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Résumé

We show the necessary part of the following theorem : a finitely genera-
ted, residually finite group has property PLp (i.e. it admits a proper isometric
affine action on some Lp space) if, and only if, one (or equivalently, all) of its
box spaces admits a fibred coarse embedding into some Lp space (sufficiency
is due to [CWW13]). We also prove that coarse embeddability of a box space
of a group into a Lp space implies property PLp for this group.

1 Introduction

The notion of fibred coarse embeddings into Hilbert space, which generalizes
the notion of coarse embeddings, has been introduced by Chen, Wang and Yu in
[CWY13] to provide a tool for the study of the maximal Baum-Connes conjecture.
They proved in this paper that any metric space with bounded geometry admit-
ting a fibred coarse embedding into a Hilbert space satisfies the maximal coarse
Baum-Connes conjecture. In [CWW13], Chen, Wang and Wang characterized the
Haagerup property in terms of fibred coarse embedding into Hilbert space : in
fact, they showed that a finitely generated, residually finite group has the Haage-
rup property if, and only if, one of its box space admits a fibred coarse embedding
into a Hilbert space. The goal of this note is to extend this result to the class of
Lp spaces (for a fixed p ≥ 1).
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Theorem 1.1. Let Γ be a finitely generated, residually finite group, (Γi)i∈N∗ be a nested
sequence of finite index normal subgroups of Γ with trivial intersection and 1 ≤ p < ∞.
Then Γ has property PLp if, and only if, the box space �{Γi}

Γ admits a fibred coarse
embedding into a Lp space.

We also give a direct proof of the following proposition which extends to Lp

spaces a result of Roe in the setting of Hilbert spaces (see [Roe03]).

Proposition 1.2. Let Γ be a finitely generated, residually finite group, (Γi)i∈N∗ be a nes-
ted sequence of finite index normal subgroups of Γ with trivial intersection and
1 ≤ p < ∞. If the box space �{Γi}

Γ admits a coarse embedding into a Lp space, then Γ

has property PLp.

Theorem 1.1 and Proposition 1.2 can be stated for other classes of Banach
spaces instead of Lp spaces. In fact, the proof of the necessary condition (see Pro-
position 3.4) and the proof of Proposition 1.2 only use the fact that the class of
Lp spaces (for a fixed 1 ≤ p < ∞) is a class B of Banach spaces satisfying the
following properties :

1. B is closed under taking some particular normed finite powers i.e. :

for every n ∈ N
∗ and every B ∈ B, there exists a norm N on R

n such that :

— there exists c ≥ 0 such that, for all K, K′ ≥ 0 the n-cube {x ∈ R
n |

K ≤ xi ≤ K′} is contained in the annulus {x ∈ R
n | cK ≤ N(x) ≤ cK′}

- or, in other words, for all x ∈ R
n, if the components of x are controlled

below by K and above by K′ then so does 1
c N(x) ;

— the Banach space Bn endowed with the norm ‖·‖ = N(‖π1(·)‖B, ...,
‖πn(·)‖B) belongs to B (where πi is the canonical projection of Bn on
its i-th factor).

In the Lp case, for n ∈ N
∗, the norm of ℓn

p = ℓp({1, ..., n}) fits, and c = n
1
p .

2. B is closed under ultraproducts (see Definition 3.2).
In the Lp case, the stability by ultraproduct is a result due to Krivine (see
[Kri67] Theorem 1 and its application p.17).

For a class of Banach spaces B, property PB is an analog of the Haagerup pro-
perty viewed with the Gromov’s definition of a-T-menability (definition in terms
of isometric affine actions, see [Gro93] or [CCJ+01]) where the class of Hilbert
spaces is replaced by the class B. One of the motivation in the study of this pro-
perty is given by a result of Kasparov and Yu in [KY12] which asserts that groups
admitting coarse embeddings into uniformly convex Banach spaces satisfy the
Novikov conjecture (in particular, groups having property PB where B is a sub-
class of uniformly convex Banach spaces admit such embeddings).

