative peak one (cf. proof of (4.10)), and this implies (4.15). In particular,
if F is a relative peak set, then, N = S ∩ F is also a relative peak one (cf. Lemma
4.1).

Scholium 4.12. Concerning the previous corollary, we remark that the set N,
defined by (4.13), is a peak set of the algebra E∧|F, relative to its subalgebra H∧|F:
Our claim results from an analogous argument to that in proof of (4.10), since
N ⊆ F ⊆ M(E∧|F), given that E∧|F separates points of M(C(F)) = F, with (4.14)
as a peaking function. Thus, without assuming (4.12) and (4.13), Corollary 4.11
is restated as follows.

Corollary 4.13. Let E be a unital H-bounded topological algebra, where H a unital
subalgebra of E, with H∧ ⊆ E∧ σ-complete, such that (4.3) be fulfilled. If F ∈ Pw

H(E),
then, every N ∈ PH∧|F

(E∧|F), with N ⊆ F, becomes a member of Pw
H(E).

An immediate consequence of Corollary 4.13 is the following extension of
Bishop’s Lemma [7, p. 104, Corollary 2.4.4].
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Corollary 4.14 (Bishop’s Lemma). Let E be a unital H-bounded topological algebra,
where H a unital subalgebra, with H∧ ⊆ E∧ σ-complete. Moreover, suppose that, for
every Gδ-set W containing an F ∈ Pw

H(E), there exists B ∈ PH(E), with F ⊆ B ⊆ W
(cf. Lemma 4.2). Finally, let G ∈ Pw

H∧ |F
(E∧|F), with G ⊆ F, such that

G =
⋂

i∈I

Bi, Bi ∈ PH∧ |F(E
∧|F), with Bi ⊆ F, i ∈ I. (4.16)

Then, G ∈ Pw
H(E).

Scholium 4.15. Referring to the relation Bi ⊆ F, i ∈ I, in (4.16), we remark that it
is fulfilled when M(E∧|F) = F. The latter is accomplished if E has continuous Gel’fand
map, given that F is an E-convex subset of M(E) relative to H (cf. after (7.3) below),
since, by hypothesis, F ∈ Pw

H(E). Thus, one has

M(E∧|F) ∼= F = (F)E = (F)H
E .

Now, concerning our assumption in Theorem 3.1 for the exponential map, we
remark that in a unital σ-complete locally m-convex algebra E, with continuous Gel’fand
map GE, the exponential map acts on the Gel’fand transform algebra E∧ of E (cf. also [27,
p. 146, proof of Lemma 2.1]). In the same vein of ideas, the continuity of the Gel’fand
map implies actually the convergence in E∧ of every convergent series in E. On the other
hand, the σ-completeness of H∧ implies that H∧ is closed under exponentiation, in the
case H is subalgebra of E. So, one concludes that:

(4.17)
in the context of Theorem 4.7, the assumptions of Theorem 3.1,
referring to (3.1), and the action of the exponential map on H∧,
are fulfilled.

Finally, the normed subspace X of CI , considered in Theorem 3.1, is constructed
according to the following result ([26, p. 25, Lemma 4.3])

(4.18)

Lemma 4.16. Let E be a topological vector space and B an absolutely
convex, closed and bounded, subset of E. Then, the vector subspace of
E generated by B,

EB =
⋃

n∈N

nB,

is a normed space, whose norm is defined by the gauge function of B.

Now, by taking E = CI and B = co(µ(M(E))), then, B is closed, absolutely
convex and complete subspace of CI. If E has bounded spectrum M(E), then, B is
bounded (cf. [23, p. 240, (1)]), so by Lemma 4.16, the set

X =
⋃

n∈N

n · co(µ(M(E)))

is a Banach subspace of CI.
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5 Relative peak and Choquet points

Relative peak points are related to the relative Choquet points according to the
following result, including, in effect, an extension of [10, p. 118, Proposition 3.1.9]
for function algebras on a completely regular space and [37, p. 153, Corollary
31.8] for function algebras on a compact space.

Lemma 5.1. Let E be a unital topological algebra and H a subspace of E, containing the
constants. Then,

PH(E) ⊆ ChH(E). (5.1)

Proof. Considering f ∈ PH(E), there exists x ∈ H, such that x̂( f ) = 1 and
|x̂| < 1|{ f }c. If µ f ∈ rH( f ), then, 0 = 1 − x̂( f ) = 1 − (Rex̂)( f ) = µ f (1E∧) −

µ f (Rex̂) = µ f (1E∧ − Rex̂), with Rex̂ ≤ |x̂| ≤ 1, and since µ f ∈ M+
c (M(E)), one

gets (cf. [6, p. 69, Proposition 9]) 1E∧ − Rex̂ = 0|Supp(µ f )
. Hence, Supp(µ f ) ⊆

Z(1E∧ − Rex̂) = { f}, where Z(1E∧ − Rex̂) stands for the zero set of 1E∧ − Rex̂,
so that µ f = δ f , that is, f ∈ ChH(E).

Regarding (5.1), we shall see that, in an appropriate class of topological al-
gebras, it becomes equality (cf. Corollary 5.8 below). As a matter of fact, a more
general result is valid, identifying relative weakly peak points with relative Cho-
quet points (cf. Theorem 5.5 below). For this we need some basic results and
definitions.

