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Abstract

In this paper, we establish the greatest lower bound for the product
Bi(K)Bi(K

∗) of the width-integrals of index i of convex body K. Further, the
greatest lower bound for the product of the mixed width-integrals
Ap,i(K)Ap′,i(K

∗) for the mixed width-integrals is given.

1 Introduction

Throughout the paper all convex bodies are assumed to contain the origin in
their interior. Polar dual convex bodies are useful in geometry of numbers [16],
Minkowski geometry [9, 10] and differential equations [11]. Chakerian [5] uses
polar duals to discuss self-circumference of unit circles in a Minkowski plane.
The upper bound for the product of volumes of a convex body and its polar dual
is the well-known The Blaschke-Santaló inequality as follows.

If K is a convex body, then

V(K)V(K∗) ≤ ω2
n, (1.1)

with equality if and only if K is an ellipsoid, where K∗ is polar dual of K and ωn

is the volume of the unit ball.
The Blaschke-Santaló inequality is due to Blaschke [2] for n = 2, 3 and Santaló

[22] for n ≥ 2 (See also the comments of Schneider [23]). For a good discussion of
the Blaschke-Santaló inequality and a further list of references, see Lutwak [17].
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On the lower bound, Steinhardt [24] showed that for planar convex bodies,

W1(K)W1(K
∗) ≥ ω2

2 or S(K)S(K∗) ≥ 4ω2
2,

where, K is a convex body in R
2 and S(K) is the surface area of K. Chai and

Lee [4] also found a lower bound of W1(K)W1(K
∗) for all convex bodies K. On

the other hand, Lutwak [18] (also see Ghandehari [14]) found a lower bound of
Wn−1(K)Wn−1(K

∗) for all convex bodies K as follows

Wn−1(K)Wn−1(K
∗) ≥ ω2

n, (1.2)

with equality if and only if K is a ball (centered at the origin).
This was obtained by Firey [8] for dimensions 2 and 3.
However, the problem of finding the lower bound of the product Wi(K)Wi(K

∗)
for all convex bodies, for each i, is not solved completely yet. This is a open prob-
lem in Lutwak [18] and Ghandehari [14]. Also see Bambah [1], Dvoretzky and
Rogers [6], Firey [7], Guggenheimer [12, 13], Heil [15], and Steinhardt [24] for
partial results.

Lutwak [19] defined the mixed width-integral

A(K1, . . . , Kn) =
1

n

∫

Sn−1
b(K1, u) · · · b(Kn, u)dS(u),

where b(K, ·) is half the width of convex body K in the direction u.
Just as the cross-sectional measures Wi(K) are defined to be the special mixed

volumes V(K, . . . , K
︸ ︷︷ ︸

n−i

, B, . . . , B
︸ ︷︷ ︸

i

), the width-integrals of index i, Bi(K) (see Sec. 2)

can be defined as the special mixed width-integrals A(K, . . . , K
︸ ︷︷ ︸

n−i

, B, . . . , B
︸ ︷︷ ︸

i

).

In the paper, for the width-integrals of index i, we discuss a problem similar to
above open question: we first establish the greatest lower bound of the product
Bi(K)Bi(K

∗) as follows.
For a convex body K and its polar dual K∗, and 0 ≤ i ≤ n

Bi(K)Bi(K
∗) ≥ ω2

n, (1.3)

with equality if and only if K is a n-ball.
For a real number, Lutwak [19] also defined the mixed width-integral of order

p (p 6= 0) by

Ap(K1, . . . , Kn) = ωn

[
1

nωn

∫

Sn−1
b(K1, u)p · · · b(Kn, u)pdS(u)

]1/p

.

For p equal to −∞, 0 or ∞ the mixed width-integral of order p was defined by

Ap(K1, . . . , Kn) = lim
s→p

As(K1, . . . , Kn).

The width-integral of order Ap,i(K) is defined as the special mixed width-
integral Ap(K, . . . , K

︸ ︷︷ ︸

n−i

, B, . . . , B
︸ ︷︷ ︸

i

), and called the i-th width-integral of order p.
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Another aim of the paper is to establish the greatest lower bound of the
product Ap,i(K)Ap′ ,i(K

∗).
For a convex body K and its polar dual K∗, if 0 ≤ i ≤ n, and the conjugate

exponent p′ =
p

p − 1
and p > 1, then

Ap,i(K)Ap′ ,i(K
∗) ≥ ω2

n, (1.4)

with equality if and only if K is a n-ball.