An isometric affine action of a group Γ on a Banach space B is a morphism α of
Γ into the group Aff(B) ∩ Isom(B) of affine isometric transformations of B ; such
an action can be characterized by the following decomposition :

α(g)v = π(g)v + b(g), for all g ∈ Γ, v ∈ B,
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where π is an isometric representation of Γ on B and b is a 1-cocycle with respect
to π i.e., for all g, h ∈ Γ, b(gh) = π(g)b(h) + b(g).
The action α is said to be proper if ‖b(g)‖B −→

g→∞
+∞.

Definition 1.3. Let B be a class of Banach spaces. A (discrete) group Γ is said to have
property PB if there exists a proper isometric affine action of Γ on some Banach space
B ∈ B.

Many recent progress has been made in the study of isometric affine actions
on Banach spaces, and more particularly in the case of Lp spaces for a fixed
1 ≤ p < ∞. Bader, Furman, Gelander, Monod studied the relationships between
two different generalizations of Kazhdan’s property (T), namely property FLp

and property (TLp) in [BFGM07]. On the other hand, property PLp, also refer-
red as a-FLp-menability by some authors, is a strong negation of property FLp .
Examples of PLp groups are given by [Yu05], where Yu proved that, for a discrete
hyperbolic group Γ, there exists 2 ≤ p0 < ∞ such that Γ has property PLp for all
p ≥ p0 ; or by [CTV08], where Cornulier, Tessera, Valette showed that the hyper-
bolic simple Lie group Sp(n, 1) has property PLp for all p > 4n + 2. We give here
an overview of what is known about the links between property PLp and PLq for
various values of p and q :

(1) Haagerup (=PL2) ⇒ PLp for all 1 ≤ p < ∞

(2) PLp for some 1 ≤ p ≤ 2 ⇔ Haagerup
(3) PLp for some p > 2 ; Haagerup

(4) PLp for some p > 2 ⇒
??

PLq for all q > p

Implication (1) was proved in [CMV04] by Cherix, Martin and Valette for coun-
table discrete groups, using the notion of spaces with measured walls. Equi-
valence (2) follows from results of Delorme-Guichardet ([Gui72], [Del77]) and
Akemann-Walter ([AW81]). See [CDH10] Corollary 1.5 and Remark 1.6 for proofs
and discussions about (1) and (2) in the setting of second countable, locally com-
pact groups.
Assertion (3) follows from the fact that a discrete hyperbolic group with property
(T) fails the Haagerup property but has PLp for some p > 2 by Yu’s result quoted
before. We mention that assertion (4) is still an open question which appears in
[CDH10], Question 1.8.

Concerning stability, property PLp (for a fixed p > 2) is closed under taking
closed subgroups, direct sums, amalgamated free products over finite subgroups
(see [Pil15] and [Arn13] for proofs of this result with different approaches) but it
is not stable by extension in general. However, using a construction of Cornulier,
Stalder and Valette in [CSV12], the author showed in [Arn14] that property PLp

is closed under wreath product by Haagerup groups. We would like to mention
that Haagerup property is stable by amenable extensions, but for property PLp

with p > 2, it remains an open problem.
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Remark 1.4. 1) Notice that unlike in the Hilbert spaces case, property PLp is no longer
equivalent to property HLp i.e. the existence of a C0 representation on some Lp space
which almost has invariant vectors. For instance, a discrete hyperbolic group with pro-
perty (T) has property PLp for some p > 2, but it also has property (TLp) for all p ≥ 1
(see [BFGM07]) which is a strong negation of property HLp.

2) Every metric space admits a coarse embedding into some L∞ space and every finitely
generated group has property PL∞ (see Remark 2.2). Hence Theorem 1.1 and Proposition
1.2 are also true but trivial for p = ∞.

Definition 1.5. Let Γ be a finitely generated, residually finite group and let Γ1 D ... D
Γi D ... be a nested sequence of finite index normal subgroups of Γ such that

⋂∞
i=1 Γi =

{e}. The box space associated with the sequence {Γi}i∈N∗ , denoted by �{Γi}
Γ or simply

�Γ, is the coarse disjoint union
⊔∞

i=1 Γ/Γi of the finite quotient groups, i.e., the disjoint
union where each quotient is endowed with the metric induced by the image of the genera-
ting set of Γ, and the distances between the identity elements of two successive quotients
are chosen to be greater than the maximum of their diameters.