Given a subspace H of a topological algebra E, we consider the vector sub-
space of C(M(E), R),

ReH∧ = {u ∈ C(M(E), R) : u = Rex̂, x ∈ H}, (5.2)

and for a given f ∈ M(E), we define the functions

Q f , Q
f

: C(M(E), R) −→ R, (5.3)

by the relations

Q f (h) := inf{Rex̂( f ) : Rex̂ ≥ h, x ∈ H}, (5.4)

and
Q

f
(h) := sup{Rex̂( f ) : Rex̂ ≤ h, x ∈ H}, (5.5)

for every h ∈ C(M(E), R). The functions (5.3) fulfill the following properties
(cf. [2, p. 100, (2.6)–(2.12)] and [34, p. 20 and 21]):

1) Q f (h1 + h2) ≤ Q f (h1) + Q f (h2), h1, h2 ∈ C(M(E), R).

2) Q f (λh) = λQ f (h), h ∈ C(M(E), R), λ > 0.

3) If h1 ≤ h2, then, Q f (h1) ≤ Q f (h2), h1, h2 ∈ C(M(E), R).

4) Q f (Rex̂) = Rex̂( f ) = Q
f
(Rex̂), x ∈ H.

5) −Q f (−h) = Q
f
(h), h ∈ C(M(E), R).

A direct consequence of 5) is that

Q f (λh) = λQ
f
(h), λ < 0. (5.6)
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Furthermore, the functions Q f , Q
f
, f ∈ M(E), are related to the representing

measures of f relative to H. As a matter of fact, for every h ∈ C(M(E), R), the
functions Q f , Q

f
realize the infimum and supremum, respectively, of the values

at h of all representing measures of f . This is accomplished by adapting to our
context a relevant argument of [24, p. 259, Lemma 9.7.2] or [33, p. 49, Lemma
7.19]. Cf. also [2], [7], [12], [34]. In the proof of the latter, we use that every
positive linear form of Cc(X), with X completely regular Q-space is continuous. This
is derived from the fact that every positive linear form on Cc(X), X completely
regular, preserves bounded subsets of X, and so becomes continuous, when X
is still a Q-space, since then Cc(X) is bornological (cf. [21, p. 284, Theorem 1],
[20, p. 220, Proposition 1, (a)], [14, p. 199, Lemma 7.4 and p. 201, Corollary
7.1]). In this respect, we say that a completely regular space X is a Q-space, if
every character of the algebra Cc(X) is continuous. (The previous definition of a
Q-space, by means of the algebra Cc(X), is used for convenience, although there
is a relevant one for a topological space (“Hewitt space”; cf. [35, p. 206, (Q4)])).
For example, every completely regular Lindelöf space is a Q-space (cf. [29, p. 141, and
142]).

On the basis of the preceding discussion, one obtains the next.

Proposition 5.2. Let E be a topological algebra, whose spectrum M(E) is a Q-space, H
a subspace of E, and f ∈ M(E). If µ f ∈ rH( f ), then,

Q
f
(h) ≤ µ f (h) ≤ Q f (h), (5.7)

for every h ∈ C(M(E), R). Moreover, if α ∈ R satisfies

Q
f
(h) ≤ α ≤ Q f (h), (5.8)

then, there exists µ f ∈ rH( f ), such that

α = µ f (h) =
∫

M(E)
hdµ f .

In particular,

Q
f
(h) = inf{µ f (h) : µ f ∈ rH( f )} (5.9)

and

Q f (h) = sup{µ f (h) : µ f ∈ rH( f )}. (5.10)

We note that the assumption of being M(E) a Q-space is not needed for the
proof of (5.7). An immediate consequence of (5.9) and (5.10) is the following.

Corollary 5.3. Let E be a topological algebra with spectrum M(E) a Q-space, and H a
subspace of E. Then, the following two assertions are equivalent:

1) f ∈ ChH(E).
2) Q

f
(h) = Q f (h), f or every h ∈ C(M(E), R) and a given f ∈ M(E).
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The next theorem characterizes the relative Choquet boundary ChH(E), in
terms of weakly peak points and strong boundary points of E, relative to H, gen-
eralizing a relevant result of [5, p. 325, Theorem 6.5] (cf. also [7], [24], [25], [33]).
We previously need the next result, which completes Lemma 3.3, including, in
effect, an extension of [19]; see also [32, p. 138, Lemma (3.3.10)].

Lemma 5.4. Let E be a unital topological algebra with a subspace H containing the
constants. Then, for f ∈ Mx̂, with x ∈ H, there exists B ∈ PH(E), such that
f ∈ B ⊆ Mx̂.

Proof. Taking f ∈ Mx̂, x ∈ H, then, f (x) 6= 0 (unless x̂ = 0), so one can define

y =
1

2

( x

f (x)
+ 1E

)
∈ H.

By setting

B = {g ∈ M(E) : ŷ(g) = 1},

one gets f ∈ B ⊆ Mx̂, with B ∈ PH(E) (cf. (4.10), (4.11)).

The previous lemma, in conjunction with the fact that every relative peak
point is of the form Mx̂, x̂ ∈ H∧ the corresponding peaking function, leads us to
the conclusion:

(5.11)
whenever H contains the constants, singletons of the form Mx̂, x ∈ H,
are precisely the relative peak points of E.

