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Abstract

We look at value functions of primes in simple Artinian rings and asso-
ciate arithmetical pseudo-valuations to Dubrovin valuation rings which, in
the Noetherian case, are Z-valued. This allows a divisor theory for bounded
Krull orders.

1 Introduction

Valuations on fields have been studied extensively and they provided deep ap-
plications both in number theory and algebraic geometry, via number fields and
function fields of varieties. In the classical theory there is a close relation between
valuations on the quotient field of some ring and properties relating to the inte-
grally closedness of the ring in its fraction field. Thus we see the appearance of
Dedekind domains in number fields and noetherian integrally closed domains
in function fields. These rings are special Krull orders and their arithmetical
properties may be derived from an arithmetical ideal theory for divisorial ideals
(cfr. [9]). In the non-commutative situation, for example in skewfields or simple
Artinian rings, there is no good notion of integral closure of some central sub-
ring – let alone for an arbitrary subring. A definition of a non-commutative Krull
ring, say in a simple Artinian quotient ring, was given by Chamarie in [2], as an
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order with a closedness property with respect to some localization closely related
to the minimal (non-zero) prime ideals of the order. On the other hand, a suit-
able concept generalizing valuation theory of fields to the non-commutative case
was introduced by J. Van Geel and the first author (cfr. [8]) by defining so-called
primes of algebras. A fractional prime is a subring of a simple artinian ring with
a prime ideal satisfying certain conditions (cfr. section 1 for the exact definitions),
but one can also associate a value function to any fractional prime . A very inter-
esting alternative is explored e.g. in [8]: instead of a function v ∶ Q → Γ for some
totally ordered group Γ, one considers an arithmetical pseudo-valuation (we will
abbreviate this to apv) v ∶ F(R) → Γ where F(R) are the fractional R-ideals of
Q (cfr. section 2 for the definition). However, the value functions associated to
primes have only been studied in skewfields and arithmetical pseudo-valuations
have been studied only for orders containing an order with a commutative semi-
group of fractional ideals.

In this paper, we will first consider primes (R, P) where R is a Goldie ring
with a simple Artinian quotient ring and such that R is invariant under inner
A-automorphisms (this is a property of valuation rings in skewfields). We obtain
an apv v ∶ F(R) → Γ where F(R) is the partially ordered semigroup of fractional
ideals of R and Γ is a totally ordered semigroup. We characterize the rings for
which Γ is a group and establish that if Γ is an Archimedean group, R is a Dubrovin
valuation. Dubrovin valuations are another non-commutative generalization of
valuations. They were introduced in [3] and have been studied quite extensively,
cfr. e.g. [5] and [4] for more information about Dubrovin valuations.

Next we look at (not necessarily invariant) Noetherian Dubrovin valuation
rings and establish an apv v ∶ F(R) → Γ where Γ is totally ordered such that
P = {a ∈ A ∣ v(RaR) > 0} and R = {a ∈ A ∣ v(RaR) ≥ 0}. The case of non-Noetherian
Dubrovin valuations allows P = P2 and then v cannot exist (since v(P) = 0 would
follow and then v(I) = 0 for all I ∈ F(R)). The condition ⋂Pn = 0 is enough to
characterize Dubrovin valuation rings coming from an apv in the well-described
way. We may call these the valued Dubrovin rings. Our results establish that
Noetherian Dubrovin valuations define a Z-valued apv with all the nice prop-
erties and so these are good generalizations of discrete valuation rings in skew-
fields.

Looking at Krull orders having valued Dubrovin valuations corresponding to
their minimal non-zero prime ideals leads to the study of bounded Krull orders.
Using the apvs of the valued Dubrovin valuations defining the bounded Krull
order we establish in the final section the non-commutative versions of classical
approximation results necessary to obtain a divisor theory for bounded Krull or-
ders in simple Artinian rings, which is the aim of this paper. Further arithmetical
theory is work in progress.

2 Stable fractional primes

A prime in a ring R is a subring R′ with a prime ideal P ⊂ R′ such that for any x, y
in R, xR′y ⊆ P implies either x ∈ P or y ∈ P. A prime (P, R′) is called localized if for
any r ∈ R∖R′, there exist x, y ∈ R′ ∖{0}with xry ∈ R′ ∖ P. A prime (P, R′) in a ring
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R is called strict fractional if for any r ≠ 0 in R there exist x, y ∈ R′ with 0 ≠ xry ∈ R′,
e.g. any localized prime is strict fractional. We refer the interested reader to [5]
for much more information about primes.

Proposition 2.1. Let (P, R′) be a strict fractional prime in a simple Artinian ring A. If
R is any semisimple Artinian subring of A and R ≠ A, then R′ is not contained in R.

Proof. Assume R′ ⊆ R and pick a ∈ A ∖ R. Since R is Noetherian, we may choose
L maximal for the property that Lay ⊆ R for some y ∈ R. Since R is semisimple
Artinian, we have R = L⊕U where U is a left ideal and uay ∉ R for every u ∈ U
(otherwise (L + Ru)ay ⊆ R entails u ∈ L which is a contradiction). There exist
x′, y′ ∈ R′ with 0 ≠ x′uayy′ ∈ R′ ⊆ R. Since L is maximal for the property that
Layy′ ⊆ R, it follows that x′u ∈ L but x′u ∈ U, so x′u = 0 contradicting x′uayy′ ≠
0.

A ring is said to be a Goldie ring is the set of regular elements satisfies the Ore
condition and S−1R is a semisimple Artinian ring.

Proposition 2.2. If (P, R′) is a strict fractional prime in a simple Artinian ring and R′

is a Goldie ring, then S−1R′ = A where S is the set of regular elements in R′.

Proof. Let r ∈ S, then r is regular in A because if ru = 0 then u ∈ A∖R′ so there exist
x, y ∈ R′ with 0 ≠ xuy ∈ R′. Since S satisfies the Ore condition, there are x′ ∈ R′ and
r′ ∈ S with r′x = x′r so r′xuy = x′ruy = 0 hence xuy = 0 which is a contradiction.
Since A is simple Artinian, r−1 ∈ A so S is invertible in A and R′ ↪ A extends to
S−1R′ ↪ A. Since S−1R′ is semisimple Artinian, the preceding proposition implies
that S−1R′ = A.