There is a large spectrum of analytic properties of a group Γ which link to
geometric properties of its box space �Γ. As in [CWW13], we summarize here
different correspondances :

Γ amenable ⇔ �Γ Property A
Γ Property (T) ⇔ �Γ geometric Property (T)
Γ Haagerup ⇔ �Γ fibred coarsely embeddable into Hilbert space

Γ Property PLp ⇔ �Γ fibred coarsely embeddable into some Lp

Γ Property PLp ⇐ �Γ coarsely embeddable into some Lp

The first equivalence was established by Roe in [Roe03] where Property A is
a non-equivariant version of amenability defined by Yu ([Yu00]) which guaran-
tees coarse embeddability into Hilbert spaces. The second one is due to Willett
and Yu in [WY12] where they introduced the notion of geometric property (T).
For a coarse disjoint union of finite graphs, geometric property (T) implies the
property of being an expander. The third equivalence is the result of Chen, Wang
and Wang ([CWW13]) mentioned in the introduction.
The last two assertions are proved in the present note. In [Roe03], Roe establi-
shed the last implication in the Hilbert case (p = 2 case) ; and notice that the
converse implication fails. In fact, on one hand, the free group on two generators
has the Haagerup property, and on the other hand, it has property (τ) with res-
pect to some sequences of finite index normal subgroups (see [Lub10]) : hence,
the associated box spaces are expanders, which implies that they are not coarsely
embaddable into Hilbert space.

In a more general setting, Mimura and Sako have studied, in their forthcoming
paper ”Group approximation in Cayley topology and coarse geometry, part II”,
the relationship between fibred coarse embeddability of a sequence of marked
finite groups in the space of k-marked finite groups and proper isometric affine
actions of groups in the Cayley boundary (see [MS13] for details about this no-
tion) of this sequence.
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2 Fibred Coarse embeddings into Banach spaces

We recall here the notion of coarse embedding and the notion of fibred coarse
embedding introduced in [CWY13] where the notion of Banach spaces replaces
the original Hilbert spaces model.

Definition 2.1. Let (X, d) be a metric space and B be a Banach space. A map f : X → B
is said to be a coarse embedding of X into B if there exist two non-decreasing functions
ρ1 and ρ2 from [0,+∞) to (−∞,+∞) with limr→+∞ ρi(r) = +∞ for i = 1, 2, such
that, for all x, y ∈ X :

ρ1(d(x, y)) ≤ ‖ f (x)− f (y)‖ ≤ ρ2(d(x, y)).

Remark 2.2. Every metric space (X, d) admits a coarse embedding into ℓ∞(X) via, for
a fixed x0 ∈ X, the map

f : x → {y 7→ d(x, y)− d(x0, y)}.

In fact, f is an isometric embedding.
Moreover, for a finitely generated group Γ endowed with the word metric d induced by a
finite generating set, the same map f : g 7→ {h 7→ d(g, h)− d(eΓ , h)} is a proper cocycle
with respect to the left regular representation on ℓ∞(Γ). Hence, every finitely generated
group has property PL∞.

Definition 2.3. A metric space (X, d) is said to admit a fibred coarse embedding into
a Banach space B, if there exist :

1. a field of Banach spaces (Bx)x∈X over X such that each Bx is affinely isometric to B ;

2. a section s : X →
⊔

x∈X Bx (i.e. s(x) ∈ Bx) ;

3. two non-decreasing functions ρ1 and ρ2 from [0,+∞) to (−∞,+∞) with
limr→+∞ ρi(r) = +∞ for i = 1, 2 such that :
for any r > 0, there exists a bounded subset Kr ⊂ X for which there exists a
“trivialization”

tC : (Bx)x∈C → C × B

for each subset C ⊂ X r Kr of diameter less than r ; that is, a map from (Bx)x∈C to
the constant field C × B over B such that the restriction to the fibre Bx for x ∈ C is
an affine isometry tC : Bx → B, satisfying the following conditions :
i) for any x, y ∈ C, ρ1(d(x, y)) ≤ ‖tC(x)(s(x))− tC(y)(s(y))‖B ≤ ρ2(d(x, y)) ;
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ii) for any two subsets C1, C2 ⊂ X r Kr of diameter less than r with C1 ∩ C2 6=
∅, there exists a bijective affine isometry tC1C2

: B → B such that tC1
(x) ◦

tC2
(x)−1 = tC1C2

, for all x ∈ C1 ∩ C2.