Theorem 5.5. Let E be a unital topological algebra with spectrum M(E) a Q-space,
f ∈ M(E), and H a unital subalgebra of E, with H∧ ⊆ E∧ σ-complete. Moreover,
consider the following six assertions:

1) f ∈ ChH(E).
2) For every open neighbourhood U of f and 0 < ε < 1, there exists x ∈ H, such

that

‖x̂‖∞ ≤ 1, |x̂( f )| > 1 − ε and |x̂| < ε|Uc . (5.12)

3) f ∈ sH(E).
4) For every open neighbourhood U of f , there exists x ∈ H, with f ∈ Mx̂ ⊆ U.

5) For every open neighbourhood U of f , there exists B ∈ PH(E), such that
f ∈ B ⊆ U.

6) f ∈ Pw
H(E).

Then

1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5) ⇒ 1) and 3) ⇒ 6).

If, in addition, E satisfies (4.3), then 6)⇒5), as well, so that all the previous assertions
are equivalent.

Note. We can equivalently, consider an arbitrary (not necessarily
open) neighbourhood of f .
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Proof. 1)⇒2): Let f ∈ ChH(E), 0 < ε < 1 and U an open neighbourhood of f .
Then (cf. [36, p. 55, Urysohn Lemma]), there exists 0 ≥ h ∈ C(M(E), R), with
h( f ) = 0 and h < log ε|Uc , while (Corollary 5.3)

0 = h( f ) = δ f (h) = Q
f
(h) = sup{Rex̂( f ) : Rex̂ ≤ h, x ∈ H}.

Since log(1 − ε) < 0 = Q
f
(h), there is y ∈ H, such that Reŷ ≤ h and Reŷ( f ) >

log(1 − ε). Then, by the hypothesis for H∧, eŷ = x̂ ∈ H∧, for some x ∈ H, which
satisfies (5.12).

2)⇒3): Assuming 2), and taking an open neighbourhood U of f , we shall find
x ∈ H, such that

x̂( f ) = 1 and |x̂| < 1|Uc .

For this, we construct a sequence {xn}n∈N in H and a sequence {Un} of open
neighbourhoods of f , such that

(i) Un ⊃ Un+1 (5.13)

(ii) x̂n( f ) = 1

(iii) ‖x̂n‖∞ <
4

3

(iv) |x̂n| <
1

3
|Uc

n

(v) ‖x̂j‖Un ≡ sup
g∈Un

|x̂j(g)| ≤ 1 +
1

3 · 2n
, i f j < n.

Setting U1 = U, for ε = 1
4 , there is, by hypothesis, y1 ∈ H, with ‖ŷ1‖∞ ≤ 1,

|ŷ1( f )| >
3
4 and |ŷ| <

1
4 on Uc

1. By taking x1 = (ŷ1( f ))−1y1 ∈ H, we get

‖x̂1‖∞ <
4
3 , x̂1( f ) = 1 and |x̂1| <

1
3 on Uc

1. Assuming that U1, ..., Un and x1, ..., xn

have been constructed and satisfy (5.13), we define

Un+1 =
n⋂

k=1

{
g ∈

n⋂

j=1

Uj : |x̂k(g)| < 1 +
1

3 · 2n+1

}
,

which is an open neighbourhood of f , with Un+1 ⊆ Un. By 2), there is yn+1 ∈ H,

with ‖ŷn+1‖∞ ≤ 1, |ŷn+1( f )| > 3
4 and |ŷn+1| <

1
4 on Uc

n+1. The function x̂n+1,

with xn+1 = (ŷn+1( f ))−1yn+1 ∈ H, satisfies (ii)-(v), so we inductively obtain the
desired sequences {xn} and {Un}. Now, by the σ-completeness of H∧, we have

φ =
∞

∑
n=1

2−nx̂n ∈ H∧, (5.14)

so that φ = x̂, for some x ∈ H. By (ii), x̂( f ) = 1, and if g ∈ Uc, since {Un}

is decreasing, g ∈
⋂∞

n=1 Uc
n, hence by (iv), |x̂(g)| < 1. On the other hand, if

g ∈ U, then, for g ∈
⋂∞

n=1 Un, one has by (v), |x̂j(g)| ≤ 1, for every j ∈ N, hence
|x̂(g)| ≤ 1. If g /∈

⋂∞
n=1 Un, then, g ∈ Um and g /∈ Um+1, for some m ≥ 1, hence

g /∈ Um+j, j = 1, 2, .... Thus, by (iii)-(v), one gets
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|x̂(g)| ≤
m−1

∑
n=1

2−n|x̂n(g)| + 2−m|x̂m(g)| +
∞

∑
n=m+1

2−n|x̂n(g)| (5.15)

<

(
1 +

1

3 · 2m

)(
1 −

1

2m−1

)
+

4

3 · 2m
+

1

3 · 2m

= 1 −
1

3 · 22m−1
< 1,

implying that f ∈ sH(E).
3)⇒4): See (2.19).
4)⇒5): Obvious by Lemma 5.4.
5)⇒1): If 5) holds true, there exists x ∈ H, with

x̂ = 1|B⊆U = ‖x̂‖∞ and |x̂| < 1|Bc⊇Uc . (5.16)

By considering µ f ∈ rH( f ) and applying the same argument as in the proof of
Lemma 5.1, one gets (cf. (5.16)) Supp(µ f ) ⊆ Z(1E∧ − Rex̂) ⊆ U. Hence µ f (U

c) =
0, and since µ f is a probability measure, µ f (U) = µ f (M(E)) = 1, thus µ f = δ f ,
implying f ∈ ChH(E).

