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Abstract

For every group PSL(2, q), q a prime power, we classify all two-transitive
pairs (U, U0) consisting of a subgroup U of PSL(2, q) and a subgroup U0 of
U such that the action of U on the cosets of U0 is two-transitive. We obtain
twenty-one classes up to conjugacy in PSL(2, q) or fusion in PΓL(2, q) except
for two cases in which we don’t have that control.

1 Introduction

This paper is devoted to the classification of all 2-transitive pairs of a group
G = PSL(2, q), q a prime power, namely all pairs of subgroups U > U0 such
that the action of U on the set of left cosets of U0 is 2-transitive. Instead of
“2-transitive” we also write “two-transitive”. The need for this concept arose
in the thesis of the second author [9] under the additional requirement that U be
maximal in G. The unexpected power of the concept in some huge subgroup lat-
tices was displayed for all sporadic groups in [5]. We quote about the relationship
with those earlier papers, from [5]:

“In the geometric study of the groups G = PSL(2, q) found within [9], 2-transitive
pairs of subgroups of G are determined, namely, pairs of subgroups (H; H0) of G such
that the action of H on the left cosets of H0 is 2-transitive. .... The present authors
observed further that this can be simplified to some extent by purely arithmetic means,
and that this approach can be extended to other groups G with surprising efficiency.”

Here, we are dealing with the general case for G = PSL(2, q). Our techniques
are elementary and a little acrobatic in several difficult situations illustrated by
Lemmas 10, 12 and 13. Our techniques are by no means standard. We reveal a
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surprising new class of groups U that we call transfield groups (see 5.5.1). The clas-
sification holds in Theorem 1 with twenty-one classes. Most of these are under
control as to conjugation in G or fusion in Aut(G) = PΓL(2, q). Exceptions are
classes (1) and (20) in Theorem 1. It turns out all fusions under control happen in
PGL(2, q). In view of applications to incidence geometry and locally s-arc tran-
sitive graphs, it is worth also to determine the 2-transitive pairs (U, U0) with U
maximal in G. This is done in our Theorem 2. Our Theorem 1 opens a door to the
classification of the rank 3 coset geometries on which G acts flag-transitively. This
subject has been preceded by a classification of rank 2 geometries for G in [9], [4]
and [10] using a preliminary version of Theorem 2, whose proof refers to the
present paper. Theorem 1 also opens a door for a similar treatment in other fami-
lies of almost simple groups G. There is no need for G to be 2-transitive.

Our main preliminary tool in this paper is Dickson’s classification of sub-
groups of PSL(2, q). Dickson [11] and Lemma 1 provide 14 families of subgroups
each of which is a union of conjugacy classes. He deals with conjugacy, in par-
ticular the size of every conjugacy class. His statements in families 7 and 8 of
our Lemma 1 include an error. The correction is not easy. This difficulty can be
avoided in our Theorem 1. Our result is not an immediate consequence of Dick-
son’s list. We take care of delicate arithmetic conditions and we look for classes
of configurations that are disjoint. Also, we prepare more complex navigations in
the subgroup lattice of PSL(2, q) such as in [4, 10].

2 Main results

In a group G, we define a two-transitive pair as an ordered pair (U, U0) of sub-
groups of G with U0 < U and such that the action of U on the left cosets of U0 is
two-transitive. As a matter of fact, U0 is a maximal subgroup of U. In a search for
two-transitive pairs, we find it useful to first consider the condition “U0 maximal
in U” before proceeding to the full condition “2-transitive”.

For every family of 2-transitive pairs provided in Theorems 1 and 2 we care
for conjugacy in PSL(2, q) or fusion in PGL(2, q).

We make use of the following notations: G denotes a group PSL(2, q) for some
prime power q = pn. Every elementary abelian subgroup of some order pm is
denoted by Epm . Here, U denotes a group acting 2-transitively on a set Ω, Ker U
is the kernel of this action, namely the set of all u ∈ U such that u(x) = x for
every x ∈ Ω. Moreover, U0 is the stabilizer in U of some element 0 in Ω. Finally,
a cyclic group of order d is often denoted by Zd. We prove the following result.

Theorem 1. Let G ∼= PSL(2, q) for some prime power q = pn. Let (U, U0) be a
2-transitive pair of subgroups of G with U proper in G. Then one of the following holds:

(1) U ∼= Epm : D, for some 1 ≤ m ≤ n and some cyclic group D of even order (as
in Lemma 1, family 8), Ker U is the unique subgroup of index 2 of U, |Ω| = 2,
U0 = Ker U (control of conjugation is unavailable);

(2) U ∼= Epm : (pm − 1), for some m dividing n, |Ω| = pm, Ker U = 1, U0 is a cyclic
subgroup of order (pm − 1) (unique up to conjugacy);
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(3) U ∼= PSL(2, 2) ∼= S3, |Ω| = 2, Ker U = Z3 = U0 (unique up to conjugacy);

(4) U ∼= PSL(2, 2) ∼= S3, |Ω| = 3, Ker U = 1 , U0
∼= Z2 (unique up to conjugacy);

(5) U ∼= PSL(2, 3) ∼= A4, |Ω| = 4, Ker U = 1 , U0
∼= Z3 (unique up to fusion in

PGL(2, q));

(6) U ∼= A5
∼= PSL(2, 5) ∼= PSL(2, 4), q = ±1(10) and one of the following holds:

(a) |Ω| = 5, Ker U = 1, U0
∼= A4 (two such representations up to conjugacy;

they are fused in PGL(2, q));

(b) |Ω| = 6, Ker U = 1, U0
∼= D10, (two such representations up to conjugacy;

they are fused in PGL(2, q)).

(7) U ∼= PSL(2, 11), |Ω| = 11, Ker U = 1, U0
∼= A5 (two such representations up to

conjugacy; they are fused in PGL(2, 11) = Aut(U));

(8) U ∼= PSL(2, 9) ∼= A6, |Ω| = 6, Ker U = 1, U0
∼= A5 (two such representations up

to conjugacy; they are fused in PGL(2, 9));

(9) U ∼= PSL(2, 7) ∼= PSL(3, 2),|Ω| = 7, Ker U = 1, U0
∼= S4 (two such representa-

tions up to conjugacy; they are fused in PGL(2, 7));

(10) U ∼= PSL(2, r) for every r = ps, s ≥ 1, r > 3 with q = rm and m prime. Moreover,
for p > 2 we also require m > 2. Here |Ω| = r + 1, Ker U = 1, U0

∼= Er : r−1
(2,r−1)

(two such representations up to conjugacy; they are fused in PGL(2, q));

(11) U ∼= PGL(2, r), r odd, r = ps, q = r2, |Ω| = 2, Ker U = U0
∼= PSL(2, r) (two

such representations up to conjugacy; they are fused in PGL(2, q));

(12) U ∼= PGL(2, r), r odd, r = ps, s ≥ 1 with q = r2. Here |Ω| = r + 1, Ker U = 1,
U0

∼= Er : (r − 1) (two such representations up to conjugacy; they are fused in
PGL(2, q));

(13) U ∼= PGL(2, 3) ∼= S4, q = ±1(8); |Ω| = 3, Ker U = E4, U/Ker U ∼= S3,
U0

∼= D8 (two such representations up to conjugacy; they are fused in PGL(2, q));