Remark 2.3. If R is a Goldie prime ring and I is an essential left ideal of R then I is
generated by the regular elements of I. (See [7].)

Consider a strict fractional prime (P, R) of a simple Artinian ring A with R =
AP, i.e.

R = {a ∈ A ∣ aP ⊆ P and Pa ⊆ P} .

We always assume that R is Goldie hence a prime ring and an order of A (by
proposition 2.2). If P is invariant under inner automorphisms of A, we say that
(P, R) is an invariant prime of A. For the remainder of this section, we will assume
that (P, R) is an invariant prime.

Remark 2.4. R is invariant under inner automorphisms of A.

Proof. Consider u ∈ A∗. For p ∈ P we have uRu−1 p = uRu−1 puu−1 and u−1pu ∈ P
so Ru−1 pu ⊆ P and uRu−1 p ⊆ uPu−1 ⊆ P. Hence uRu−1P ⊆ P which implies
uRu−1 ⊆ R. A similar reasoning gives PuRu−1 ⊆ R.

In general, by a fractional R-ideal of A we mean an R-bimodule I ⊆ A such that
I contains a regular element of R and for some r, s ∈ R, rI ⊆ R and Is ⊆ R. Observe
that we may choose r and s regular since R is an order. We will denote the set of
fractional ideals of R by F(R).
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Lemma 2.5. We have:

(1) If u is regular and uI ⊆ R then Iu ⊆ R. Also: uI ⊆ P if and only if Iu ⊆ P.

(2) If I, J ∈ F(R), then I J ⊆ P if and only if J I ⊆ P.

(3) If I, J ∈ F(R) then I J ⊆ R implies J I ⊆ R and vice versa. Moreover, if J ⊈ P then
I ⊆ R and if P ⊉ I ⊆ R then J ⊆ R.

Proof. (1) If uI ⊆ R, then Iu ⊆ u−1Ru = R. The other case is similar.

(2) If I J ⊆ P then, since (P, R) is a prime, either I or J is in P, say I ⊆ P. Since I is
an ideal it is left essential so it is generated by regular elements. For every
regular element u ∈ I uJ ⊆ P yields Ju ⊆ u−1Pu = P, hence J I ⊆ P. The case
I ⊈ P and J ⊆ P is similar.

(3) Suppose I, J ∈ F(R) such that I J ⊆ R. If I, J ⊆ P there is nothing to prove
since then I J ⊆ P and J I ⊆ P, so assume J ⊈ P (I ⊈ P is completely similar).
From PI J ⊆ P we obtain then PI ⊆ P since (P, R) is a prime of A, so I ⊆ AP =

R. Again, I is generated by regular elements since it is left essential and for
u ∈ I regular uJ ⊆ R gives Ju ⊆ u−1Ru = R hence J I ⊆ R.

Corollary 2.6. P is the unique maximal ideal of R.

Proof. Consider an ideal I ⊈ P and a regular element u of R which is in I but not
in P (this exists since I is generated by regular elements). Then Ru = RuR ≠ R
so u−1 ∉ R. From Ru−1RuR = R with RuR ⊈ P we obtain Ru−1R ⊆ R which is a
contradiction.

Note that we really showed that every regular element in R ∖ P is invertible
in R.

Corollary 2.7. If C(P) = {x ∈ R ∣ x mod P regular in R/P} satisfies the Ore condition
then it is invertible in R, i.e. QP(R) = R or R is local and P is the Jacobson radical of R.

Proof. If C(P) is an Ore set in the prime Goldie ring R which is also an order
in a simple Artinian ring A, then C(P) consists of regular elements and since
C(P) ⊆ R∖ P it consists of invertible elements of R. Consequently, the localization
of R at C(R) is equal to R. It then follows that P is the Jacobson radical of R.

Proposition 2.8. If ⋂Pn = 0 then C(P) satisfies the Ore condition.

Proof. We claim that 1+ P consists of units. Indeed, consider 1+ p with p ∈ P and
assume it is not regular, then r(1 + p) = 0 for some 0 ≠ r ∈ R. Then r = −rp yields
r ∈ ⋂Pn hence r = 0 which is a contradiction. If c ∈ C(P) then c is regular in R/P.
We have that P + Rc is essential in R since it contains P hence it is generated by
regular elements. Since Ru = RuR for regular u, it follows that P + Rc is a two-
sided ideal of R, hence P + Rc = R and Rc = R i.e. c is invertible. Then there is an
u ∈ R with uc = 1 which means uc ∈ 1+ P. If rc = 0 then uru−1uc = 0 which would
contradict the fact that all elements of 1+P are units. Consequently, C(P) consists
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of R-regular elements. For every r ∈ R and c ∈ C(P) we have cr = crc−1c = r′c
which gives the left Ore condition and also rc = cc−1rc = cr′ which gives the right
Ore condition. Therefore C(P) is an Ore set.

Corollary 2.9. If ⋂Pn = 0 then C(P) is invertible in R and R is local with Jacobson
radical P.

Corollary 2.10. R/P is a skewfield.

Proof. If a ∈ R/P is not invertible then it is not regular (cfr. the proof of propo-
sition 2.8), say sa = 0. Let a = a mod P and s = s mod P, then sa ∈ P implies
(Rs + P)a ⊆ P. Furthermore, Rs + P is two-sided and it contains P strictly so
Rs + P = R. This means that Ra ⊆ P so a = 0.

Proposition 2.11. Under assumptions as before, the left R-ideals are totally ordered and
every finitely generated left R-ideal is generated by one regular element.

Proof. By remarks 2.3 and 2.4, left R-ideals are R-ideals. Suppose xy ∈ P with
either x or y regular in A. We suppose without loss of generality that x is regular,
so it is invertible in A. We find xRy = xRx−1xy = Rxy ⊆ P so since (R, P) is prime, x
or y must be in P. Consider now x regular (hence invertible) in A∖R. Since x ∉ R,
there must be a p ∈ P with xp ∉ P (or px ∉ P in which case we argue similarly).
Then we have Rx−1xp ⊆ P so x−1 ∈ P since it is A-regular. Consider now a finitely
generated left ideal I in R. By [7], it is generated by R-regular elements so it is
generated by a finite number of R-regular elements say I = Ru1 +⋯+ Run. Since
R is Goldie, every R-regular element is A-regular, so by the preceding statements
either u1u−1

2 or u2u−1
1 must be in R. Suppose the latter (again, in the other case we

argue similarly), then Ru2 = Ru2u−1
1 u1 ⊆ Ru1 which means that Ru1 + Ru2 = Ru1.