3)⇒6): Let f ∈ sH(E) and {Uα}α∈I a family of open neighbourhoods of f ,
such that

⋂
α∈I Uα = { f}. Then, for every α ∈ I, there exists xα ∈ H, with

x̂α( f ) = 1 = ‖x̂α‖∞ and |x̂α| < 1 on Uc
α, providing the relative peak set Bα =

{g ∈ M(E) : x̂α(g) = 1}, with peaking function ŷα = 1
2(1E∧ + x̂α) ∈ H∧, so that

f ∈ Bα ⊆ Uα. Hence, f ∈
⋂

α∈I Bα ⊆
⋂

α∈I Uα = { f}, that is
⋂

α∈I Bα = { f},
yielding that f ∈ Pw

H(E).
6)⇒5): Obvious by the assumption (4.3).

Remark 5.6. In the previous theorem, the assumption for H to be a subalgebra
is needed only for the proof 1)⇒2), as well as the property of Q-space for M(E).
The σ-completeness of H∧ ⊆ E∧ is used only for the proof of 1)⇒2)⇒3), while
the unit is needed for 4)⇒5)⇒1)⇒2) and 3)⇒6).

Corollary 5.7. Let E be a unital topological algebra, H a subspace of E containing the
constants, and f ∈ M(E). Then, the following three assertions are equivalent:

1) f ∈ sH(E).
2) For every neighbourhood U of f , there exists x ∈ H, with f ∈ Mx̂ ⊆ U.
3) For every neighbourhood U of f , there exists B ∈ PH(E), such that f ∈ B ⊆ U.
Moreover consider the following statement:
4) f ∈ Pw

H(E).
Then, 1)⇒4), while 4)⇒1) if, for every Gδ-set W, containing an F ∈ Pw

H(E), there
exists B ∈ PH(E), such that F ⊆ B ⊆ W (in other words, in the case that E satisfies
(4.3)).

A direct consequence of Theorem 5.5, along with Corollary 4.4, is the next.
See also [32, p. 141, Theorem (3.3.16)] and [33, p. 54, Lemma 7.25] for function
algebras on a compact space.

Corollary 5.8. Let E be a unital topological algebra with spectrum M(E) a Q-space, and
H a unital subalgebra of E, with H∧ ⊆ E∧ σ-complete, such that (4.3) be satisfied. Then,
one has

ChH(E) = sH(E) = Pw
H(E). (5.17)



180 R. I. Hadjigeorgiou

In particular, if, in addition, M(E) satisfies the first axiom of countability, then,

ChH(E) = sH(E) = PH(E). (5.18)

The following result provides two more characterizations of the relative Cho-
quet points. See also [31, p. 49, Theorem and p. 53, Corollary 8.3, (3)].

Corollary 5.9. Let E be a unital topological algebra with spectrum M(E) a Lindelöf
space, f ∈ M(E), and H a unital subalgebra of E, with H∧ ⊆ E∧ σ-complete. Then,
the following three assertions are equivalent:

1) f ∈ ChH(E).
2) For every g 6= f , there exists x ∈ H, such that |x̂(g)| < x̂( f ) = ‖x̂‖∞.
3) For every Gδ-set N, containing f , there is B ∈ PH(E), with

f ∈ B ⊆ N. (5.19)

Proof. Assertion 1) is equivalent to 5) according to Theorem 5.5, so we prove that
statements 2) and 3) are equivalent to 5).

5)⇒2): If g 6= f , there is a neighbourhood U of f , with g /∈ U, so by 5) one has
f ∈ B ⊆ U, for some B ∈ PH(E). Hence, there is x ∈ H, with x̂ = 1|B = ‖x̂‖∞

and |x̂| < 1|Bc⊇Uc , providing 2).

2)⇒3): Let N be a Gδ-set containing f . Then, N =
⋂∞

n=1 Un, where {Un}n∈N

is a decreasing sequence of open sets. For each n ∈ N, we shall find xn ∈ H, with

x̂n( f ) = 1 = ‖x̂n‖∞ and |x̂n| < 1|Uc
n
, (5.20)

whence, by setting (cf. (5.14))

φ =
∞

∑
n=1

2−nx̂n ∈ H∧ and B = {g ∈ M(E) : φ(g) = 1},

we obtain a relative peak set satisfying (5.19). Now, for n ≥ 1, let g ∈ Uc
n.

By hypothesis, there is yg ∈ H, such that

ŷg( f ) = ‖ŷg‖∞ and |ŷg| < ‖ŷg‖∞|Vg , (5.21)

where Vg is an open neighbourhood of g. Since ŷg( f ) 6= 0, the element

xg =
yg

ŷg( f )
∈ H (5.22)

fulfills the conditions

x̂g( f ) = 1 = ‖x̂g‖∞ and |x̂g| < 1|Vg . (5.23)