Remark 2.4. Let (X, d) be a metric space and B be a Banach space. If X coarsely embeds
into B then X fibred coarsely embeds into B. In fact, if f : X → B is a coarse embedding
with control functions ρ1, ρ2 then a fibred coarse embedding of X into B is given by :

1. the field of Banach spaces (Bx)x∈X where Bx := B for all x ∈ X ;

2. the section s : x 7→ f (x) ∈ B = Bx ;

3. the two control functions ρ1 and ρ2 and for each r > 0, considering Kr = ∅,
for all C of diameter less than r, the “trivial“ trivialisation given by, for x ∈ X,
tC(x) = IdB (which satisfies condition i) and ii) since f is a coarse embedding).

The following proposition is proved by Chen, Wang and Wang in [CWW13]
(see Proposition 1.4) in the general setting of fibred coarse embeddings into metric
spaces.

Proposition 2.5. Let Γ be a finitely generated, residually finite group. If Γ acts properly
isometrically on a metric space Y, then any box space�Γ admits a fibred coarse embedding
into Y.

We can then the reformulate this statement in the context of property PB :

Corollary 2.6. Let Γ be a finitely generated, residually finite group and B a class of
Banach spaces. If Γ has property PB, then any box space �Γ admits a fibred coarse em-
bedding into some Banach space B ∈ B.

3 Proof of the main results

Definition 3.1. Let Γ be a finitely generated group and r be a non-negative real.

i) Let X be a set. A map α : Γ × X → X is said to be a r-local action of G on X if :
— for all g ∈ Γ such that d(e, g) < r, α(g) : X → X is a bijection ;
— for all g, h ∈ Γ such that d(e, g), d(e, h), d(e, gh) are less than r,

α(gh) = α(g)α(h).

ii) Let B be a Banach space. A map π : Γ × B → B is said to be a r-local isometric
representation of G on B if π is a r-local action of Γ on B and for all g ∈ Γ such that
d(e, g) < r, π(g) : B → B is a linear isometry.

In this case, a map b : Γ → B such that, for all g, h ∈ Γ such that d(e, g), d(e, h), d(e, gh)
are less than r, π(g)b(h) + b(g) = b(gh), is called a r-local cocycle with respect to
π.

iii) Let B be a Banach space. A map α : G × B → B is called a r-local isometric
affine action of Γ on B if it can be written as α(g)· = π(g)· + b(g) where π is a
r-local isometric representation and b is a r-local cocycle with respect to π.
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Using the notion of ultrafilters and ultraproducts, one can build a global iso-
metric affine action from a family of r-local isometric affine actions with r → +∞.

Let U be a non-principal ultrafilter on N
∗ i.e. U is a subset of P(N∗) stable by

intersection such that :
— the empty set ∅ does not belong to U ,
— for all A, B ∈ P(N∗) such that A ⊂ B, A ∈ U implies B ∈ U ,
— for all A ∈ P(N∗), A ∈ U or X \ A ∈ U .
— finite subsets of N

∗ do not belong to U .

The U -limit of a bounded real valued sequence (xr)r∈N∗ is the unique x ∈ R

denoted by limU xr such that for all ε > 0, the set {r ∈ N
∗ | |xr − x| ≤ ε} belongs

to U .

Definition 3.2. Let (Br)r∈N∗ be a family of Banach spaces and consider the space
ℓ∞(N∗, (Br)r∈N∗) of sequences (ar)r∈N∗ satisfying that there exists K ≥ 0 such that
for all r ∈ N

∗, ar ∈ Br with ‖ar‖Bi
≤ K.

The ultraproduct BU of the family (Br)r∈N∗ with respect to a non-principal ultrafil-
ter U is the space ℓ∞(N∗, (Br))/ ∼U endowed with the norm ‖(ar)‖BU

:= limU ‖ar‖Br

where, for (ar), (br) ∈ ℓ∞(N∗, (Br)),

(ar) ∼U (br) if, and only if, ‖(ar)− (br)‖BU
= 0.