By induction we find that every finitely generated left ideal is principal and in
fact even principal for a regular element. This in turn implies that the finitely
generated left ideals are totally ordered by inclusion. Suppose now that I and J
are left R-ideals with J ⊈ I. There must be a regular x ∈ J ∖ I and for every y ∈ I
we have either yx−1 ∈ R which would imply y ∈ xR ⊆ J or xy−1 ∈ R but this is
contradictory since it means x ∈ Ry ⊆ I.

3 Arithmetical pseudo-valuations for invariant primes

An arithmetical pseudo-valuation on R as before is a function v ∶ F(R) → Γ for some
partially ordered semigroup Γ such that:

(APV1) v(I J) = v(I) + v(J);

(APV2) v(I + J) ≥min {v(I), v(J)};

(APV3) v(R) = 0;

(APV4) I ⊆ J implies v(I) ≥ v(J).

For more information about arithmetical pseudo-valuations, we refer to [5] and
[8]. In this section, we will assume that (R, P) is an invariant prime.
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Theorem 3.1. For any (R, P) there is an arithmetical pseudo-valuation v ∶ F(R) →
Γ, where Γ is a totally ordered semigroup, such that P = {a ∈ A ∣ v(RaR) > 0} and
R = {a ∈ A ∣ v(RaR) ≥ 0}.

Proof. Observe that for any I, J ∈ F(R) we have I J ∈ F(R) and I + J ∈ F(R),
moreover for every a ∈ A we have RaR ∈ F(R). Indeed, if a ∈ A then there is a
regular u ∈ R such that ua ∈ R since R is an order, then RuaR = RuRaR ⊆ RaR and
as an R-ideal, RuaR contains a regular element of R. If I and J are in F(R) then
I J contains a regular element and if uI ⊆ R and vJ ⊆ R for regular u and v then
Jv ⊆ R so uI Jv ⊆ R whence vuI J ⊆ vRv−1 = R with vu regular. For I + J we have
vu(I + J) ⊆ R+ vuJ with vuJ = vuv−1vJ ⊆ R since vuv−1 ∈ R.

For any I ∈ F(R) we define v(I) = (P ∶ I) = {a ∈ A ∣ aI ⊆ P} and since RaRI ⊆ P
if and only if IRaR ⊆ P this is also equal to v(I) = {a ∈ A ∣ Ia ⊆ P}. Note that
v(I) ≠ {0} because uI ⊆ R for some regular u ∈ R, hence 0 ≠ Pu ⊆ v(I). We also
have v(R) = P. Put Γ = {v(I) ∣ I ∈ F(R)} and define a partial order ≤ by

v(I) ≤ v(J) ⇔ v(I) ⊆ v(J).

Note that if I ⊆ J then v(I) ≥ v(J). We claim that Γ is in fact totally ordered.
Indeed, if I, J ∈ F(R) such that v(I) ⊈ v(J) and v(J) ⊈ v(I) then there is an a ∈ A
with aI ⊆ P but aJ ⊈ P and a b ∈ A with bJ ⊆ P but bI ⊈ P. Since P is prime, aJbI ⊈ P
but RbIaJ ⊆ RbPJ ⊆ RbJ ⊆ P yields RaJbI ⊆ P which is a contradiction in view of
lemma 2.5.

We can define a (not necessarily commutative) operation + on Γ by putting
v(I) + v(J) = v(I J). The unit for this operation is v(R). We now verify that + is
well-defined. Suppose v(I) = v(I′) and v(J) = v(J′) and consider x ∈ v(I J), then
RxRI J ⊆ P so RxRI ⊆ v(J) = v(J′) or RxRI J′ ⊆ P. By the same lemma as before,
I J′RxR ⊆ P follows hence J′RxR ⊆ v(I) = v(I′) i.e. I′ J′RxR ⊆ P which implies
x ∈ v(I′ J′) and consequently v(I J) ⊆ v(I′ J′). The other inclusion can be obtained
by the same argument if the roles of I, J and I′, J′ are interchanged.

We now check that this operation is compatible with ≤. Take some v(I) ≥ v(J)
and consider v(HI) and v(HJ). If q ∈ v(HJ) then qHJ ⊆ P so qH ⊆ v(J) ⊆ v(I)
which implies qHI ⊆ P so q ∈ v(HI). To prove that ≤ is also stable under right
multiplication, we consider q ∈ v(JH). Then qJH ⊆ P or equivalently JHq ⊆ P. By
lemma 2.5 HqJ ⊆ P follows so Hq ⊆ v(J) ⊆ v(I) hence IHq ⊆ P i.e. q ∈ v(IH).

If v(I) ≤ v(J) then aI ⊆ P yields a(I + J) ⊆ P since aJ ⊆ P, so v(I + J) ⊇ v(I) =
min {v(I), v(J)}. Together with the preceding, this implies that v is an arithmeti-
cal pseudo-valuation. The only thing left to prove is that

R = {a ∈ A ∣ v(RaR) ≥ 0} and P = {a ∈ A ∣ v(RaR) > 0} .

Suppose v(RaR) > 0 = v(R) = P, then there is some x ∈ v(RaR) ∖ P. Now
xRaR ⊆ P gives a ∈ P, so {a ∈ A ∣ v(RaR) > 0} ⊆ P. If p ∈ P, then v(RpR) ⊇ R ⊋ P,
hence p ∈ {a ∈ A ∣ v(RaR) > 0} so P = {a ∈ A ∣ v(RaR) > 0}. If a ∈ A is such that
v(RaR) = 0 and p ∈ P then v(RaRRpR) = v(RaR) + v(RpR) = v(RpR) > 0 so
RaRRpR ⊆ P and therefore ap ∈ P which implies a ∈ R since R = AP. On the
other hand, if r ∈ R then PRrR ⊆ P. Since RrR is generated by regular elements,
it follows that r ∈ ∑Rui R for a finite set of regular ui. Consequently, since Γ is
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totally ordered, v(RrR) = v(Rui R) where v(Rui R) has the minimal value among
these regular elements. If v(RrR) < 0 then v(P) ≤ v(PRrR) since PRrR ⊆ P and
then

v(P) ≤ v(PRrR) = v(P) + v(RrR) ≤ v(P) (1)

since v(RrR) < 0. This means that all ≤ in 1 are actually equalities and in fact
v(P) = v(P)+ v(Rui R) = v(PRui R) so if aPRui R ⊆ P then also aP ⊆ P. By choosing
a = u−1

i we find u−1
i P ⊆ P. In a similar fashion we find Pu−1

i ⊆ P and consequently

u−1
i ∈ AP = R so v(RrR) = v(Rui R) = v(R) = 0. which contradicts v(RrR) < 0.