(14) U is dihedral of order 2d, for every d > 2 dividing
q±1

(2,q−1)
; |Ω| = 2, Ker U = U+ =

U0 where U+ is the cyclic subgroup of index 2 of U, (unique up to conjugacy);

(15) U is dihedral of order 2d, for every d dividing
q±1

(2,q−1)
and 3 | d. Here |Ω| = 3, Ker U

is the unique cyclic subgroup of index 6 in U. Then U0 is one of the three dihedral
subgroups of index 3 in U, U/Ker U ∼= S3 (unique up to conjugacy);

(16) U is dihedral of order 2d, for every d even dividing
q±1

2 . Here |Ω| = 2, Ker U = U0

is one of the two dihedral subgroups of index 2 in U (two such representations up to
conjugacy; they are fused in PGL(2, q));

(17) U is dihedral of order 4; |Ω| = 2, Ker U = U0 is one of the three dihedral subgroups
of index 2 in U (unique up to conjugacy);
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(18) U ∼= PGL(2, 5) ∼= S5, |Ω| = 5, Ker U = 1, U0
∼= S4 (unique up to conjugacy).

(19) For every q odd and d even divisor of q− 1 or q+ 1, U is cyclic of order d. Here |Ω| =
2, Ker U = U0 is the unique subgroup of index 2 in U (unique up to conjugacy).

(20) U ∼= U(K, k, W, H) a transfield group (see 5.5.1) , U = W : k∗ = Epsl : (ps − 1),

s | n, |Ω| = ps, |KerU| = psl/ps = ps(l−1), U/Ker U = Eps : (ps − 1) (control
of conjugation is unavailable).

(21) U ∼= C2, U0 = 1.

These classes are pairwise disjoint. Except (1), (2), (20) and (21); (3) and (4); (6) and
(10); (7) and (10); (8) and (10); (9) and (10) ; (11), (12), (13) and (18) ; (14), (15), (16)
and (17).

These pairs are of key importance, for instance in the classification of locally
2-arc-transitive graphs arising from a given group G (see [12]), and also in the
classification of coset geometries satisfying the property (2T)1 (see [3] for a defi-
nition and motivation in this direction).

The need for the present paper became clear in the study of [4, 10] in which
the present paper (Theorem 2) was indeed used.

We now turn to the situation in which U is maximal in G. Let us observe that
2-transitive actions of maximal subgroups in PSL(2, q) were listed in [10] Table
4, without proof. That table is slightly improved here. It is right in view of the
present Theorem 1.

Theorem 2. Let G ∼= PSL(2, q) for some power q of a prime p. Let (U, U0) be a
2-transitive pair of subgroups of G with U maximal in G. Then one of the following
holds:

(1) U ∼= Eq :
q−1

2 , q = 1(4), Ker U is the unique subgroup of index 2 of U, |Ω| = 2,
U0 = Ker U (unique up to conjugacy);

(2) U ∼= Eq : (q − 1), q even, |Ω| = q, Ker U = 1, U0 is a cyclic subgroup of order
(q − 1) (unique up to conjugacy);

(3) U ∼= PSL(2, 2) ∼= S3, |Ω| = 2, Ker U = Z3 = U0 (unique up to conjugacy);

(4) U ∼= PSL(2, 2) ∼= S3, |Ω| = 3, Ker U = 1 , U0
∼= Z2 (unique up to conjugacy);

(5) U ∼= PSL(2, 3) ∼= A4, |Ω| = 4, Ker U = 1 , U0
∼= Z3 (unique up to fusion in

PGL(2, q));

(6) U ∼= A5
∼= PSL(2, 5) ∼= PSL(2, 4), p 6= 2, p 6= 5, either q = p = ±1(5) or

q = p2 = −1(5) and one of the following holds.

(a) |Ω| = 5, Ker U = 1, U0
∼= A4 (two such representations up to conjugacy;

they are fused in PGL(2, q));

(b) |Ω| = 6, Ker U = 1, U0
∼= D10, (two such representations up to conjugacy;

they are fused in PGL(2, q)).
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(7) U ∼= PSL(2, 11), |Ω| = 11, Ker U = 1, U0
∼= A5 (two such representations up to

conjugacy; they are fused in PGL(2, 11) = Aut(U));

(8) U ∼= PSL(2, 9) ∼= A6, |Ω| = 6, Ker U = 1, U0
∼= A5 (two such representations up

to conjugacy; they are fused in PGL(2, 9));

(9) U ∼= PSL(2, 7) ∼= PSL(3, 2), |Ω| = 7, Ker U = 1, U0
∼= S4 (two such representa-

tions up to conjugacy; they are fused in PGL(2, 7));

(10) U ∼= PSL(2, r) for every r = ps, s ≥ 1, r > 3 with q = rm and m prime. Moreover,
for p > 2 we also require m > 2. Here |Ω| = r + 1, Ker U = 1, U0

∼= Er : r−1
(2,r−1)

,

(two such representations up to conjugacy; they are fused in PGL(2, q));

(11) U ∼= PGL(2, r), r odd, r = ps, q = r2, |Ω| = 2, Ker U = U0
∼= PSL(2, r) (two

such representations up to conjugacy; they are fused in PGL(2, q));

(12) U ∼= PGL(2, r), r odd, r = ps, s ≥ 1 with q = r2. Here |Ω| = r + 1, Ker U = 1,
U0

∼= Er : (r − 1) (two such representations up to conjugacy; they are fused in
PGL(2, q));

(13) U ∼= PGL(2, 3) ∼= S4, q = p > 2, q = ±1(8), |Ω| = 3, Ker U = E4,
U/Ker U ∼= S3, U0

∼= D8 (two such representations up to conjugacy; they are
fused in PGL(2, q));

(14) U is dihedral of order 2(q − 1) or 2(q + 1), q even, |Ω| = 2, Ker U = U+ = U0

where U+ is the cyclic subgroup of index 2 of U, (unique up to conjugacy for each of
the two possible values of |U|);

(15) U is dihedral of order (q − 1) or (q + 1), q odd, |Ω| = 2, Ker U = U+ = U0 where
U+ is the cyclic subgroup of index 2 of U, (unique up to conjugacy for each of the
two possible values of |U|).
In the particular case where q = 3, the case of (q + 1) provides U = E4 , |Ω| = 2.
Then U0 is one of the three subgroups of order 2 in U (unique up to conjugacy). This
case is also part of case (19);

(16) U is dihedral of order either 2(q − 1) or 2(q + 1), q even, and 3 | |U|; |Ω| = 3,
Ker U is the unique cyclic subgroup of index 6 in U. Then U0 is one of the three
dihedral subgroups of index 3 in U, U/Ker U ∼= S3 (unique up to conjugacy);

(17) U is dihedral of order either (q − 1) or (q + 1), q odd, and 3 | |U|; |Ω| = 3, Ker U
is the unique cyclic subgroup of index 6 in U. Then U0 is one of the three dihedral
subgroups of index 3 in U, U/Ker U ∼= S3 (unique up to conjugacy);

(18) U is dihedral of order either (q − 1) or (q + 1), q odd, q > 5, and 4 | |U|; |Ω| =
2, Ker U = U0 is one of the two dihedral subgroups of index 2 in U (two such
representations up to conjugacy; they are fused in PGL(2, q)); Ker U is dihedral, U0

is dihedral of index 2;

(19) U is dihedral of order 4, q is one of 3,5; |Ω| = 2, Ker U = U0 is one of the three
dihedral subgroups of index 2 in U (unique up to conjugacy).
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(20) U ∼= PGL(2, 5) ∼= S5, |Ω| = 5, Ker U = 1, U0
∼= S4 (unique up to conjugacy).