Lemma 3.3. Let Γ be a finitely generated group, (Br)r∈N∗ be a family of Banach spaces
and BU be the ultraproduct of the family (Br) with respect to a non-principal ultrafilter
U on N

∗. For each r ∈ N
∗, assume that Γ admits a r-local isometric affine action αr on

Br with αr(g)· = πr(g)· + br(g).
If, for all g ∈ Γ, (br(g))r∈N∗ belongs to BU , then there exists an isometric affine action α
of G on BU of the family (Br) such that α(g)· = π(g)· + b(g) where π is an isometric
representation of Γ on BU and b : G → BU is a cocycle with respect to π satisfying, for
g ∈ Γ :

b(g) = (br(g))r∈N∗ .

Démonstration. For g ∈ Γ, we define π(g) : BU → BU by, for a = (ar)r∈N∗ ∈ BU ,

π(g)a = (πr(g)ar)r∈N∗ ;

and we set b(g) = (br(g))r∈N∗ ∈ BU .
Let g, h ∈ Γ. For all r ∈ N

∗ such that r > max(d(e, g), d(e, h), d(e, gh)), we
have, for all (ar) ∈ BU , πr(g)πr(h)ar = πr(gh)ar and then the set {r ∈ N

∗ |
πr(g)πr(h)ar = πr(gh)ar} belongs to U . Hence, for all g, h ∈ Γ, π(g)π(h) =
π(gh). Now, for g ∈ Γ, since for all r large enough, πr(g) is an isometric isomor-
phism of Br, it follows, by a similar argument, that π(g) is an isometric isomor-
phism of BU .
Thus, π is an isometric representation of Γ on BU .
Let g, h ∈ Γ. For all r ∈ N

∗ such that r > max(d(e, g), d(e, h), d(e, gh)), we have
br(gh) = πr(g)br(h) + br(g). Hence, for all g, h ∈ Γ, b(gh) = π(g)b(h) + b(g)
and then, b is a cocycle with respect to π. It follows that the map α such that
α(g)· = π(g)· + b(g) is an isometric affine action of Γ on BU .
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Proof of Proposition 1.2. Let 1 ≤ p < ∞. Let {Γn}n∈N∗ be a nested sequence of
finite index normal subgroups of Γ with trivial intersection such that the associa-
ted box space �Γ admits a coarse embedding f into a Lp space denoted by B with
control functions ρ1, ρ2.
Let n ∈ N

∗ and denote Xn := Γ/Γn. Let us consider the Banach space ℓp(Xn, B)
endowed its canonical norm : for a vector ξ =

⊕

z∈Xn
ξz ∈ ℓp(Xn, B),

‖ξ‖p =

(

∑
z∈Xn

‖ξz‖
p
B

)
1
p

.

For x ∈ Xn, we define the following vector of ℓp(Xn, B) :

b̃n(x) :=
1

(#Xn)
1
p

⊕

z∈Xn

( f (zx) − f (z)) ;

and let σ̃n be the isometric representation of Xn on ℓp(Xn, B) such that for
ξ =

⊕

z∈Xn
ξz,

σ̃n(x)ξ =
⊕

z∈Xn

ξzx.

Then b̃n : Xn → ℓp(Xn, B) is a cocycle with respect to σ̃n. In fact, b̃n is the
1-coboundary associated with the vector ξ = 1

(#Xn)
1
p

⊕

z∈Xn
f (z) i.e. b̃n(x) =

σ̃n(x)ξ − ξ.

Moreover, since f is a coarse embedding, we have, for all x ∈ Xn :

ρ1(dXn(x, e)) ≤ ‖b̃n(x)‖p ≤ ρ2(dXn(x, e)),

where e is the identity element of Xn.