Consequently R = {a ∈ A ∣ v(RaR) ≥ 0}.

Proposition 3.2. With R, P and A as before, Γ is a group if and only if for any fractional
R-ideal I there is a nonzero y ∈ R with yI ⊆ R but yI ⊈ P.

Proof. If Γ is a group and I ∈ F(R) then for some J ∈ F(R) we have v(I) + v(J) = 0
i.e. v(I J) = v(J I) = v(R). Consequently, I JP ⊆ P ⊇ PI J so I J ⊆ AP = R. Since
aI J ⊆ P iff aR ⊆ P we have I J ⊈ P. Then we can choose a y ∈ J with Iy ⊆ R but
Iy ⊈ P which implies RIRy ⊆ R and RIRy ⊈ P.

Suppose now that there is some y with yI ⊆ R but yI ⊈ P. For any x ∈ v(RyRI)
we have RxRRyRI ⊆ P which implies RxR ⊆ P and consequently x ∈ v(R). From
RyRI ⊆ R we can deduce v(R) ⊆ v(RyRI) hence v(R) = v(RyRI) which means
that v(RyR) is the inverse of v(I).

Note that the second part of the proof of the preceding theorem guarantees
that every v(I) is also v(RaR) for some a ∈ A.

Lemma 3.3. If ⋂Pn = 0 and Γ is a group then R is a Dubrovin valuation. (Cfr. section
4 for a definition of Dubrovin valuations.)

Proof. Applying corollary 2.9 gives us that R/P is prime Goldie with invertible
regular elements, i.e. it is a simple Artinian ring. Consider q ∈ A ∖R. There exists
some y ∈ A with RyRRqR ⊆ R but RyRRqR ⊈ P. Then there exists a z ∈ RyR
with zq ∈ R ∖ P and since RqRRyR ⊆ R but RqRRyR ⊈ P we can use a similar
construction to find an element z′ with qz′ ∈ R∖ P.

Theorem 3.4. If Γ is a group and ⋂Pn = 0, then R is a valuation ring and A is a
skewfield.

Proof. If a ∈ R ∖ P then P + Ra is essential, two-sided and contains P so it is equal
to R. Then, for some r ∈ R and p ∈ P, we have 1 = p+ ra. We have already seen (cfr.
proof of proposition 2.8) that 1+P consist of units, so ra is a unit hence a is a unit.
If q ∈ A ∖ R there there is some y with yq ∈ R ∖ P, so yq is a unit of R hence q is a
unit of A. Finally, if some p ∈ P were not invertible, then Ap ⊆ P since no element
in Ap is a unit. Then we would have A(RpR) ⊆ P, but this would contain some
regular u which is invertible in A and Au ⊆ P would give a contradiction. This
implies that A is a skewfield and R is an invariant Dubrovin valuation on A, so it
must be a valuation ring.
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Corollary 3.5. If Γ is an Archimedean group, then R is a valuation ring.

Proof. In view of the preceding proposition we only have to show that ⋂Pn = 0.
Suppose it is not, then I = ⋂Pn is a nonzero ideal. Pick 0 ≠ b ∈ I, then RbR ⊆ I
is a fractional ideal, hence there exists an ideal J ∈ F(R) with v(J) + v(RbR) = 0.
Then v(Pn) + v(RbR) ≤ 0 for any n, so nv(P) + v(RbR) ≤ 0. However, putting
v(RbR) = γ, there must be some n with nv(p) > −γ which is a contradiction.

Proposition 3.6. Let R be any order in a simple Artinian ring A and suppose that
v ∶ F(R) → Γ is an apv which takes values in a totally ordered semigroup Γ. Then:

(1) P = {a ∈ A ∣ v(RaR) > 0} defines a prime (P, AP) with {a ∈ A ∣ v(RaR) ≥ 0} ⊆
AP.

(2) if v(I) = {a ∈ A ∣ aI ⊆ P} and Γ is a group, then {a ∈ A ∣ v(RaR) ≥ 0} = AP.

Proof. (1) For a, b ∈ P we have v(R(a + b)R) ≥ min{v(RaR), v(RbR)} which is
strictly positive, so a + b ∈ P. Clearly, P is an ideal in AP and R ⊆ AP since
v(R) = 0 and we have v(RrRRpR) = v(RpR) > 0 for all r ∈ R and p ∈ P. If
a, a′ ∈ A are such that aAPa′ ⊆ P then aRa′ ⊆ P hence v(RaRa′R) > 0. From
v(RaR) + v(Ra′R) > 0 it follows that either v(RaR) > 0 or v(Ra′R) > 0, i.e. ei-
ther a ∈ P or a′ ∈ P. If v(RaR) ≥ 0 for some a ∈ A then for all p ∈ P we have
v(RaRpR) = v(RaR) + v(Rp) > 0 and v(RpRaR) = v(RpR) + v(RaR) > 0 so a ∈ AP.

(2) Consider a ∈ AP. RaR is invertible in F(R) so there is some J ∈ F(R) for
which we have v(RaR) + v(J)
= 0 = v(J) + v(RaR), hence v(JaR) = v(RaJ) = 0. If v(RaR) < 0 then v(J) > 0
or in other words J ⊆ P. But then a ∈ AP would give RaRJ ⊆ P which implies
v(RaRJ) > 0 which is a contradiction. Therefore v(RaR) ≥ 0 and AP = {a ∈ A ∣
v(RaR) ≥ 0}.

4 Arithmetical pseudo-valuations on Dubrovin valuations

A Dubrovin valuation on a simple artinian ring Q is a couple (R, M) where R is
a subring of Q and M is a prime ideal in R such that:

(1) R/M is simple artinian.