Beware of the fact that these classes are not necessarily disjoint.

3 The subgroups of PSL(2, q)

We recall the complete subgroup structure of PSL(2, q) due to Dickson [11].
Dickson refers to independent work by E.H. Moore (Dickson’s supervisor)

and A. Wiman in 1893 and 1899 respectively. According to Dickson in his pref-
ace, Wiman got the full classification (see [21]). We were able to study the work by
E.H. Moore [16] whose version of the Hauptsatz is strictly the same as Dickson’s.
Moreover the author states that his paper was read at the meeting of the Ameri-
can Mathematical Society in 1898. He published his paper in 1904 and holds that
he made no use of the treatments by Burnside [6], for q even and those by Wiman
and Dickson.

We follow broadly the phrasing and organisation of O. H. King [14]. King
lists 22 families from (a) to (v). We observe that two families consisting of the two
trivial subgroups of PSL(2, q) need to be added and so we provide actually 14
families of subgroups in Lemma 1 some of which include subfamilies.

For the families (m) and (n), King mentions ”a number of classes of conjugate
groups” whose size is not given. These are dealt with in our families 7 and 8
of Lemma 1. That ”number of classes” is given by Dickson, but it is erroneous.
This can easily be seen from an example analyzed with MAGMA [2] for q = 64.
Magma helps us to see that for q = 64 there are 10 conjugacy classes of 4095 el-
ementary abelian subgroups of order 16 and one class of 1365 such subgroups.
It may further help to indicate that every subgroup in one of the 10 classes of
4095 subgroups of order 16 has a PSL(2, 64)-normalizer of order 64 and that
every other has a normalizer of order 192. The lengths of classes are equal to
the lengths given by Dickson. However, the number of classes of each of these
two types is not as in Dickson’s list. As we don’t need to know how many classes
there are and what are their lengths for families 7 and 8, we prefer to omit this
information in the statement of Lemma 1. We come back to a general value of q
as earlier. Concerning the elementary abelian subgroups of order pm with m any
natural number such that 1 ≤ m ≤ n − 1, we know their total number which is
(q+1)(q−1)(q−p)...(q−pm−1)

(q−1)(q−p)...(q−pm−1)
. We also know that conjugacy classes of them depend on

one further parameter k where k is any common divisor of n and m. This num-

ber allows for control on the size of conjugacy classes. This size is
q2−1

(2,1,1)(pk−1)
for

given k (as shown by Dickson). However the question remains open as to control
over the number of conjugacy classes for a fixed value of k.

The error was already detected by Patricia Vanden Cruyce in [19]. However,
the correction she provided is wrong also, again as we see from a MAGMA study
on the values q ≤ 97. We cannot settle the question but our analysis for Theorem 1
allows to get around it.

A neat classification of the subgroups of PSL(2, q) is given with proof in Hup-
pert [13]. In his ”Hauptsatz” (Dickson) he distributes the subgroups in 8 families
with no mention of conjugacy. However, conjugacy is used in his proof.
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Notice that Dickson does not give the number of conjugacy classes of the sub-

groups Epm : d, except in the particular case where m = n and d =
pn−1

(2,q−1)
. There

are q + 1 subgroups Eq :
q−1

(2,q−1)
, all conjugate.

An original and powerful approach to the classification is developed by
Suzuki [17]. He classifies the finite subgroups of PSL(2, k) where k is an alge-
braically closed field. From this he gets the distribution of all subgroups of a
PSL(2, q) in 4 families. He does not deal with the question of conjugacy. He
provides a list of maximal subgroups of which we make use after two little cor-
rections (see Section 4).

Let us mention also that the groups PSL(2, q) are a class of finite classical
groups. The subgroup structure of the classical finite simple groups was clas-
sified by Aschbacher [1] (see also Kleidman-Liebeck [15] ).

Lemma 1. [L.E. Dickson-E.H. Moore] The group PSL(2, q) of order
q(q2−1)
(2,q−1)

, where

q = pn (p prime), contains exactly the following subgroups:

1. The identity subgroup.

2. A single class of q + 1 conjugate elementary abelian subgroups of order q, denoted
by Eq.

3. A single class of
q(q+1)

2 conjugate cyclic subgroups of order d, denoted by either Zd

or d; for every divisor d of q − 1 for q even and
q−1

2 for q odd, with d > 1.

4. A single class of
q(q−1)

2 conjugate cyclic subgroups of order d,denoted by either Zd

or d; for every divisor d of q + 1 for q even and
q+1

2 for q odd, with d > 1.

5. • For q odd, a single class of
q(q2−1)

4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of
q−1

2 with
q−1
2d odd, with d > 1;

• For q odd, two classes each of
q(q2−1)

8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of
q−1

2 with
q−1
2d even;

• For q even, a single class of
q(q2−1)

2d dihedral groups of order 2d, denoted by
D2d, for every divisor d of q − 1, with d > 1;

• For q odd, a single class of
q(q2−1)

4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of
q+1

2 with
q+1
2d odd, with d > 1;

• For q odd, two classes each of
q(q2−1)

8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of
q+1

2 with
q+1
2d even;

• For q even, a single class of
q(q2−1)

2d dihedral groups of order 2d, denoted by
D2d, for every divisor d of q + 1, with d > 1.

6. • A single class of
q(q2−1)

24 conjugate dihedral groups of order 4 denoted by 22

when q = ±3(8);



40 F. Buekenhout – J. De Saedeleer – D. Leemans

• Two classes each of
q(q2−1)

48 conjugate dihedral groups of order 4 denoted by 22

when q = ±1(8);

• When q is even, the groups 22 are in the family 7.

7. Elementary abelian subgroups of order pm, denoted by Epm for every natural num-
ber m, such that 1 ≤ m ≤ n − 1.

8. Subgroups Epm : D which are semidirect products of an elementary abelian group
Epm and a cyclic group D of order d, d > 1, for every natural number m such that

1 ≤ m ≤ n and every natural number d dividing
pk−1
(1,2,1)

, where k = (n, m) and

(1, 2, 1) is one of

• 1 for p > 2 and n
k is even

• 2 for p > 2 and n
k is odd

• 1 for p = 2

These subgroups are Frobenius groups.

9. • Two classes each of
q(q2−1)

48 conjugates of A4 when q = ±1(8);

• A single class of
q(q2−1)

24 conjugates of A4 when q = ±3(8);

• A single class of
q(q2−1)

12 conjugates of A4 when q is an even power of 2.

10. Two classes each of
q(q2−1)

48 conjugates of S4 when q = ±1(8).

11. Two classes each of
q(q2−1)

120 conjugate alternating groups A5 when q = ±1(10).