Now, for each r ∈ N
∗, choose nr such that the canonical quotient map

πnr : Γ ։ Xnr is r-isometric and define σr := σ̃nr ◦ πnr and br := b̃nr ◦ πnr . Thus,
for every r, br is a cocycle with respect to the isometric representation σr of Γ on
ℓp(Xnr , B) and we have, for g ∈ Γ such that dΓ(g, eΓ) < r :

ρ1(dΓ(g, e)) ≤ ‖br(g)‖p ≤ ρ2(dΓ(g, eΓ)). (∗)

Let U be a non-principal ultrafilter on N
∗ and BU be the ultraproduct of

(ℓp(Xnr , B))r∈N∗ . For each r, the map αr defined by αr(g)· := πr(g)· + br(g) for
g ∈ Γ, is an isometric affine action. By (∗), for all g ∈ Γ, (br(g))r∈N∗ belongs to
BU .
Hence, by Lemma 3.3, there exists an isometric affine action α of Γ on BU such
that b : g 7→ (br(g)) is a cocycle for this action. Moreover, for g ∈ Γ, since for all r
large enough, ρ1(dΓ(g, e)) ≤ ‖br(g)‖p , we have, again by (∗) :

ρ1(dΓ(g, e)) ≤ ‖b(g)‖BU
;

hence α is proper. As the class of Lp spaces is closed under p-normed powers and
ultraproduct, it follows that Γ has property PLp.
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For the next proposition, the steps of the proof are essentially the same as in
the proof of Proposition 1.2. But, in this case, since for a given constant r, the
trivialization of a fibred coarse embedding is defined on subsets of diameter less
than r, we need to ”r-localize“ our construction of isometric affine actions of the
quotient groups Γ/Γnr .

Proposition 3.4. Let 1 ≤ p < ∞ and let Γ be a finitely generated, residually finite
group. If a box space �Γ of Γ admits a fibred coarse embedding into some Lp space, then
Γ has property PLp.

Démonstration. Let 1 ≤ p < ∞. Let {Γn}n∈N∗ be a nested sequence of finite index
normal subgroups of Γ with trivial intersection such that the associated box space
�Γ admits a fibred coarse embedding into a Lp space denoted by B.
We set Xn = Γ/Γn and X =

⊔

n∈N∗ Xn(= �Γ). Let r ∈ N
∗. By Definition 2.3,

there exist Kr and a trivialization tC for each C ⊂ X r Kr of diameter less than 2r
satisfying conditions i) and ii).

Now, choose nr large enough such that Xnr ⊂ X r Kr and the quotient map
πnr : Γ ։ Xnr is r-isometric, i.e., for each subset Y ⊂ Γ of diameter less than
r, (πnr)|Y is an isometry onto its image.

For z ∈ Xnr , we denote by Cz := {x ∈ Xnr | dXnr
(z, x) < r} the r-ball centered in

z of Xnr and we set, for x ∈ Xnr , the following vector cz
r(x) of B :

cz
r(x) :=

{

tCz
(z)(s(z)) − tCz

(zx)(s(zx)) if dXnr
(e, x) < r (i.e x ∈ Ce);

0 otherwise,

where e is the identity element of Xnr . Notice that, by Definition 2.3 3. i) for any
z ∈ Xnr and any x ∈ Ce,

ρ1(dXnr
(e, x)) ≤ ‖cz

r(x)‖B ≤ ρ2(dXnr
(e, x)).

Let us consider the map b̃r : Xnr → ℓp(Xnr , B), defined by, for x ∈ Xnr :

b̃r(x) =
1

(#Xnr)
1
p

⊕

z∈Xnr

cz
r(x).

The space ℓp(Xnr , B) is endowed with its canonical norm i.e. for ξ =
⊕

z∈Xnr
ξz ∈

ℓp(Xnr , B),

‖ξ‖p =

(

∑
z∈Xnr

‖ξz‖
p
B

)
1
p

.

Hence, for x /∈ Ce, b̃r(x) vanishes, and for x ∈ Ce, ρ1(dXnr
(e, x)) ≤ ‖b̃r(x))‖p ≤

ρ2(dXnr
(e, x)).

We claim that b̃r(x) is a r-local cocycle for a r-local isometric representation σ̃r that
we define as follows :
For x ∈ Ce and z ∈ Xnr , let ρCzCzx be the linear part of the affine isometry tCzCzx :
B → B. We define σ̃r(x) : ℓp(Xnr , B) → ℓp(Xnr , B) by :
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σ̃r(x)(ξ) :=

{

⊕

z∈Xnr
ρCzCzx(ξzx) if x ∈ Ce;

ξ otherwise,

for ξ =
⊕

z∈Xnr
ξz ∈ ℓp(Xnr , B).