(2) For every q ∈ Q ∖ R there exist r and r′ in R such that qr ∈ R ∖M and
r′q ∈ R ∖M.

Dubrovin valuations are non-commutative generalizations of valuations and oc-
cur naturally as extensions of valuations on the centre of simple artinian rings.
For example, if R is simple artinian ring which is finite dimensional over its cen-
tre, then every valuation on the centre extends to a Dubrovin valuation on R and
all such extensions are conjugate to one another. Dubrovin valuations were intro-
duced in [3] and have been studied quite extensively in the last decades by a.o.
Wadsworth, Gräter and Marubayashi. Some good references are [4] and [5]. The
following theorem (a proof of which can be found in both forementioned books)
gives some alternative characterizations of Dubrovin valuations:
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Theorem 4.1. For a subring R of a simple artinian ring Q, the following are equivalent:

(1) R is a Dubrovin valuation on Q;

(2) R is a local Bezout order in Q, i.e. every finitely generated left (right) ideal is
principal;

(3) R is a local semi-hereditary order in Q, i.e. every finitely generated left (right) ideal
is projective.

For primes containing an order with commutative semigroup of fractional
ideals, Van Geel ([8]) introduced arithmetical pseudo-valuations, but this condi-
tion is very strong and reduces the applicability in practice to maximal orders and
Dubrovin valuations in finite dimensional central simple algebras. For Dubrovin
valuations on infinite dimensional central simple algebras the semigroup F(R)
need not be commutative. The following facts are known about Dubrovin valua-
tions on simple Artinian rings (see once more [5]):

(D1) R is a (left and right) Goldie ring and a prime order of A;

(D2) (P, R) is a localized prime of R;

(D3) P = J(R) and it is the unique maximal ideal of R. Consequently, 1 + P con-
sists of units;

(D4) F(R) is linearly ordered;

(D5) finitely generated R-submodules of A are cyclic.

Notice that we do not assume invariance in this section.

Proposition 4.2. For a Noetherian Dubrovin valuation R we have for all I, J ∈ F(R)
that I J ⊆ P iff J I ⊆ P.

Proof. From I J ⊆ P it follows that either I ⊆ P or J ⊆ P (by (D2)), assume without
loss of generality I ⊆ P. By (D4), if J I ⊈ P then P ⊊ J I so we have R ⊆ J I ⊆ JP ⊆ J
hence J = RJ ⊆ J I J ⊆ JP ⊆ J which gives J = JP. Since R is an order, there is some
regular u ∈ R with uJ ⊆ R and since R is Noetherian uJ = ∑ ai R for a finite set of
ai’s in uJ. Then also J = ∑u−1aiR, so J is a finitely generated R-submodule of A.
By Nakayama’s lemma J must be zero, which is a contradiction.

Corollary 4.3. If R is a Noetherian Dubrovin valuation then there is an arithmetical
pseudo-valuation

v ∶ F(R) → Γ ∶ I ↦ (P ∶ I) = {a ∈ A ∣ aI ⊆ P}

for some totally ordered group Γ. Furthermore, P = {a ∈ A ∣ v(RaR) > 0} and
R = {a ∈ A ∣ v(RaR) ≥ 0}.
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Proof. Using the preceding proposition instead of 2.5 we can repeat the proof of
theorem 3.1. The only thing we need to prove is that the Γ which said theorem
provides is a group, so consider I ∈ F(R). By a similar argument as in the proof
of proposition 4.2 it is finitely generated as a left R-ideal of A. By (D5) it is cyclic,
in fact I = Ru for some regular u and thus RuR = Ru. Since R is a Dubrovin
valuation, there is some a ∈ A with ua ∈ R ∖ P. Then Rua ⊆ R, Rua ⊈ P and Ia ⊆ R,
Ia ⊈ P. We can similarly find a b such that bI ⊆ R but bI ⊈ P. We can now repeat
the last part of the proof of proposition 3.2 to conclude that Γ is a group.

Remark 4.4. If R is a Dubrovin valuation where

v ∶ F(R) → Γ ∶ I ↦ {a ∈ A ∣ aI ⊆ P}

is a non-trivial arithmetical pseudo-valuation with values in a totally ordered group, then
I J ⊆ P if and only if J I ⊆ P. Indeed, suppose I J ⊆ P and JI ⊈ P then, as in proposition
4.2 we find JP = J but then v(P) = 0 which is impossible.

If R is non-Noetherian, then P = P2 is possible in which case no nice apv can
exist since otherwise v(P) = 2v(P) which would imply v(P) = 0. If we exclude
this slightly pathological case, a nice apv does exist.

Proposition 4.5. Let R be a Dubrovin valuation with ⋂Pn = 0, then there is an apv as
before.

Proof. If I, J ∈ F(R) with I J ⊆ P but J I ⊈ P. The same argument as in proposi-
tion 4.2 leads to J = JP so J = JPn for any n. There is some regular u ∈ R with
uJ ⊆ P hence uJ = uJPn ⊆ Pn+1. But then uJ = 0 which implies J = 0 and this is a
contradiction. Now we can proceed as in corollary 4.3 to find an apv with values
in a semigroup.

The only thing we need to prove is that Γ is a group. Lemma 1.5.4 in [5]
says that P = Rp = pR for some regular p ∈ P. Since P is principal as a left
R-ideal, lemma 1.5.6 in the same source gives PP−1 = R = P−1P (here P−1 =

{a ∈ A ∣ PaP ⊆ P}). Consider now a fractional R-ideal I. Clearly, (R ∶ I)I ⊆ R.
Suppose we also have (R ∶ I)I ⊆ P, then P−1(R ∶ I)I ⊆ R hence P−1(R ∶ I) ⊆ (R ∶ I)
so P−1(R ∶ I)I ⊆ P. This means (R ∶ I)I ⊆ P2 and by repeating this process we find
(R ∶ I)I ⊆ Pn for any n, but (R ∶ I)I ⊆ ⋂Pn = 0 which is a contradiction. Therefore,
(R ∶ I)I ⊆ R but (R ∶ I)I ⊈ P, so there exists an a ∈ (R ∶ I) such that aI ⊆ R but
aI ⊈ P.