12. • Two classes each of
q(q2−1)
2r(r2−1)

groups PSL(2, r), where q is an even power of r,

for q odd;

• A single class of
q(q2−1)
r(r2−1)

groups PSL(2, r), where q is an odd power of r, for q

odd;

• A single class of
q(q2−1)
r(r2−1)

groups PSL(2, r), where q is a power of r, for q even.

13. Two classes each of
q(q2−1)
2r(r2−1)

groups PGL(2, r), where q is an even power of r, for q

odd;

14. PSL(2, q) itself.

Remark 1. Subgroups A5 are given either by case 11 (when q = ±1(10)) or by case 12
(when q = 0(5) and when q = 4m) of Lemma 1. Also, if q is even, the PGL(2, q′) are
given by case 12, since PGL(2, q′) ∼= PSL(2, q′) provided q is even.

Let us briefly say that a family from Lemma 1 is isolated if it has an empty
intersection with every other family. Remark 1 tells us that 11, 12 and 13 are not
isolated. Recall that in even characteristic, PSL(2, q) = PGL(2, q). Examples of
isolated families are 1 and 14.
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4 Maximal subgroups of PSL(2, q)

In this section, we list the maximal subgroups of PSL(2, q), according to
Suzuki [17], page 417. We distribute them in Table 1 and Table 2 .

Eventually in his deep and long study of subgroups of the PSL(2, k), k a field,
Suzuki lists the maximal subgroups of PSL(2, q) in seven families and he provides
hints for the proof. This requires two small corrections. The first is due to Patricia
Vanden Cruyce [19] in her thesis. In family (v) of Suzuki it is required to add the
condition that for q = 5m and A5, m must be an odd prime rather than a prime.
Indeed, if m = 2 we have that A5 < PGL(2, 5) < PSL(2, 25). The second correction
deals with a case missing in Suzuki’s list namely that A4 is maximal in PSL(2, 5).
We include it in Table 2.

5 Two-transitive representations of the subgroups of PSL(2, q)

5.1 Preliminaries

The proof of Theorem 1 proceeds by a series of lemmas distributed in cases
from section 5.2 to section 5.8 as to the structure of U from Lemma 1. It ends with
section 5.9.

The following Lemma gives a necessary condition for a group to have a two-
transitive action. It is a direct consequence of Lagrange’s Theorem.

Lemma 2. Let G be a group and let H be a subgroup of G. If G acts two-transitively on
the cosets of H in G, then |G| must be divisible by [G : H]([G : H]− 1).

A group G is said to act regularly on a set Ω if G is transitive on Ω and the
stabilizer in G of a point p ∈ Ω is the identity.

Lemma 3. [Wielandt[20], proposition 4.4 in Chapter 1] . Let (G, Ω) be a permutation
group which is transitive on Ω and let G be abelian. Then G is regular.

Corollary 1. Let (G, Ω) be a permutation group which is transitive on Ω and let G be
abelian. If G is two-transitive then |Ω| = 2 and G = S2.

Proof. Following Lemma 3 the group G is regular and if G is 2-transitive then
there exist at most two points.

Lemma 4. (Maschke’s Theorem) [8] Let G be a finite group and let F be a field whose
characteristic does not divide |G|. Then every finite dimensional linear representation of
G on F is completely reducible.

Proof. See [8].

From here on, G is a group PSL(2, q). For H a permutation group acting 2-
transitively on a set Ω, we denote by KerH the kernel of the action of H on Ω. We
denote by H0 the stabilizer in H of some element 0 ∈ Ω. Moreover we say that
a subgroup U of G is of type H if U ∼= H. The pair (U, U0) is a 2-transitive pair if
U ∼= H for some H that is 2-transitive on a set Ω and U0

∼= H0.
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Structure Order Index
I Eq : (q − 1) q(q − 1) q + 1

II D2(q+1) 2(q + 1)
q(q−1)

2

q 6= 2

III D2(q−1) 2(q − 1)
q(q+1)

2

IV A5 60
q(q2−1)

60
q = 4r r is prime

V PSL(2, q′) ∼= PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q′ > 4, q = q′m, m is prime
or q′ = 2, q = q′2

Table 1: The maximal subgroups of PSL(2, q), for q even

Structure Order Index

VI Eq :
q−1

2
q(q−1)

2 q + 1

VII D(q+1) q + 1
q(q−1)

2
q 6= 7, 9

VIII D(q−1) q − 1
q(q+1)

2

q 6= 3, 5, 7, 9, 11

IX A4 12
q(q2−1)

12×2
i f q = p > 3 and

q = 3, 13, 27, 37(40) or q = 5

X S4 24
q(q2−1)

24×2
i f q = p > 2 and

q = ±1(8)

XI A5 60
q(q2−1)

60×2

if







q = 5r r odd prime or
p = q = ±1(5) p prime or
q = p2 = −1(5) p prime or

XII PSL(2, q′) q′(q′2−1)
2

q(q2−1)
q′(q′2−1)

q′ 6= 5, q = q′m

m odd prime

XIII PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q = q′2

Table 2: The maximal subgroups of PSL(2, q), for q odd
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5.2 Case U cyclic

Let us first observe that if U ∼= C2 then U0 = 1 gives a two-transitive pair.
As the group PSL(2, q) is known to have a unique conjugacy class of involutions,
this pair is unique up to conjugacy. This gives class (21) of Theorem 1.

Lemma 5. For any cyclic group H, acting two-transitively on a set Ω the following
holds: |H| is even, H has a unique subgroup H+ of index 2, |Ω| = 2, Ker H = H+ and
H/H+ ∼= S2.

Proof. If α is the 2-transitive action, α(H) is cyclic, hence regular (Lemma 3) on Ω

and |Ω| = 2 by Corollary 1. Hence Ker H is the unique subgroup of index 2 in
H.

Lemma 6. Let U be a cyclic subgroup of G, namely a member of one of the families 1.,
3., 4. or 7. in Lemma 1. Then q is odd and U is a cyclic group of even order d dividing
q − 1 or q + 1. Moreover, |Ω| = 2 and Ker U = U0 is the unique subgroup of index 2
in U (unique up to conjugacy in U and in G).

Proof. Family 1. is ruled out by Lemma 2. Family 7. with p = 2 and m = 1
gives U ∼= C2 and U0

∼= 1. Consider families 3. and 4. We apply Lemma 5. This
requires that d is even, hence q is odd. Then U has indeed a unique subgroup U+

of index 2.

5.3 Case U dihedral

Lemma 7. Let H be any dihedral group with |H| ≥ 6, acting two-transitively on a set
Ω. Let H+ be its unique cyclic subgroup of index 2. Then one of the following holds.

(1) Ker H = H+ and |Ω| = 2, H0 = H+ which exists and is unique in H;

(2) Ker H 6= H+ with Ker H cyclic, |Ω| = 3 and H/Ker H ∼= S3, H0 is dihedral of
index 3. This occurs and is unique up to conjugacy in H, provided that 3 | |H|;

(3) Ker H 6= H+ with Ker H dihedral and |Ω| = 2 which exists in two versions
provided that |H+| is even. Here H0 is one of the two dihedral subgroups of index 2
in H. They are not conjugate in H but fused by Aut H.