The closed subspace Uc
n of M(E) is Lindelöf [11, p. 175, Theorem 6.6, (2)], so for its

open covering {Vg}g∈Uc
n
, there exists a countable subcovering {Vgi

}i∈I, providing
countable many elements {xgi

}i∈I as in (5.22). Thus, the element

x̂n =
∞

∑
i=1

2−i x̂gi
∈ H∧

fulfills the desired condition (5.20), in view also of (5.23).
3)⇒5): Assuming 3) and taking a neighbourhood U of f , there exists an open

neighbourhood, that is a Gδ-set, V in U. Hence, by hypothesis, there is
B ∈ PH(E), with f ∈ B ⊆ V ⊆ U, yielding 5).
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6 Relative Bishop boundary

Given a subspace H of a topological algebra E, a subset A of M(E), on which
every x̂, x ∈ H, attains its maximum absolute value, is called weakly boundary
set of E relative to H, or relative weakly boundary set of E. The set of relative weakly
boundary sets of E is denoted by A

w
H(E) and its elements are characterized by the

property (cf. also (2.12))

A ∩ Mx̂ 6= ∅, f or every x ∈ H. (6.1)

It is clear that E is Weierstrass relative to H, whenever Aw
H(E) 6= ∅. The least set

of the family Aw
H(E) is said to be the Bishop boundary of E relative to H, or relative

Bishop boundary of E, denoted by

BH(E) =
⋂

A∈Aw
H(E)

A. (6.2)

By adopting the notion of a minimal boundary in [9, p. 131, Defition (4.4)], we
say that a relative weakly boundary set is minimal, if it contains no proper relative
weakly boundary set. Denoting by Amw

H (E), the set of minimal relative weakly
boundary sets of E, we remark that, if BH(E) exists, then,

A
mw
H (E) = {BH(E)}. (6.3)

If Pm
H(E) stands for the set of minimal relative peak sets and Pmw

H (E) for the family
of minimal relative weakly peak sets, we show that the latter is related to the one
of the minimal relative weakly boundary sets, by adapting to our framework a
relevant argument of [9, p. 131, Proposition (4.5)] for Banach function algebras
on a metrizable space.

Lemma 6.1. Let E be a unital topological algebra and H a subspace of it, containing the
constants, such that Mx̂ 6= ∅, for every x ∈ H (equivalently, take E a Weierstrass
algebra relative to H). Considering the family of (non-empty) minimal relative weakly
peak sets of E, Pmw

H (E) , then, a collection of exactly one point from each member of
Pmw

H (E) constitutes a relative weakly boundary set of E; that is, a member of Aw
H(E).

Proof. Let A be a subset of M(E) formed by choosing exactly one point from
each member of Pmw

H (E). Taking x ∈ H, then, Mx̂ contains a relative peak set
(cf. Lemma 3.3), hence a minimal relative weakly peak set (cf. (4.9)). Thus,
Mx̂ ∩ A 6= ∅, for every x ∈ H, that is A ∈ Aw

H(E) (cf. (6.1)).

A relative weakly boundary set, obtained in the way described by the previ-
ous lemma, becomes, under suitable conditions, a minimal one and it is only of
this type, as the following result proves.

Proposition 6.2. Let E be a unital topological algebra and H a subspace of it, containing
the constants, such that

Pw
H(E) = PH(E); (6.4)

that is, we assume that relative weakly peak sets and peak sets coincide (cf. Corollary
4.5). Then, the family of minimal weakly boundary sets of E, Amw

H (E), consists of subsets
of M(E), formed by choosing exactly one point from each member of Pmw

H (E).
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Proof. A subset A of M(E) of the above form belongs to A
w
H(E) by Lemma 6.1.

Assuming that A0 is a proper subset of A, there exists f ∈ A \ A0, so that f ∈ B,
for some B ∈ Pmw

H (E) and B ∩ A0 = ∅. By hypothesis, B ∈ Pm
H(E), thus

(cf. (2.15)), B is of the form Mx̂, x ∈ H, with Mx̂ ∩ A0 = ∅, yielding that
A0 /∈ Aw

H(E), so that A ∈ Amw
H (E).

Conversely, let Am ∈ A
mw
H (E). Based on (6.4), (6.1) and (2.15), Am inter-

sects every B ∈ Pw
H(E), hence every B ∈ Pmw

H (E). Now, every collection of single
points from these intersections gives, due to Lemma 6.1, a relative weakly bound-
ary set contained in Am, hence, it coincides with Am.

Based on the preceding, we get at the following characterization of the existence
of the relative Bishop boundary. See [4, p. 630, Theorem 1] and [9, p. 132, Corollary
(4.6)].

Theorem 6.3. Let E be a topological algebra with subspace H and consider the following
assertions:

1) PH(E) = { f ∈ M(E) : { f} = Mx̂, x ∈ H} ∈ A
w
H(E).

2) The relative Bishop boundary of E, BH(E), exists.
Then, 1)⇒2), while 2)⇒1) if, in addition, E has an identity, contained in H, and satisfies
(6.4).

Proof. Assuming 1), PH(E) is a relative weakly boundary set contained in, and
not containing, any such set (cf. (6.1)), hence PH(E) = BH(E), proving 2). Con-
sidering 2), one has Amw

H (E) = {BH(E)}, hence, by Proposition 6.2,

Pmw
H (E) = Pw

H(E). (6.5)

Thus, by Lemma 6.1 and (6.4), we get 1).

In the previous theorem, the condition 1) is fulfilled in the context of Lemma
6.1, when Pmw

H (E) = PH(E) is valid. We thus obtain the coincidence of the relative
Bishop boundary with the relative peak points in view also of Corollary 4.4 and
Theorem 4.7.