The following characterizes Noetherian Dubrovin valuation rings within the
class of rank one Dubrovin valuations. The result may be known but we found
no reference for it in the literature. Recall that the rank of a Dubrovin valuation
ring is the maximal length of a chain of Goldie prime ideals in the ring. A rank 1
Dubrovin valuation ring on a simple Artinian A is a maximal subring of A.

Proposition 4.6. For a Dubrovin valuation R on a simple Artinian ring A the following
are equivalent:

(1) R is Noetherian.

(2) R has rank 1 and P ≠ P2.
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(3) R has rank 1 and ⋂Pn = 0.

Proof. (1) ⇒ (2) If R is Noetherian then all ideals (and R-ideals of A) are principal,
so P ≠ P2. Suppose 0 ≠ Q is another prime ideal in P. Let P = Rp, then Q = Ip
for some non-trivial ideal I of R. Q = IP yields I ⊆ Q since Q is prime and P ⊈ Q.
Hence Q = IP ⊆ QP ⊆ Q implies Q = QP which implies Q = 0 by Nakayama’s
lemma. (2) ⇒ (3) If P ≠ P2, then ⋂Pn ≠ P which, by Lemma 1.5.15 in [5], gives

⋂Pn = 0. (3) ⇒ (1) Since ⋂Pn = 0, P ≠ P2. Since R is rank 1, R = Ol(I) = Or(I) for
any R-ideal I. By proposition 1.5.8 in [5], it follows that if I is not principal, then
I I−1 = P and P = P2 which s a contradiction.

Example 4.7. The following is perhaps the easiest non-trivial example of a Dubro-
vin valuation: let H denote the Hamilton quaternions over Q, let Vp be the p-
valuation ring for some prime number p and put R = Vp +Vpi +Vp j +Vpk where
{1, i, j, k} is the usual basis of H. It can easily be verified that R is indeed a
Dubrovin valuation which, if p ≠ 2, is not a valuation ring. The maximal ideal
of R is M = Mp +Mpi +Mp j +Mpk where Mp is the maximal ideal of Vp and Mn

is just Mn
p +Mn

pi +Mn
p j +Mn

pk. This immediately yields ⋂Mn = 0, so there exists
an apv for this Dubrovin valuation; it is simply the map v ∶ F → Z which sends
Mn to n. This definition makes sense, since we will show later (cfr. 5.1) that all
fractional ideals are of the form Mn.

Example 4.8. Let Q be a simple Artinian ring, let σ ∈ Aut(Q), and put Q[X, σ] the
skew polynomial ring over Q. Q[X, σ] has a maximal ideal P = XQ[X, σ]. Put T
the localisation of Q[X, σ] at P. For any t = (∑ aixi)(∑ bixi)−1 in T, we can define
f (t) = a0b−1

0 . This gives a map φ ∶ T → Q ∶ t ↦ f (t). It has been shown in [10]

that an order R of Q is a Dubrovin valuation ring if and only if R̃ = φ−1(R) is a
Dubrovin valuation ring of T and that J(R̃) = J(R) + J(T). It is clear that if R is a
Dubrovin valuation on Q with ⋂ J(R)n = 0 we also have ⋂ J(R̃) = 0. Therefore an
apv exists, but R is not finite dimensional over its centre.

5 Divisors of Bounded Krull orders

Suppose that R is a on order in some simple Artinian ring Q. Put

FR = {F ∣ F is a left ideal and (R ∶ Fr−1)r = R for all r ∈ R} .

This is a left Gabriel topology on R and we can define the left closure of some left
ideal I as clτ(I) = {r ∈ R ∣ ∀F ∈ FR ∶ Fr ⊆ I}. Similarly, we can define a right Gabriel
topology

F ′R = {F ∣ F is a left ideal and (R ∶ r−1F)l = R for all r ∈ R}

and, for any right ideal J, the right closure clτ(J). R is called τ-Noetherian if
it satisfies the ascending chain condition on τ-closed one-sided ideals. If R is a
τ-closed maximal order, then we say it is a Krull-order.

We consider a prime Noetherian ring R. It is an order in a simple Artinian
ring A = Q(R), the classical ring of fractions. If R is a maximal order then the
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set of divisorial R-ideals of A (cfr. [5]) is a group and since R is Noetherian it is
an Abelian group generated by the maximal divisorial ideals and every maximal
divisorial ideal is a minimal prime ideal.

Recall that an order is an Asano order if every ideal I ≠ 0 of R is invertible and it
is a Dedekind order if it is an hereditary Asano order. If R is an Asano order satisfy-
ing the ascending chain condition on ideals, then F(R) is the Abelian group gen-
erated by maximal ideals and every maximal ideal is a minimal nonzero prime
ideal. Any bounded Noetherian Asano order is a Dedekind order.

A semi-local order R in a simple Artinian A is a Noetherian Asano order if
and only if it is a principal ideal ring. If R is a Dubrovin valuation ring of A then
R is a maximal order if and only if rk(R) = 1 and R is Asano if and only if it is
a principal ideal ring, so a Noetherian Dubrovin valuation ring is a Noetherian
maximal order and an Asano order, i.e. a principal ideal ring.

Proposition 5.1. If R is a Noetherian Dubrovin valuation then the corresponding apv
takes values in Z.

Proof. Since R is a Noetherian Asano order, F(R) is generated by the maximal
ideals of R, but since P is the unique maximal ideal and the value group is neces-
sarily torsion-free, we have F(R) =Z.

Recall that an order R in a simple Artinian ring A is said to be a Krull order
if it is a maximal order and it is τ-Noetherian (see [5], definition 2.2.2 or [2]). A
Noetherian order R in a simple Artinian A is a Krull order if and only if it is a
maximal order. It is also known (cfr. [2]) that if R is a Krull order, then so is
R[X, σ].

Theorem 5.2. Let R be a prime Noetherian ring and an order in A = Q(R). Suppose
every minimal nonzero prime ideal is localizable, Rp is a Dubrovin valuation ring for
every

p ∈ X1(R) = {minimal nonzero prime ideals of R}

and R = ⋂Rp, then R is a bounded Krull order.