Proof. Assume first that Ker H = H+. Then |Ω| = 2, H0 = H+ and we get (1) .
Assume next that Ker H 6= H+. From the subgroup structure of H, Ker H is

either cyclic or dihedral.
Suppose that Ker H is cyclic, hence Ker H < H+. The group H+/Ker H is

transitive on Ω. It is abelian, hence regular (Lemma 3). Then H/Ker H is dihedral
and is a 2-transitive permutation group on Ω. Thus (H/Ker H)0 is of order 2 and
transitive on Ω − {0}. This implies that |Ω| = 3. Thus H0 is a dihedral subgroup
of index 3 in H. There are three such subgroups, they are conjugate and offer a
unique representation of H. It exists provided that 3 | |H|. This is (2).

Suppose that Ker H 6= H+ is dihedral. Then H/Ker H is cyclic and acts as a
2-transitive permutation group on Ω. By Lemma 6, |Ω| = 2. We see that H0 is of
index 2 in H. As H0 = KerH, H0 is dihedral. There are two such subgroups in H
provided that |H+| is even. This is (3).
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Remark 2. If H is the dihedral group D4, its two-transitive representations require
|Ω| = 2 and |H0| = 2.

Lemma 8. Let U be a dihedral subgroup of G, namely a member of families 5. and 6. in
Lemma 1. Then one of (a) and (b) holds.

(a) For some q, for some d > 2 dividing
q±1

(2,q−1)
, U is dihedral of order 2d. Then one of

the following holds.

(1) Ker U = U+ = U0, |Ω| = 2, this is unique in U.

(2) Ker U 6= U+ with Ker U cyclic, |Ω| = 3 and U/Ker U ∼= S3, U0 is dihedral of
index 3. This occurs and is unique up to conjugacy in U, provided that 3 | |U|.

(3) Ker U 6= U+ with Ker U dihedral and |Ω| = 2 which exists in two versions
provided that |U+| is even. Here U0 is one of the two dihedral subgroups of index
2 in U. They are not conjugate in U but fused by Aut U.

(b) If U is dihedral of order 4, |Ω| = 2, Ker U = U0 is one of the three dihedral
subgroups of index 2 in U. They are not conjugate in U but fused by Aut U. These
subgroups come from class (7) of Lemma 1 with p = 2.

Proof. If U has order 4, remark 2 applies and we get (b). If the order of U is at
least 6, then Lemma 7 applies. Let U+ be the unique cyclic subgroup of index 2
of U. Let us consider cases (1), (2) and (3) of Lemma 7.
In case (1), Ker U = U+ = U0, |Ω| = 2 and we get (a1).
In case (2), Ker U 6= U+ with Ker U cyclic, |Ω| = 3 and U/Ker U ∼= S3, U0 is
dihedral of index 3. This occurs and is unique provided that 3 | |U| and we get
(a2).
In case (3), Ker U 6= U+ with Ker U dihedral and |Ω| = 2 which exists in two
versions provided that |U+| is even. Here U0 is one of the two dihedral subgroups
of index 2 in U. They are not conjugate but fused by Aut U. This is (a3).

5.4 Case U elementary abelian

Lemma 9. If U is a subgroup Epm for any natural number m, such that 1 ≤ m ≤ n − 1,
then pm = 2, | Ω |= 2 and Ker U = 1.

Proof. Immediate by Lemma 2.

Observe that in the case where p = 2 and m = 1, we get case (21) of Theorem 1
in even characteristic.
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5.5 Case U elementary abelian extended by a non trivial cyclic subgroup

Here, we proceed to our analysis for U in family 8. of Lemma 1.

5.5.1 A construction of examples: The transfield groups

Let us consider the affine line AG(1, q) with q = pn and the field K := Fq

which can be identified with AG(1, q) after a choice of points 0 as origin and 1 as
unity in AG(1, q). Consider a subfield k = Fpi where i divides n. The group of

translations Eq of AG(1, q) is a vector space V over Fpi . Every k-subspace W of

V is invariant under the multiplicative group k∗ of Fpi . Henceforth, W : k∗ is a

group in family 8 of Lemma 1. For every line A of W on 0, the stabilizer of A in
W : k∗ is the group AGL(1, Fpi ) which is 2-transitive on A. For every hyperplane

H of W such that H ∩ A = {0}, we have W = A ⊕ H. We define U := W : k∗ and
we get that H is normal in U.

Let Ω be the set of affine hyperplanes of A(W) parallel to H. Then U acts
on Ω, Ker U = H, U0 ≡ H : k∗ and U/H acts on Ω as the 2-transitive group
AGL(1, Fpi ).

In summary, for any subfield k of Fq, for any k-subspace W of Epn , for any
k-hyperplane H of W, the groups U := W : k∗, where k∗ represents the multi-
plicative group and U0 = H : k∗, constitute a 2-transitive pair with Ker U = H
and U/H ≡ AGL(1, k) in its standard representation. We call the object U de-
pending on k, W and H a transfield group and we denote it by U(K, k, W, H).

Remark 3. The conjugacy of two transfield groups U(K, k, W1 , H1) and U(K, k, W2, H2)
requires that dimW1 = dimW2 but this is by no means sufficient. It is a matter escaping
to control thus far as explained in remark 4, section 4 of [4] that we repeated in section 3.

5.5.2 The reduction pursued

We pursue the reduction of cases in view of the proof of Theorem 1. Assume
that U is as in family 8 of Lemma 1. Namely U = Epm : D which is a semidirect
product of an elementary abelian Epm with 1 ≤ m ≤ n and a group D where D

is cyclic of some order d, d > 1 and dividing
q−1

(2,q−1)
. Let us recall that U is not

necessarily maximal in G = PSL(2, q).
We recall that G acts two-transitively on the projective line P1(q), q = pn,

p prime, n ≥ 1. For any point ∞ of P1(q), we have that P1(q) − {∞} is the affine

line AG(1, q) on which G∞ acts as Eq :
q−1

(2,q−1)
≤ AGL(1, q). Also for 0 ∈ AG(1, q)

we get G∞0 which is the cyclic group
q−1

(2,q−1)
.

We assume that U is a subgroup of G∞. We look for all 2-transitive actions
of U. Let α be such an action on a set Ω in which the stabilizer of some point O
belonging to Ω is UO = Epi : D′ with Epi ≤ Epm , i ≥ 1 and D′ ≤ D. We use the

notation Ker U instead of Ker α for the kernel of the action.
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In order to pursue we need the possible candidates for Ker U E U and so we
need the normal subgroups of U.

Lemma 10. Let U be a group Epm : D as in family 8 of Lemma 1 together with a 2-
transitive action of U on a set Ω. This action is determined by a subgroup U0 of U and a
kernel Ker U. Then one of the following holds:

(1) Ker U contains Epm and we get a two-transitive action of the cyclic group D provided
D has even order; here |Ω| = 2, U0 = Ker U = Epm : D+, where D+ is the
subgroup of index 2 of D;

(2) Ker U = 1 and U is an affine group AG(1, pm), over a subfield of order pm in Fq;
here Ω is the affine line, |D| = pm − 1 and |Ω| = pm;

(3) Ker U is a proper subgroup of Epm where m divides n, and U is a transfield group as
in 5.5.1.