Corollary 6.4. Let E be a unital Weierstrass algebra relative to a unital separating sub-
algebra H, satisfying (4.3), with spectrum M(E) first countable space, and H∧ ⊆ E∧

σ-complete. Then, the relative Bishop boundary BH(E) of E exists and consists precisely
of the relative peak points PH(E) of E; that is

BH(E) = PH(E). (6.6)

Scholium 6.5. By considering H = E, since E is automatically separating, we
obtain, due to Corollary 6.4, that the Bishop boundary B(E) of E consists exactly
of the peak points P(E) of E, equivalently, of the Gδ-points in M(E) of the form
Mx̂, x ∈ E (cf. (5.11)). That is, we get the relation

B(E) = P(E) ⊆ Gδ(M(E)), (6.7)

where Gδ(M(E)) stands for the set of Gδ-points in M(E). The Bishop boundary
we obtain in this way is smaller than the one we get in the class of Urysohn topologi-
cal algebras with Gel’fand transform algebra σ-complete, where the Gδ-points of M(E)
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are characterized by the singletons Mx̂, x ∈ E; that is (cf. [15, p. 353, Theorem 3.1
and p. 354, Corollary 3.2])

B(E) = P(E) = Gδ(M(E)). (6.8)

On the other hand, given a subspace H of E, we have that

BH(E) ⊆ B(E), (6.9)

and, of course, by the very definitions

BH(E) = ∂H(E). (6.10)

The following result extends, in our framework, an analogous one due to H.
Bauer [1], for function algebras; cf. also [5].

Theorem 6.6. Let E be a unital topological algebra and H a subspace of E, containing
the constants, and satisfying the next two assertions:

1) Mx̂ 6= ∅, for every x ∈ H.

2) Every relative peak set of E contains a relative Choquet point; that is, every
B ∈ PH(E) contains an f ∈ ChH(E) (cf. Theorem 4.7).

Then, every element of H∧ ⊆ E∧ attains its maximum absolute value on ChH(E); in
other words, the relative Choquet boundary of E is a relative weakly boundary set of E.
In particular, the closure of ChH(E) is a relative boundary set of E.

Proof. By 1) and Lemma 3.3, for every x ∈ H, there is B ∈ PH(E) contained in
Mx̂, with peaking function ŷ = 1

2(e
it x̂ + α), where α = ‖x̂‖∞. Hence ŷ = α|B,

implying that |x̂| = α|B, thus, by 2), the assertion.

An immediate consequence from Theorem 6.6, in conjunction with Corollaries
5.8 and 6.4, is the next result, providing the context into which all the aforesaid
boundaries, along with the relative peak points, coincide and become relative
weakly boundary sets.

Corollary 6.7. Let E be a unital Weierstrass algebra relative to a unital separating sub-
algebra H, with H∧ ⊆ E∧ σ-complete, satisfying (4.3). Moreover, assume that M(E) is
a Q-space. Then, the sets

ChH(E) = sH(E) = Pw
H(E) (6.11)

are relative weakly boundary sets, so their closures are relative boundary sets. If, more-
over, M(E) satisfies the first axiom of countability, then,

BH(E) = PH(E) = Pw
H(E) = sH(E) = ChH(E), (6.12)

hence, their closures are identical with the relative Šilov boundary ∂H(E) of E.
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7 Relative peak sets and boundaries of restriction algebras

Given a subspace H of a topological algebra E and a subset B of its spectrum
M(E), we examine the peak sets and points of the restriction on B of the Gel’fand
transform algebra of E, E∧|B ⊆ Cc(B), relative to its vector subspace H∧|B. Con-
cerning the spectrum of the restriction algebra E∧|B, we know that it contains B
(up to a canonical injection), while, as we shall see, it is imbedded in the spectrum
of E, by means of the “geometric hull” of B; that is we have

B ∼= M(Cc(B)) ⊂→ M(E∧|B) ⊂→ (B)H
E ⊆ M(E).

In this respect, we define the geometric (or E-convex) hull of B ⊆ M(E) relative to
H, as the set

(B)H
E ≡ E − hullH(B) = { f ∈ M(E) : |x̂( f )| ≤ pB(x̂) ≡ sup

h∈B

|x̂(h)|, x ∈ H}, (7.1)

being closed, by the continuity of x̂, x ∈ H, and satisfying

(B)H
E = (B)H

E . (7.2)

For H = E, the set (B)E
E ≡ (B)E is called the geometric, or E-convex, hull of B, such

that one has
B ⊆ (B)E ⊆ (B)H

E . (7.3)

If (B)E = B, B is called E-convex, while B is named E-convex relative to H, if
(B)H

E = B. Thus, in view of (7.3), an E-convex set relative to H is E-convex. We note
that every relative peak or relative weakly peak set is E-convex relative to H: indeed,
since every zero set x̂−1{0}, x ∈ H, is E-convex relative to H, one concludes that
every relative peak set of E, being of the form (x̂ − α)−1{0}, x ∈ H, is E-convex
relative to H, too. Accordingly, in view also of the relation

( ⋂

i∈I

Ai

)H

E
⊆

⋂

i∈I

(Ai)
H
E ,

where Ai ⊆ M(E), i ∈ I, one concludes that (A. Mallios) intersections of E-convex
sets relative to H are E-convex relative to H, as well. Thus, every relative weakly peak
set of E is E-convex relative to H, too.