The map σ̃r is indeed a r-local isometric representation : it is clear that σ̃r(x) is an
isometric isomorphism for all x ∈ Xnr ; moreover it follows from Definition 2.3.3.
ii) that tCzCzy

◦ tCzyCzyx
= tCzCzyx

for all x, y ∈ Ce with dXnr
(e, yx) < r, and then,

ρCzCzy
◦ ρCzyCzyx

= ρCzCzyx
. Hence, σ̃r(yx) = σ̃r(y)σ̃r(x).

Now, we have, for x, y ∈ Ce with dXnr
(e, yx) < r, σ̃r(y)(b̃r(x)) + b̃r(y) = b̃r(yx).

In fact, by noticing that for an affine isometry T with linear part ρ, ρ(x − y) =
Tx − Ty, we have :

ρCzCzy(c
zy
r (x)) + cz

r(y)

= ρCzCzy

(

tCzy
(zy)(s(zy)) − tCzy

(zyx)(s(zyx))
)

+ cz
r(y)

= tCzCzy ◦ tCzy(zy)(s(zy)) − tCzCzy ◦ tCzy(zyx)(s(zyx)) + cz
r(y)

= tCz(zy)(s(zy)) − tCz(zyx)(s(zyx)) + tCz(z)(s(z)) − tCz(zy)(s(zy))

= tCz
(z)(s(z)) − tCz

(zyx)(s(zyx)) = cz
r(yx)

since tCzCzy ◦ tCzy(zy) = tCz(zy) (by Definition 2.3.3. ii)) .

It follows that :

σ̃r(y)(b̃r(x)) + b̃r(y) =
1

(#Xnr )
1
p

⊕

z∈Xnr

(

ρCzCzy(c
zy
r (x)) + cz

r(y)
)

= b̃r(yx)

which proves our claim.

Now, let σr := σ̃r ◦ πnr and br = b̃r ◦ πnr be the lifts of σ̃r and b̃r to the r-ball
{g ∈ Γ | dΓ(eΓ, g) < r} of Γ and define σr = Id, br = 0 outside the r-ball of Γ.
Then σr is a r-local isometric representation action of Γ on ℓp(Xnr , B), br is a r-local
cocycle with respect to σr. Then the map αr such that αr(g)· := σr(g)· + br(g) is
a r-local isometric affine action of Γ on ℓp(Xnr , B) and we have, for g ∈ Γ with
dΓ(eΓ, g) < r :

ρ1(dΓ(eΓ, g)) ≤ ‖br(g)‖p ≤ ρ2(dΓ(eΓ, g)).

From these local isometric affine actions, we build a global isometric affine
action of Γ thanks to Lemma 3.3.
Let U be a non principal ultrafilter on N

∗, and let BU be the ultraproduct of the fa-
mily (ℓp(Xnr , B))r∈N∗ with respect to U . For each r ∈ N

∗, αr is a r-local isometric
affine action of Γ on ℓp(Xnr , B) and since, for any g ∈ Γ, ‖br(g)‖p ≤ ρ2(dΓ(eΓ, g))
for all r ∈ N

∗, (br(g))r∈N∗ belongs to BU . Hence, by Lemma 3.3, there exists an
isometric affine action α of Γ on BU such that b : g 7→ (br(g)) is a cocycle with res-
pect to the linear part of this action. Moreover, since for any g ∈ Γ, ρ1(dΓ(eΓ, g)) ≤
‖br(g)‖p for all r large enough, we have, for all g ∈ Γ : ρ1(dΓ(eΓ, g)) ≤ ‖b(g)‖BU

,
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and thus, α is proper.

As the class of Lp spaces is closed under p-normed powers and ultraproduct, it
follows that Γ has property PLp.

Proof of Theorem 1.1. It follows from Corollary 2.6 and Proposition 3.4.
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PhD thesis, Université de Paris, 1967.
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Université de Tours
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