Proof. First we may assume that U is a subgroup of PSL(2, q), but also that it
is a subgroup of PGL(2, q) and actually that it also is a subgroup of AGL(1, q).
The latter is the choice we make. Without loss of generality, we can choose
H = AGL(1, q) = Epn : (pn − 1) where (pn − 1) is a cyclic group C contain-

ing D. This group has a standard two-transitive representation on the set Ω̃ of
points of the affine line AG(1, q).

We start by looking for the normal subgroups of U in view of candidates for
Ker U. Since D ≤ C, D fixes a unique point 0 ∈ AG(1, q). We consider the orbit
Ω of 0 under U and under Epm .

We follow with an observation concerning C. Without loss of generality, we
may assume that every element of C is a mapping x → ax with a ∈ Fq − {0}.

The conjugates of these latter elements in H are the mappings x → ax+ b with
b ∈ Fq and the x → x + b are the elements of a Epn . Any quotient of two such
conjugates is an element of Epn .

Therefore, any normal subgroup of U containing some mapping x → ax + b
with a 6= 1 contains Epm . If Ker U contains Epm , Lemma 5 applies and we get case
(1).

We now assume that Ker U is contained in Epm . Then Ker U is an Eps for
some s such that 0 ≤ s < m. For s = 0, Ker U = 1. Then U is a sharply
2-transitive group by Lemma 3 applied to the action of D on Ω − {O}. Then
results due independently to Zassenhaus [22] and Tits [18], also Carmichael [7],
give us case (2). This amounts to the construction of a field from U whose multi-
plicative group is D and whose additive group is Epm .

We are left with the case where s ≥ 1. Now Epm is a vector space V of dimen-
sion m over Fp. The group D acts as a linear group on V. It admits an invariant
subspace Eps . Since p does not divide d, the linear representation of D on V is
totally reducible by Maschke’s Theorem ( see Lemma 4). Therefore there is a sub-
space Epm−s disjoint from Eps which is invariant by D. The group Epm−s : D is the
abstract group U/Ker U and it is 2-transitive on some set Ω. In this action Epm−s

is regular on Ω, hence |Ω| = pm−s. Then D fixes a point y in Ω, D is regular on
Ω −{y} and so |D| = pm−s − 1. Therefore, U is the affine group AGL(1, k) over a
subfield k of GF(q). Now Epm is a k-vector space in which Epm−s is a k-subspace of
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dimension 1 and Eps is a complementary k-subspace hence a hyperplane. Hence,
U, k, W := Epm , H := Eps constitute a transfield group. This gives case (3) of the
Lemma.

5.6 Case U is PSL(2, r)

For all of the following Lemmas, let us put |Ω| − 1 =: a.

Lemma 11. Let U be PSL(2, r). Then one of the following holds:

(1) r = 2, U ∼= S3, Ker U ∼= U0
∼= Z3, |Ω| = 2 (unique in U);

(2) r = 2, U ∼= S3, Ker U = 1, |Ω| = 3, U0
∼= Z2 (unique up to conjugacy in U and in

PSL(2, q));

(3) r = 3, U ∼= A4, Ker U = 1, |Ω| = 4, U0
∼= Z3 (unique in U and unique up to

fusion in PGL(2, q));

(4) r > 3, Ker U = 1, |U0| > r3−r

2
(

1√
2

r3/2+1
) .

Proof. Either U is simple or r ≤ 3.
For r = 3, U is A4. Then either Ker U ∼= E4 or Ker U = 1. In the first case,

U/Ker U ∼= Z3 and this group has no 2-transitive action. In the second case,
E4 acts as a regular group, |Ω| = 4, |U0| = 3 and we get (3).

For r = 2, U ∼= S3 and either Ker U ∼= Z3 or Ker U = 1. This gives immediately
either (1) or (2). Observe that (1) and (2) fit with (a1) and (a2) in Lemma 8.

If U is simple, we get r > 3 and Ker U = 1. We observe that (a + 1)a cannot
be equal to r(r2 − 1) = r3 − r for otherwise U is sharply 2-transitive. Then U has
a regular normal subgroup by [22, 18, 7] contradicting the simplicity of U.

Therefore we have a2
< (a + 1)a ≤ r(r2−1)

2 <
1
2r3. Hence a <

1√
2
r3/2 and

a + 1 <
1√
2
r3/2 + 1.

Also,

|U0|.|Ω| = |U0|.(a + 1) ≥ 1

2
r(r2 − 1).

Hence, we get (4).

We now deal with case (4) of Lemma 11.
Observe that

|U0| >
r3 − r

2
(

1√
2
r3/2 + 1

) >
1

2

(

r3 − r

r3/2 + 1

)

.

We make use of the latter bound to give an elementary proof of the following
Lemma.
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Lemma 12. Let U be PSL(2, r), r > 3, Ker U = 1, |U0| > 1
2

r3−r
r3/2+1

. Then one of the

following occurs:

(1) For every r, U0
∼= Er : r−1

(2,r−1)
, |Ω| = r + 1. This exists and is a unique permutation

group for U, (this is unique up to conjugacy in U; observe that there are two classes
as U in G and these are fused in PGL(2, q));

(2) for r = 11, U0
∼= A5, |Ω| = 11. There are two such representations in U. In G, there

are four such representations, involving 2 classes of A5 and 2 classes of PSL(2, 11);
they fuse in PGL(2, q);

(3) for r = 9, U ∼= A6, U0
∼= A5, |Ω| = 6. There are two such representations in U. In

G, there are four such representations, involving 2 classes of A5 and 2 classes of A6;
they fuse in PGL(2, q);

(4) for r = 7, U ∼= PSL(3, 2), U0
∼= S4, |Ω| = 7. There are two such representations in

U. In G, there are four such representations, involving 2 classes of S4 and 2 classes
of PSL(3, 2); they fuse in PGL(2, q).

Proof. We consider subcases in which every entry represents a type of maximal
subgroup U0 of PSL(2, r) according to Tables 1 and 2.

Subcase 1. U0
∼= Er : r−1

(2,r−1)

Here, |U|
|U0| = r + 1 = |Ω|. This is the standard representation of U, which is

unique. Hence we get (1) in view of the fact that G contains two conjugacy classes
of PSL(2, r).
Subcase 2. U0 is PSL(2, r′) or PGL(2, r′)

Here r = pn, r′ = pm with m | n, m 6= n and n = mv where v is prime, v ≥ 2.
If U acts 2-transitively on the cosets of U0, then necessarily, |U0| ≥ |U|/|U0| −

1 or in other words,

|U0|2 + |U0| ≥ |U|
Let us first assume that r is odd and U0 = PSL(2, r′). Then

|U0|2 + |U0| ≥ |U| ≥ r′2(r′4 − 1)

2
= 2(

r′(r′2 − 1)

2
)2 + r′(r′2 − 1) = 2|U0|2 + |U0|

a contradiction. Similar computations permit to exclude the case where r is even.
Therefore v = 2, r = r′2. Since U0 is maximal in U, we need only consider the
case U0 = PGL(2, r′).

We replace r′ by r1/2.