Proof. Since R is Noetherian, every Rp is Noetherian too and since it is a Dubrovin
valuation it must be an Asano order hence a principal ideal ring. Since every Rp

is a maximal order, so is R. As a Noetherian maximal order, R is a Krull order
and by theorem 2.2.16 in [5] every regular element is a non-unit in only finitely
many of the Rp’s (for p maximal divisorial, i.e. p ∈ X1(R)). Theorem 2.2.20 in the
same source gives the result.

Remark 5.3. If R is a bounded Krull order then R = ⋂p∈X1(R) Rp (cfr. [5] 2.2.18 &

2.2.19). Then every Rp is rank one Dubrovin valuation with P ≠ P2 (2.2.16 in the afore-
mentioned source), so by Proposition 4.6 it is Noetherian. This gives a correspondence
between p ∈ X1(R) and apvs.

A divisor of a bounded Krull order R is an element in the free Abelian group

⊕p∈X1(R)Zp. To any I ∈ F(R) we can associate the divisor div(I) = ∑ vp(Ip)p
where Ip = Rp I. This definition is justified by the following:
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Proposition 5.4. Suppose Rp is Noetherian. If I is an R-ideal of A, then IP is an
RP-ideal of A.

Proof. Let u be regular in R with uI ⊆ R, then RuRI ⊆ R and RuR = Ru′ for some
regular u′ ∈ R. Then Rpu′ I is the localization of Ru′ I and it is an ideal of Rp. Rpu′

is the localization of Ru′ so it is also an ideal of Rp, hence Rpu′ I = Rpu′Rp I =
Rpu′ Ip is an ideal of Rp. Now U′ Ip ⊆ Rp, i.e. Ip is an Rp-ideal of A.

Observe that since any regular element is a non-unit in only finitely many lo-
calizations, div(I) contains only finitely many non-zero terms. Moreover,
div(I) ≤ div(J) if and only if vp(I) ≤ vp(J) for all p ∈ X1(R). By putting
I∗ = ⋂p∈X1(R) Ip we find vp(I) = vp(I∗). An ideal I is called divisorial if I = I∗. The

set of divisorial R-ideal is denoted by D(R). For bounded Krull orders we can
consider div ∶ D(R) → Div(R) and this is a group morphism of Abelian groups.
It is order-reversing in the sense that I ⊆ J yields ∣div(J)∣div(I). Further divisor
theory requires a version of the approximation theorems.

6 Approximation theorems

Let Q be a simple Artinian ring and let R be an order in Q which is a bounded
Krull order. v is an arithmetical pseudo-valuation associated to the localisation
of R at a rank 1 prime ideal. By [5] Theorem 2.2.16, these localisations are rank
one Dubrovin valuation rings with J(Rp)2 ≠ J(Rp), so by Proposition 4.6 they
are Noetherian. In view of 5.4, Ip is an Rp-ideal so it makes sense to define
v(x) = v(RxRp) for an element x of R.

Lemma 6.1. Let I be a fractional ideal. The set {v(x) ∣ x ∈ I} has a minimum which is
equal to v(I).

Proof. It is clear that v(x) ≥ v(I) for any x ∈ I, so suppose there is some y with
v(I) ≤ v(y) ≤ v(x) for all x ∈ I. Any z ∈ v(y) must be in v(RxR), so yRxR ⊆ P for
all x ∈ I which implies yI ⊆ P, hence y ∈ v(I) which means v(I) = v(y).

Remark 6.2. For any fractional ideal I, v(I) = 0 for almost all v.

Proof. For any a ∈ Q there is some regular c ∈ R with ca ∈ R. It is known that
any regular element of a bounded Krull order is invertible in all but finitely many
localisations RP, so v(c) = 0 for almost all v and consequently v(a) ≥ 0 for al-
most all v. By the preceding lemma, there is for any v some xv with v(I) =
min{v(x) ∣ x ∈ I} = v(xv) = v((RxvR)∗). Since R is a Krull order, the ascending
chain condition holds on divisorial ideals, so {(RxvR)∗ ∣ v} has but finitely many
elements, (Rxv1

R)∗, ..., (Rxvn R)∗ say. But every divisorial ideal contains a regular
element, which is almost always invertible, hence v(Rxvi

R) = 0 for all but finitely
many v and all i ∈ {1, ..., n} whence v(I) = 0 for almost al v.

We will denote by (A) the following approximation property:
Let v1, ..., vt be a finite number of arithmetical pseudo-valuations associated to

rank 1 prime ideals in R, let n1, ..., nt be integers, and let a1, ..., at be elements of Q.
Then there exists some x ∈ Q such that vi(x − ai) ≥ ni for i = 1, ..., t and v(x) ≥ 0 for
any v ∉ {v1, ..., vt}.
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Lemma 6.3. If (A) holds, we can pick x in such a way that vi(x − ai) = ni.

Proof. By (A), we can pick z such that vi(z − ai) > ni. Since v is surjective and
because of 6.1 we can also find zi with vi(zi) = ni. Then, once more by (A), we can
find z′ with vi(z′ − zi) > ni from which we can deduce

vi(z′) = vi((z′ − zi)+ zi) = ni

and
vi(z + z′ − ai) = ni.

Therefore, z + z′ is the x we were looking for.

Lemma 6.4. Suppose again that (A) holds. For any v1, ..., vt and n2, ..., nt ∈N there is a
regular c ∈ R with v1(c) = 0, vi(c) ≥ ni for i = 2, ..., t and v(c) = 0 for any v ∉ {v1, ..., vt}.

Proof. We can certainly find some x with v1(x) = 0, vi(x) = ni for i = 2, .., t and
v(x) ≥ 0 for any v ∉ {v1, ..., vt}. Since v(x) ≥ 0 for any v, x is in R. Every vi comes
from a Dubrovin valuation that one gets by localizing R at a minimal non-zero
prime ideal which we will call Pi. RxR is an ideal with v1(RxR) = v1(x) = 0,
so RxR ⊈ P1. Since these ideals are generated by their regular elements, we can
find some regular c in RxR ∖ P1. Clearly, v(c) ≥ v(x) for any v, but v(c) = 0 –
otherwise c ∈ P1 would hold – which means that it satisfies all the conditions
from the statement.

Lemma 6.5. Assume the same setting as before. For every z ∈ Q and every v there is
some regular right invariant rv with v(rv) = v(z) and v′(rv) ≥ v′(z) for every other v′.