Now, the continuity of the Gel’fand map GE of E implies the following homeomor-
phism into ([14, p. 283, Theorem 1.2]

M(E∧|B)
θ

⊂
→

homeo

(B)E ⊆ (B)H
E ⊆ M(E), (7.4)

defined by
θ ≡ t(r ◦ GE), (7.5)

where r : E∧ −→ E∧|B , denotes the restriction map and t(r ◦ GE) stands for
the transpose of the map r ◦ GE. Since (imθ)E = (B)E, we say that M(E∧|B)
is “E-convex” (viz. θ(M(E∧ |B)) is so) iff θ is onto. The surjectivity of θ is also at-
tained if B is closed and equicontinuous [14, p. 283, Theorem 1.2], or when E∧|B is a
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Q′-algebra, in the sense that every maximal regular 2-sided ideal is closed (see [18] for
the terminology applied). If, moreover, H is dense in E, then,

M(E∧|B) ∼=
homeo

(B)E = (B)H
E . (7.6)

In this respect, we note that the algebras E∧, E∧|B are semi-simple, in the sense that
their respective Gel’fand maps are one-to-one [14, p. 114, Lemma 2.2 and p. 293,
Proposition 1.2].

On the basis of (7.4), the relative peak sets of E∧|B are expected to be related
with the respective ones of E. In fact, we have the following (cf. also (2.15)).

Lemma 7.1. Let E be a topological algebra with continuous Gel’fand map, H a subspace
of E, B ⊆ M(E), and ∂H(E) the relative Šilov boundary of E. If ∂H(E) ⊆ B, then (cf.
also (2.12)),

M ̂̂x|B
= Mx̂ ∩M(E∧|B), x ∈ H. (7.7)

Proof. Since ∂H(E) ⊆ B ⊂
→ M(E∧|B) ⊂→ M(E), one gets

pM(E)(x̂) = p∂H(E)(x̂) = pB(x̂|B) = pM(E∧|B)(
̂̂x|B), x ∈ H,

hence the assertion.

The first part of the following result constitutes, in effect, a strengthened
version of an inverse of Bishop’s Lemma.

Proposition 7.2. Let E be a topological algebra with continuous Gel’fand map, H a
subspace of E, and B ⊆ M(E). Then, the trace on M(E∧|B) of every relative peak set of
E is a peak set of E∧|B, relative to H∧|B; that is,

A ∩M(E∧|B) ∈ PH∧ |B(E
∧|B), A ∈ PH(E). (7.8)

If, in addition, E has an identity contained in H, and ∂H(E) ⊆ B, then, every peak set
of E∧|B, relative to H∧|B, contains another one, being the trace on M(E∧|B) of a relative
peak set of E.

Proof. Considering A ∈ PH(E), there exists x ∈ H, with

x̂ = 1|A = ‖x̂‖∞ and |x̂| < 1|Ac . (7.9)

Then, one has A ∩ M(E∧|B) ⊆ M(E∧|B) ⊂
→ M(E), with (A ∩ M(E∧|B))

c′ ≡
M(E∧|B) \ (A ∩M(E∧|B)) = Ac ∩M(E∧|B) ⊆ Ac. Hence, by (7.9) and the semi-
simplicity of E∧|B, one obtains

̂̂x|B = x̂|B = 1|A∩M(E∧|B) and |x̂|B| < 1|(A∩M(E∧|B))c′ ,

so that (7.8) holds true. Now, if A ∈ PH∧ |B(E
∧|B), then (Lemma 7.1 and (2.15)),

A = M ̂̂x|B
= Mx̂ ∩M(E∧|B). Thus (Lemma 3.3), there exists A′ ∈ PH(E), such

that A′ ⊆ Mx̂. By the hypothesis for ∂H(E) and (2.16), ∅ 6= A′ ∩M(E∧|B) ⊆
Mx̂ ∩M(E∧|B) = A, where, according to (7.8), A′ ∩M(E∧|B) ∈ PH∧ |B(E

∧|B),
proving the assertion.
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By taking relative weakly peak sets, we obtain an analogous result with Propo-
sition 7.2, while for minimal relative weakly peak sets one gets at the following
characterization.

Corollary 7.3. Let E be a unital topological algebra with continuous Gel’fand map, H
a subspace of E, containing the constants, B ⊆ M(E), and ∂H(E) the relative Šilov
boundary of E, such that ∂H(E) ⊆ B. Then, the minimal weakly peak sets of E∧|B,
relative to H∧|B, are exactly the traces on M(E∧|B) of the minimal relative weakly peak
sets of E. That is,

Pmw
H∧|B

(E∧|B) = Pmw
H (E) ∩M(E∧|B). (7.10)

By employing the argument of [9, p. 135, Proposition (5.2)], suitably adapted
to the present framework, we prove the invariance of the boundaries considered,
when restricting the Gel’fand transform algebra of the topological algebra in-
volved, to a subspace of the spectrum of the latter algebra, containing its Šilov
boundary. Thus, we obtain the next.