Now |U0| = r1/2(r − 1) because U0
∼= PGL(2, r1/2) and

a + 1 = |Ω| =
r(r2−1)
(2,r−1)

r1/2(r − 1)
=

r1/2(r + 1)

(2, r − 1)
.
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Thus

a =
r3/2 + r1/2

(2, r − 1)
− 1 (a)

and we recall that a divides |U0|.
We deal first of all with the case r − 1 even. Then (2, r − 1) = 2. Hence, by (a)

r3/2 + r1/2 − 2 divides 2(r3/2 − r1/2) so that it divides

(2r3/2 − 2r1/2)− 2(r3/2 + r1/2 − 2) = 4 − 4r1/2 and also 4r1/2 − 4.

Thus r3/2 ≤ (4r1/2 − 4)− r1/2 + 2 = 3r1/2 − 2. This is a contradiction for all r > 3,
as required in the present lemma.
Therefore r − 1 is odd and (2, r − 1) = 1.

By (e) r3/2 + r1/2 − 1 divides r3/2 − r1/2, so that it divides

(r3/2 − r1/2)− (r3/2 + r1/2 − 1) = 1 − 2r1/2 and also 2r1/2 − 1.

Therefore r3/2 ≤ r1/2, a contradiction.
Thus the assumption of Subcase 2 cannot hold.

Subcase 3. U0 is one of Dr±1 for q odd and D2(r±1) for q even.

In each case a + 1 is the index of U0 in U. Therefore a = r(r∓1)
2 − 1. Recalling

that a divides |U0| we get
r(r∓1)

2 − 1 | 2(r±1)
(2,r−1)

. Therefore,

r2 − r − 2 ≤ r(r ∓ 1)− 2 ≤ 4(r ± 1) ≤ 4r + 4.

This yields r2 ≤ 5r + 6 and therefore, r ≤ 5. And r > 3 by our hypothesis, hence
r = 4 or 5.

For r = 5, U ∼= PSL(2, 5) ∼= A5 with |Ω| = 6, U0
∼= D10 which is not in the

hypothesis of the present subcase.
For r = 4, U ∼= PSL(2, 4) ∼= A5 with |Ω| = 5, U0

∼= A4 which is not in the
hypothesis of the present subcase.

Subcase 4. U0 is one of A4, S4, A5.

4.1. Assume U0 is A5 Then 60 = |U0| ≥ 1
2

r3−r
r3/2+1

and we get 24 > r. Hence r is one

of 19, 16, 11, 9, 5 or 4 (we left aside the values of r for which PSL(2, r) does
not contain any A5). For r = 19, a + 1 = 57, a = 56 and this does not divide
|U|. For r = 16, a + 1 = 68, a = 67 and this does not divide |U|.
For r = 11, a + 1 = 11, a = 10 and we get (2) provided we apply obvious
conjugation and fusion criteria.

For r = 9, U ∼= PSL(2, 9) ∼= A6, a + 1 = 6, a = 5 and we get (3) provided we
apply obvious conjugation and fusion criteria.

For r = 5 and r = 4 we have PSL(2, 5) ∼= PSL(2, 4) ∼= A5. This case is
impossible: indeed it gives us U = U0.
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4.2. Assume U0 is S4. Then 24 = |U0| ≥ 1
2

r3−r
r3/2+1

and we get 16 > r. Hence r is one

of 9 or 7 (we left aside the values of r for which PSL(2, r) does not contain
any S4).

For r = 9, PSL(2, 9) ∼= A6. Then a + 1 = 15, a = 14 and so 7 divides |A6|, a
contradiction.

For r = 7, there are two conjugacy classes of S4 in PSL(2, 7) and we get (4)
provided we apply obvious conjugation and fusion criteria.

4.3. Assume U0 is A4. Then 12 = |U0| ≥ 1
2

r3−r
r3/2+1

and we get 9 > r. Hence r is

one of 5 or 4 (we left aside the values of r for which A4 is not maximal in
PSL(2, r)).

Observe that for r = 4, A4
∼= E22 : (4 − 1) is maximal in PSL(2, 4).

For r = 5 or 4, PSL(2, 5) ∼= PSL(2, 4) ∼= A5 and we get the standard repre-
sentation corresponding to r = 4 hence (1).

5.7 Case U is PGL(2, r)

We now deal with the case where U = PGL(2, r) with r odd.

Lemma 13. Let U be PGL(2, r) with r odd. Then one of the following occurs:

(1) U0 = Ker U ∼= PSL(2, r), |Ω| = 2;

(2) Ker U = 1, U0
∼= Er : (r − 1), |Ω| = r + 1;

(3) r = 3, U ∼= S4, q = ±1(8), Ker U ∼= E4, U/Ker U ∼= S3, U0
∼= D8, |Ω| = 3;

(4) r = 5, U ∼= S5, U0
∼= S4, Ker U ∼= 1, |Ω| = 5.

Proof. For r = 3, U is indeed S4 which exists if and only if q = ±1(8). There are
three representations as we want. The first is of degree 2 with A4 as point stabi-
lizer. This is a particular case of (1). The second is the standard representation on
4 letters, which is a special case of (2). The third is on the three cosets of D8, hence
it gives (3).

Let r > 3. Then PSL(2, r) is simple. Thus, either Ker U ∼= PSL(2, r) or Ker U =
1. In the first case, we get (1). In the second case, we shall show that (2) or (4)
hold. As the action is faithful on Ω, and as PSL(2, r) is a proper normal subgroup
of PGL(2, r), the group PSL(2, r) is transitive on Ω.

Next we show that PSL(2, r) is primitive. Assume by way of contradiction
that it is not. Then the stabilizer of a point is a subgroup H that is not maximal
in PSL(2, r). Hence there exists a subgroup K with H < K < PSL(2, r). Now,
the group U necessarily is also imprimitive for it preserves the blocks given by
K and its cosets. Hence U is not 2-transitive, a contradiction. As a next step
to get PSL(2, r) in its standard representation we consider each of its primitive
representations under the restriction that r is odd. We consider every maximal
subgroup U+

0 of PSL(2, r) = PGL(2, r)+, as in Table 2.
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Case 1. U+
0 = Er :

(r−1)
2 . This provides indeed the standard two-transitive

representation of PSL(2, r) and of PGL(2, r) as well. Hence case (2) of our lemma.

Case 2. U+
0 = Dr+1 with r 6= 7, 9, |Ω| = r(r−1)

2 therefore r2−r
2 .

(

r2−r
2 − 1

)

|
r(r2 − 1) = |PGL(2, r)|. Thus r2 − r − 2 | 4(r + 1). Hence (r − 2)(r + 1) | 4(r + 1).
Thus (r − 2) | 4 hence r = 3, a contradiction with our hypothesis.

Case 3. U+
0 = Dr−1 with r 6= 3, 5, 7, 9, 11, |Ω| = r(r+1)

2 therefore
r2+r

2 .
(

r2+r
2 − 1

)

| r(r2 − 1) = |PGL(2, r)|. Hence r2 + r − 2 | 4(r − 1). Thus

(r + 2) | 4 hence r = 2, a contradiction with the hypothesis of the present lemma.

Case 4. U+
0 = A4, with r prime and r = 3, 13, 27, 37(40) or r = 5, |Ω| = r(r2−1)

24 .