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space R
n(n ≥ 2). Let Kn

denote set of all convex bodies (compact, convex subsets and contain the origin
in their interior) in R

n. We reserve the letter u for unit vectors, and the letter B is
reserved for the unit ball centered at the origin. The surface of B is Sn−1.

A set A is said to be centered if −x ∈ A whenever x ∈ A, and centrally
symmetric if there is a vector c such that the translate A− c of A by −c is centered.
For each direction u ∈ Sn−1, we define the support function h(K, u) on Sn−1 of
the convex body K by

h(K, u) = max{u · x|x ∈ K},

and the radial function ρ(K, u) on Sn−1 of the convex body K is

ρ(K, u) = max{λ > 0|λµ ∈ K}.

Let δ denote the Hausdorff metric on Kn; i.e., for K, L ∈ Kn,

δ(K, L) = |hK − hL|∞,

where | · |∞ denotes the sup-norm on the space of continuous functions, C(Sn−1).
The polar dual of a convex body K that contains the origin in its interior,

denoted by K∗, is another convex body defined by

K∗ = {y|x · y ≤ 1, for all x ∈ K}.

The polar dual has the following well known property:

h(K∗, u) =
1

ρ(K, u)
and ρ(K∗, u) =

1

h(K, u)
. (2.1)

The outer parallel set of K at the distance λ > 0, Kλ, is given by

Kλ = K + λB.

Then the volume V(Kλ) is a polynomial in λ whose coefficients Wi(K) are
geometric invariants of K:

V(K + λB) =
n

∑
i=1

(n
i )Wi(K)λ

i .
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The functionals Wi(K)(i = 0, . . . , n) are called the i − th quermassintegrals of K.
The following is true:

W0(K) = V(K); nW1(K) = S(K); Wn(K) = ωn, (2.2)

where V(K) and S(K) are the volume and surface area of K, respectively and ωn

is the volume of the unit ball B in R
n.

For u ∈ Sn−1,

b(K, u) :=
1

2
(h(K, u) + h(K,−u)) (2.3)

is defined to be half the width of K in the direction u. Two convex bodies K
and L are said to have similar width if there exists a constant λ > 0 such that
b(K, u) = λb(L, u) for all u ∈ Sn−1. Width-integrals were first considered by
Blaschke (see [3]). The width-integral of index i is defined by Lutwak [20]. For
K ∈ Kn, i ∈ R

Bi(K) =
1

n

∫

Sn−1
b(K, u)n−idS(u). (2.4)

The width-integral of index i is a map Bi : Kn → R. It is positive, continuous,
homogeneous of degree (n − i) and invariant under motion.

3 The lower bound for Bi(K)Bi(K
∗)

Theorem 3.1 If K1, . . . , Kn ∈ Kn, then,

A(K1, . . . , Kn)A(K∗
1 , . . . , K∗

n) ≥ ω2
n, (3.1)

with equality if and only if Ki(i = 1, . . . , n) are n-balls.
Proof From (2.3) and in view of the definition of the mixed width-integrals,

we have

A(K1, . . . , Kn) =
1

n

∫

Sn−1

n

∏
i=1

1

2
(h(Ki , u) + h(Ki,−u))dS(u).

For any convex body K, in view of the following fact

h(K, u) + h(K,−u)

2
≥

ρ(K, u) + ρ(K,−u)

2
. (3.2)

Notes that for any convex body K

h(K, u) ≥ ρ(K, u),

with equality for all u if and only if K is a ball centered at the origin. This follows
that the equality in (3.2) holds if and only if K is n-ball (centered at the origin).

On the other hand, by using the Arithmetic-Harmonic means inequality (see
[21, p.27]), we have

ρ(K, u) + ρ(K,−u)

2
≥

2

ρ(K, u)−1 + ρ(K,−u)−1
, (3.3)
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with equality if and only if ρ(K, u) = ρ(K,−u), it follows if and only if K is n-ball
(centered at the origin).

Hence

A(K1, . . . , Kn) ≥
1

n

∫

Sn−1

n

∏
i=1

2

ρ(Ki, u)−1 + ρ(Ki,−u)−1
dS(u). (3.4)

On the other hand, from (2.1) and (2.3), we have

A(K∗
1 , . . . , K∗

n) =
1

n

∫

Sn−1
b(K∗

1 , u) · · · b(K∗
n, u)dS(u)

=
1

n

∫

Sn−1

n

∏
i=1

1

2
(h(K∗

i , u) + h(K∗
i ,−u))dS(u)

=
1

n

∫

Sn−1

n

∏
i=1

ρ(Ki , u)−1 + ρ(Ki,−u)−1

2
dS(u) (3.5).