Theorem 7.4. Let E be a topological algebra with continuous Gel’fand map, H a subspace
of E, B ⊆ M(E), and ∂H(E) the Šilov boundary of E, such that ∂H(E) ⊆ B. Then, if the
relative Šilov and Bishop boundaries for E and E∧|B exist, one has

∂H∧|B(E
∧|B) = ∂H(E), (7.11)

and
BH∧ |B(E

∧|B) = BH(E). (7.12)

Moreover, if the analogous relation to (6.4) holds true for both E and E∧|B, which also
have identities contained in the respective subspaces, then,

PH∧|B(E
∧|B) = PH(E). (7.13)

Proof. By (6.1), the hypothesis for B and Lemma 7.1, we get that ∂H(E) is a bound-
ary set of E∧|B relative to H∧|B, therefore ∂H∧|B(E

∧|B) ⊆ ∂H(E), which implies

that ∂H∧|B(E
∧|B) is a relative boundary set of E, so that ∂H(E) ⊆ ∂H∧|B(E

∧|B).

Finally, since BH(E) ⊆ ∂H(E) ⊆ B ⊆ M(E∧|B), by a similar argument, we obtain
(7.12), equivalently (7.13), according to our hypothesis (see also Theorem 6.3).

Remark 7.5. Concerning Choquet boundaries in the point of view of the above
Theorem 7.4, one can have an analogous information for such boundaries, as an
application of Corollary 5.8, provided the framework of the initial algebra E is
still valid for the restriction algebra E∧|B [8]. The same argument holds for the
strong boundaries too; however, in this concern see Theorems 7.6 and 7.9 below.

Theorem 7.6. Let E be a topological algebra with continuous Gel’fand map, H a subspace
of E, B ⊆ M(E), and ChH∧ |B(E

∧|B) the relative Choquet boundary of E∧|B. Then,

ChH∧ |B(E
∧|B) ⊆ ChH(E). (7.14)

If, moreover, the map θ, as in (7.4), is proper (:the inverse image of a compact set is
compact), and ChH(E) ⊆ M(E∧|B), then, one gets

ChH∧ |B(E
∧|B) = ChH(E). (7.15)
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Proof. It follows from [17, Theorem 3.4].

For a similar result, referring to the relative strong boundary, we need the fol-
lowing characterization about relative strong boundary points (cf. also Corollary
5.7).

Lemma 7.7. Let E be a unital topological algebra, H a subspace containing the constants,
and f ∈ M(E). Moreover, consider the next two assertions:

1) f ∈ sH(E).
2) { f} ∈ Pmw

H (E).
Then, 1)⇒2), while 2)⇒1) if the following holds true:

(7.16)
for every Gδ-set W containing an F ∈ Pmw

H (E), there exists
B ∈ PH(E), with F ⊆ B ⊆ W.

Scholium 7.8. On the basis of Lemma 7.7, we can apply condition (7.16) in place
of (4.3), to gain an appropriate extension of Theorem 5.5. As a consequence, along
with a similar extension of Lemma 4.6, we also obtain a strengthening of Theo-
rem 4.7. Thus, by still applying (7.16), in place of (4.3), Corollaries 4.11 and 4.13
assert that a minimal weakly peak set F of E, relative to H, can not genuinely
contain any peak set of E∧|F, relative to H∧|F. Accordingly, Bishop’s Lemma, un-
der the same modification, yields that a minimal weakly peak set F of E relative to H,
does not genuinely contain any weakly peak set G of E∧|F, relative to H∧|F, such that
G =

⋂
i∈I Bi, with Bi ⊆ F, i ∈ I.

By the preceding discussion we get at the following.

Theorem 7.9. Let E be a unital topological algebra with continuous Gel’fand map, H
a unital subalgebra with H∧ σ-complete subalgebra of E∧, B ⊆ M(E), and ∂H(E) the
relative Šilov boundary of E, such that ∂H(E) ⊆ B, while we further assume (7.16).
Then, one has

sH(E) = sH∧|B
(E∧|B). (7.17)

Proof. By hypothesis and (2.19) we have sH(E) ⊆ ∂H(E) ⊆ B ⊆ M(E∧|B). Now,
let f ∈ sH(E) and U an open neighbourhood of f in M(E∧|B). Then, U = V ∩
M(E∧|B), with V open neighbourhood of f in M(E), and there exists (Corollary
5.7) B ∈ PH(E), such that f ∈ B ⊆ V. Hence, f ∈ B∩M(E∧|B) ⊆ V ∩M(E∧|B) =
U, where (Proposition 7.2) B ∩M(E∧|B) ∈ PH∧|B(E

∧|B), so that f ∈ sH∧|B(E
∧|B).

Conversely, if f ∈ sH∧|B(E
∧|B), equivalently (Lemma 7.7) { f} ∈ Pmw

H∧ |B
(E∧|B)

= Pmw
H (E) ∩ M(E∧|B) (Corollary 7.3). Thus, { f} = A ∩ M(E∧|B), with

A ∈ Pmw
H (E), hence, by Bishop’s Lemma (Corollary 4.14) and Scholium 4.15,

{ f} ∈ Pw
H(E). So { f} = A, therefore f ∈ sH(E) in view of Lemma 7.7.

Remark 7.10. In the previous theorem, the assumptions of H being a subalgebra
with H∧ ⊆ E∧ σ-complete and of the validity of (7.16) are needed only for the
proof of the implication sH∧|B(E

∧|B) ⊆ sH(E).



188 R. I. Hadjigeorgiou

References

[1] H. Bauer, Un problème de Dirichlet pour la frontière de Šilov d’ un espace compact.
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