Here, |U0| = 24, hence |Ω| − 1 = r(r2−1)
24 − 1 | 24 and so r < 9, r is one of 3 or

5. Case r = 3 was ruled out at the beginning of the proof. Hence r = 5. Then
U = PGL(2, 5) ∼= S5, |Ω| = 5 , hence U0 = S4. Which is case (4) of our lemma.

Case 5. U+
0 = S4, with r prime and r = ±1(8), |Ω| = r(r2−1)

48 . Here, | U0 |=
48, hence |Ω| − 1 = r(r2−1)

48 − 1 | 48 and so r < 14. Then r = 7. Therefore
U = PGL(2, 7), |Ω| = 7, | U0 |= 48, but there is no such subgroup in PGL(2, 7).

Case 6. U+
0 = A5, with







r = 5m m odd prime or
r = p = ±1(5) p prime or
r = p2 = −1(5) p prime

and |Ω| = r(r2−1)
120 . Here, | U0 |= 120, hence |Ω| − 1 = r(r2−1)

120 − 1 | 120 and so
r < 26. In view of the conditions for A5 to be maximal the first condition r = 5m

with m odd prime is in contradiction with r < 26. If r = ±1(5) and r is prime,
then r is one of 11 or 19. If r = −1(5) and r is the square of a prime, then r is one
of 4 or 9. We are left with the values 4, 9, 11, 19 for r.

The values r = 4, 19 may be ruled out by |Ω| − 1 = r(r2−1)
120 − 1 | 120, indeed

they lead to a contradiction.

If r = 11, U = PGL(2, 11), |Ω| = 11, | U0 |= 120 but there is no such subgroup
in PGL(2, 11).

If r = 9, U = PGL(2, 9), |Ω| = 6, | U0 |= 120 but there is no such subgroup in
PGL(2, 9).

Case 7. This case is ruled out using the same argument as in the beginning of
Subcase 2 of the proof of Lemma 12.

Case 8. U+
0 = PGL(2, r′) with r = r′2 , |Ω| = r(r2−1)

2r′(r′2−1)
. Here, | U0 |= 2r′(r′2 −

1), hence

|Ω| − 1 =
r′(r + 1)

2
− 1 | 2r′(r′2 − 1) (d)

This is equivalent to r′3 + r′ − 2 | 4r′3 − 4r′. A factor common to the divisor and
r′ is at most 2, hence it is 1. Then r′3 + r′ − 2 | 4r′2 − 4 which implies r′2 + r′ + 2 |
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4r′ + 4. We obtain r′2 + r′ + 2 ≤ 4r′ + 4, hence r′ < 4 and so r′ = 3, r = 9. But this
is in contradiction with (d).

5.8 Case U is A4, S4, A5

Lemma 14. Let U be one of A4, S4 and A5. Then one of the following holds:

(1) U = A4, Ker U = 1, |Ω| = 4, U0 = Z3 (unique in U and unique up to fusion in
PGL(2, q));

(2) U = S4, U0 = Ker U ∼= A4, |Ω| = 2 (two such representations up to conjugacy in
U; they are fused in PGL(2, q));

(3) U = S4, Ker U = 1 , U0
∼= D6 , |Ω| = 4, (two such representations up to conjugacy

in U; they are fused in PGL(2, q));

(4) U = S4, Ker U ∼= E4, U/Ker U ∼= S3, U0
∼= D8, |Ω| = 3 (unique in U and unique

up to fusion in PGL(2, q));

(5) U = A5, Ker U = 1, U0
∼= A4 ,|Ω| = 5. This exists and is a unique permuta-

tion group for U, (two such representations up to conjugacy in G; they are fused in
PGL(2, q));

(6) U = A5, Ker U = 1, U0
∼= D10, |Ω| = 6. This exists and is a unique permuta-

tion group for U, (two such representations up to conjugacy in G; they are fused in
PGL(2, q));

Proof. Every matter of conjugacy or fusion is straightforward. For U = A4, case
(3) of Lemma 11 applies. For U = S4, cases (1), (2), and (3) of Lemma 13 apply,
since S4

∼= PGL(2, 3). For U = A5, case (1) of Lemma 12 applies twice, since
A5

∼= PSL(2, 4) and also A5
∼= PSL(2, 5).

5.9 Proof of Theorem 1

The proof requires an analysis of each of the 14 families in Lemma 1. These
families have been distributed as follows. Family 1 is part of section 5.2 and does
not contribute to Theorem 1. Family 2 is part of section 5.4 (and 5.5). It does
not contribute to Theorem 1. Families 3 and 4 are part of section 5.2 and they
contribute to cases (19) and (21) of Theorem 1. Family 5 is part of section 5.3 and it
contributes to cases (14), (15) and (16) of Theorem 1. Family 6 is part of section 5.3
and it contributes to case (17) of Theorem 1. Family 7 is part of section 5.4 (and 5.5)
and it contributes to case (21) of Theorem 1. Family 8 is part of section 5.5 and it
contributes to cases (1), (2) and (20) of Theorem 1. Families 9, 10 and 11 are part
of section 5.8 and they contribute to cases (5), (6), (11), (12) and (13) of Theorem 1.
Family 12 is part of section 5.6 and it contributes to cases (3), (4), (5), (7), (8), (9)
and (10) of Theorem 1. Family 13 is part of section 5.7 and it contributes to cases
(11), (12), (13) and (18) of Theorem 1. Family 14 is part of section 5.6. However, it
is excluded by the fact that U is assumed to be a proper subgroup of G.
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Hence, Theorem 1 readily follows from Lemmas 5, 6, 7, 8, 9, 10, 11, 12 and 13
and 14. We recall that A5 is covered in the role of U as PSL(2, 5) and PSL(2, 4),
that S4 is covered as PGL(2, 3) and that A4 is covered as PSL(2, 3).

If PSL(2, r) = PGL(2, r), namely r even, we apply Lemma 11 and 12 . Finally,
when r is odd we apply Lemma 13.

We check that each case stated in Theorem 1 has been covered in one at least
of the Lemmas.

5.10 Proof of Theorem 2

The proof requires an analysis of each of the 13 families I, II, ..., XIII in Tables 1
and 2. In this section we deal with cases in Theorem 1 and in Theorem 2 bearing
the same name (like (6) for instance). In order to distinguish these the first is now
called 1.6 and the second is called 2.6.

Family I is part of cases 1.1, 1.2 and 1.20 and so 2.2. Families II and III are part
of cases 1.14, 1.15 and 1.17 and so 2.14 and 2.16. Family IV is part of case 1.6 and
so 2.6. Family V is part of cases 1.3, 1.4, 1.10 and so 2.3, 2.4, 2.10. Family VI is part
of cases 1.1, 1.2, 1.20 and so 2.1. Families VII and VIII are part of cases 1.14, 1.15,
1.16, 1.17 and so 2.15, 2.17, 2.18, 2.19. Family IX is part of cases 1.2, 1.5 and so 2.2,
2.5. Family X is part of cases 1.11, 1.13 and so 2.11, 2.13. Family XI is part of cases
1.6, 1.10 and so 2.6, 2.10. Family XII is part of cases 1.5, 1.7, 1.8, 1.9, 1.10 and so
2.5, 2.7, 2.8, 2.9, 2.10. Family XIII is part of cases 1.11, 1.12, 1.13, 1.18 and so 2.11,
2.12, 2.13, 2.20.
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