Therefore, from (3.4) and (3.5), we obtain

A(K1, . . . , Kn)A(K∗
1 , . . . , K∗

n) ≥
1

n2

∫

Sn−1

n

∏
i=1

2

ρ(Ki, u)−1 + ρ(Ki,−u)−1
dS(u)

×
∫

Sn−1

n

∏
i=1

ρ(Ki, u)−1 + ρ(Ki ,−u)−1

2
dS(u).

In view of the well-known inequality: If f ∈ C(Sn−1) and f (u) > 0, then
∫

Sn−1
f (u)du

∫

Sn−1
f (u)−1du ≥ n2ω2

n, (3.6)

with equality if and only if f (u) is constant.
Hence

A(K1, . . . , Kn)A(K∗
1 , . . . , K∗

n) ≥ ω2
n. (3.7)

If equality holds in (3.7) then equality must hold in particular in (3.2) and
hence K must be a ball centered at the origin.

Taking for K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = B in (3.1), (3.1) reduces
to the following result stated in the introduction. If K ∈ Kn and 0 ≤ i ≤ n, then

Bi(K)Bi(K
∗) ≥ ω2

n,

with equality if and only if K is a n-ball.
Theorem 3.2 If K1, . . . , Kn ∈ Kn, then

Ap(K1, . . . , Kn)Ap′(K
∗
1 , . . . , K∗

n) ≥ ω2
n, (3.8)

with equality if and only if Ki(i = 1, . . . , n) are n-balls.
Proof From (2.1), (2.3) and the definition of the mixed width-integrals of index

p, and in view of the Arithmetic-Harmonic means inequality, we obtain

Ap′(K
∗
1 , . . . , K∗

n) = ωn

(

1

nωn

∫

Sn−1

n

∏
i=1

(
h(K∗

i , u) + h(K∗
i ,−u)

2

)p′

dS(u)

)1/p′
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= ωn

(

1

nωn

∫

Sn−1

n

∏
i=1

(
ρ(Ki, u)−1 + ρ(Ki,−u)−1

2

)p′

dS(u)

)1/p′

≥ ωn

(

1

nωn

∫

Sn−1

n

∏
i=1

(
2

ρ(Ki, u) + ρ(Ki,−u)

)p′

dS(u)

)1/p′

, (3.9)

with equality if and only if ρ(Ki , u) = ρ(Ki ,−u), i = 1, . . . , n.
On the other hand, from (2.3), we have.

Ap(K1, . . . , Kn) = ωn

(
1

nωn

∫

Sn−1
bp(K1, u) · · · bp(Kn, u)dS(u)

)1/p

= ωn

(

1

nωn

∫

Sn−1

n

∏
i=1

(
h(Ki, u) + h(Ki ,−u)

2

)p

dS(u)

)1/p

. (3.10)

From (3.9), (3.10) and in view of Hölder’s inequality, we obtain

Ap(K1, . . . , Kn)Ap′(K
∗
1 , . . . , K∗

n) ≥

ωn

n

(
∫

Sn−1

n

∏
i=1

(
h(Ki , u) + h(Ki ,−u)

2

)p

dS(u)

)1/p

×

(
∫

Sn−1

n

∏
i=1

(
2

ρ(Ki, u) + ρ(Ki,−u)

)p′

dS(u)

)1/p′

≥
ωn

n

∫

Sn−1

n

∏
i=1

h(Ki , u) + h(Ki ,−u)

ρ(Ki , u) + ρ(Ki ,−u)
dS(u). (3.11)

For any convex body K
h(K, u) ≥ ρ(K, u), (3.12)

with equality for all u if and only if K is a ball centered at the origin.
Hence

Ap(K1, . . . , Kn)Ap′(K
∗
1 , . . . , K∗

n) ≥ ω2
n. (3.13)

From the equality conditions of (3.9), (3.12) and Hölder inequality, it follows
that the single of equality of (3.13) holds if and only if Ki(i = 1, . . . , n) are n-balls.

Taking for K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = B in (3.8), (3.8) changes
to the following result stated in the introduction

Ap,i(K)Ap′ ,i(K
∗) ≥ ω2

n,

with equality if and only if K is a n-ball.
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