Proof. Consider the fractional ideal RvzRv. This is equal to Rvr′vRv for some reg-
ular r′v. Clearly v(z) = v(r′v). Since r′v ∈ RvzRv there are some ai, bi ∈ Rv with
r′v = ∑n

i=0 aizbi. Since ai, bi ∈ Rv, we have v(ai), v(bi) ≥ 0. There are only finitely
many v′, say v2, ..., vt, for which there is some i with v′(a) < 0 or v′(b) < 0. Take
c regular with v(c) = 0 and vj(c) ≥ 2 maxj,i {−vj(ai),−vi(aj)} for j = 2, ..., t. By our
choice of c, we have v′(cai) ≥ 0 and v′(cbi) ≥ 0 for all v′, which implies cai ∈ R ∋ cbi.
The rv we’re looking for is cr′v. Indeed: v(rv) = v(cr′v) = v(r′v) = v(z) and for any
v′ we have v′(rv).

Lemma 6.6. In the same context as before, we can find some regular right invariant
element r with v1(r) = n1 and vi(r) ≥ ni.

Proof. We know we can find some z with v1(z) = n1 and vi(z) ≥ 0 for the other i.
By the previous lemma we find the desired r.

We now will consider systems of equations

y1 = x1a11 +⋯+ xna1n + b1

⋮ ⋮

ym = x1am1 +⋯+ xnamn + bm

for certain aij and bi in Q. A local solution with respect to Rv for such a system of
equations is a set of elements xi ∈ Rv such that all yj are in Rv as well. A global
solution is a set of xi ∈ R such that all yj are in R too.
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Lemma 6.7. A system of equations as described above has a global solution if and only if
it has local solutions with respect to any Rv.

Proof. It is quite clear that any global solution immediately entails a local solution
with respect to any Rv: if v is such that v(aij) ≥ 0 and v(bi) ≥ 0, then any n-tuple
x1, ..., xn with v(xi) ≥ 0 for all i is a local solution.

Suppose now that xi is a local solution with respect to v and suppose that there
are x′i such that v(xi − x′i)+ v(aki) ≥ 0. We have now

v(∑(xi − x′i)aki) ≥ min
i

v((xi − x′i)aki)

≥ min
i
(v(xi − x′i)+ v(aki))

≥ 0

which, since ∑ xiaki ∈ Rv, implies ∑ x′iaki ∈ Rv. Hence the n-tuple x′1, ..., x′n is also a
local solution with respect to v.

Suppose now that there is a local solution for every v. It is clear that we
can choose the same solution for all but finitely many v’s, so we can just con-
sider a finite set of local solutions xi1, ..., xis with respect to the respective pseudo-
valuations v1, ..., vs. Define nti =maxk(aki) for any 1 ≤ t ≤ s. By the approximation
property (A), we can find x1, ..., xn with vt(xi − xit) ≥ −nti and v(xi) ≥ 0 for any
v ∉ {v1, ..., vs}. These xi are a local solution for every v, hence a global solution.

Lemma 6.8. Let x1a1 +⋯ + xnan = b be an equation such that if there is some i with
v(ai) < 0 for a certain v, then there is some regular right invariant ak with
v(ak) = mini v(ai). Then a global solution exists (for this equation) if and only if
v(b) ≥ v(ai) for all v.

Proof. If there is a global solution for the equation at hand, then certainly v(xi) ≥ 0
for all v and all i. Consequently,

v(b) ≥ min
i

v(xiai)

≥ min
i

v(ai)

which implies that the condition is necessary.
We will now show that it is also sufficient. Suppose v(b) ≥ mini v(ai). If the

right-hand side is greater than or equal to zero, then v(b) ≥ 0 so a local solution
with respect to v exists by the same argument as in the beginning of the previous
lemma. If the right-hand side is smaller than zero, we find mini(v(ai)) = v(ak)
where we can choose ak to be regular and right invariant. Since ak is regu-
lar and Q is simple Artinian, ak is invertible in Q. Consider now the equa-
tion xk = −x1a1a−1

k
−⋯ − xk−1ak−1a−1

k
− xk+1ak+1a−1

k
−⋯ − xsasa−1

k
− ba−1

k
. Since ak is

right-invariant, Ra−1
k

akR = Ra−1
k

RakR so −v(ak) = v(a−1
k
). This in turn implies

v(ba−1
k
) ≥ 0, but then xk = ba−1

k
and xi = 0 for i ≠ k gives a local solution with

respect to v. By the previous lemma, a global solution must exist.



130 F. Van Oystaeyen – N. Verhulst

Proposition 6.9. There is a 1− 1 correspondence between divisorial ideals of R and divi-
sors.

Proof. Consider a divisorial ideal I with v(I) = γv. We already know that
γv = 0 for all but finitely many v, so let v1, ..., vs be the set of arithmetical pseudo-
valuations for which γvi

≠ 0. Since v(I) = min {v(r) ∣ r ∈ I}, there are zi ∈ I with
vi(zi) = γi and v(zi) ≥ 0 for all other v. By a previous lemma, one can also find
regular right-RPi

-invariant ai with vi(ai) = vi(zi) = γi, vj(ai) ≥ γj, v(ai) ≥ 0 for all
other v, and with ai ∈ RziR. Consider now the equation x1a1 +⋯+ xsas = b. By our
choice of ai, there is a global solution if and only if vi(b) ≥ γi. Hence the set of
global solutions {b ∣ ∀v ∶ v(b) ≥ γv} is a subset of I = I∗. The other inclusion obvi-
ously holds too, so divisorial ideals are uniquely determined by their associated
divisor.

Suppose we have a divisor δ. Then there is some z with v(z) ≥ ordv(δ) if
ordv(δ) ≠ 0 and v′(z) ≥ 0 otherwise. Moreover, this z can be chosen to be regular
and RPu-right-invariant for some fixed u. Define V = {v ∣ v(z) ≠ 0 or ordv(δ) ≠ 0}.
This is a finite set, so there is some x with v(x) = ordv(δ) for all v ∈ V and v′(x) ≥ 0
for all other v′. Put I the ideal generated by z and x, then v(I∗) = ordv(δ), but
since v(I∗) = min{v(y) ∣ y ∈ I∗} we have v(I∗) = ordv(δ) for all v, which shows
that every divisor is associated to some divisorial ideal I∗.
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