On the lower bound for $B_{i}(K) B_{i}\left(K^{*}\right)$

Chang-Jian Zhao*

Abstract

In this paper, we establish the greatest lower bound for the product $B_{i}(K) B_{i}\left(K^{*}\right)$ of the width-integrals of index i of convex body K. Further, the greatest lower bound for the product of the mixed width-integrals $A_{p, i}(K) A_{p^{\prime}, i}\left(K^{*}\right)$ for the mixed width-integrals is given.

1 Introduction

Throughout the paper all convex bodies are assumed to contain the origin in their interior. Polar dual convex bodies are useful in geometry of numbers [16], Minkowski geometry [9, 10] and differential equations [11]. Chakerian [5] uses polar duals to discuss self-circumference of unit circles in a Minkowski plane. The upper bound for the product of volumes of a convex body and its polar dual is the well-known The Blaschke-Santaló inequality as follows.

If K is a convex body, then

$$
\begin{equation*}
V(K) V\left(K^{*}\right) \leq \omega_{n}^{2} \tag{1.1}
\end{equation*}
$$

with equality if and only if K is an ellipsoid, where K^{*} is polar dual of K and ω_{n} is the volume of the unit ball.

The Blaschke-Santaló inequality is due to Blaschke [2] for $n=2,3$ and Santaló [22] for $n \geq 2$ (See also the comments of Schneider [23]). For a good discussion of the Blaschke-Santaló inequality and a further list of references, see Lutwak [17].

[^0]On the lower bound, Steinhardt [24] showed that for planar convex bodies,

$$
W_{1}(K) W_{1}\left(K^{*}\right) \geq \omega_{2}^{2} \quad \text { or } \quad S(K) S\left(K^{*}\right) \geq 4 \omega_{2}^{2}
$$

where, K is a convex body in \mathbb{R}^{2} and $S(K)$ is the surface area of K. Chai and Lee [4] also found a lower bound of $W_{1}(K) W_{1}\left(K^{*}\right)$ for all convex bodies K. On the other hand, Lutwak [18] (also see Ghandehari [14]) found a lower bound of $W_{n-1}(K) W_{n-1}\left(K^{*}\right)$ for all convex bodies K as follows

$$
\begin{equation*}
W_{n-1}(K) W_{n-1}\left(K^{*}\right) \geq \omega_{n}^{2} \tag{1.2}
\end{equation*}
$$

with equality if and only if K is a ball (centered at the origin).
This was obtained by Firey [8] for dimensions 2 and 3.
However, the problem of finding the lower bound of the product $W_{i}(K) W_{i}\left(K^{*}\right)$ for all convex bodies, for each i, is not solved completely yet. This is a open problem in Lutwak [18] and Ghandehari [14]. Also see Bambah [1], Dvoretzky and Rogers [6], Firey [7], Guggenheimer [12, 13], Heil [15], and Steinhardt [24] for partial results.

Lutwak [19] defined the mixed width-integral

$$
A\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} b\left(K_{1}, u\right) \cdots b\left(K_{n}, u\right) d S(u)
$$

where $b(K, \cdot)$ is half the width of convex body K in the direction u.
Just as the cross-sectional measures $W_{i}(K)$ are defined to be the special mixed volumes $V(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$, the width-integrals of index $i, B_{i}(K)$ (see Sec. 2) can be defined as the special mixed width-integrals $A(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$.

In the paper, for the width-integrals of index i, we discuss a problem similar to above open question: we first establish the greatest lower bound of the product $B_{i}(K) B_{i}\left(K^{*}\right)$ as follows.

For a convex body K and its polar dual K^{*}, and $0 \leq i \leq n$

$$
\begin{equation*}
B_{i}(K) B_{i}\left(K^{*}\right) \geq \omega_{n}^{2} \tag{1.3}
\end{equation*}
$$

with equality if and only if K is a n-ball.
For a real number, Lutwak [19] also defined the mixed width-integral of order $p(p \neq 0)$ by

$$
A_{p}\left(K_{1}, \ldots, K_{n}\right)=\omega_{n}\left[\frac{1}{n \omega_{n}} \int_{S^{n-1}} b\left(K_{1}, u\right)^{p} \cdots b\left(K_{n}, u\right)^{p} d S(u)\right]^{1 / p}
$$

For p equal to $-\infty, 0$ or ∞ the mixed width-integral of order p was defined by

$$
A_{p}\left(K_{1}, \ldots, K_{n}\right)=\lim _{s \rightarrow p} A_{s}\left(K_{1}, \ldots, K_{n}\right)
$$

The width-integral of order $A_{p, i}(K)$ is defined as the special mixed widthintegral $A_{p}(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$, and called the i-th width-integral of order p.

Another aim of the paper is to establish the greatest lower bound of the product $A_{p, i}(K) A_{p^{\prime}, i}\left(K^{*}\right)$.

For a convex body K and its polar dual K^{*}, if $0 \leq i \leq n$, and the conjugate exponent $p^{\prime}=\frac{p}{p-1}$ and $p>1$, then

$$
\begin{equation*}
A_{p, i}(K) A_{p^{\prime}, i}\left(K^{*}\right) \geq \omega_{n}^{2} \tag{1.4}
\end{equation*}
$$

with equality if and only if K is a n-ball.

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space $\mathbb{R}^{n}(n \geq 2)$. Let \mathcal{K}^{n} denote set of all convex bodies (compact, convex subsets and contain the origin in their interior) in \mathbb{R}^{n}. We reserve the letter u for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The surface of B is S^{n-1}.

A set A is said to be centered if $-x \in A$ whenever $x \in A$, and centrally symmetric if there is a vector c such that the translate $A-c$ of A by $-c$ is centered. For each direction $u \in S^{n-1}$, we define the support function $h(K, u)$ on S^{n-1} of the convex body K by

$$
h(K, u)=\max \{u \cdot x \mid x \in K\},
$$

and the radial function $\rho(K, u)$ on S^{n-1} of the convex body K is

$$
\rho(K, u)=\max \{\lambda>0 \mid \lambda \mu \in K\} .
$$

Let δ denote the Hausdorff metric on \mathcal{K}^{n}; i.e., for $K, L \in \mathcal{K}^{n}$,

$$
\delta(K, L)=\left|h_{K}-h_{L}\right|_{\infty},
$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C\left(S^{n-1}\right)$.
The polar dual of a convex body K that contains the origin in its interior, denoted by K^{*}, is another convex body defined by

$$
K^{*}=\{y \mid x \cdot y \leq 1, \text { for all } x \in K\}
$$

The polar dual has the following well known property:

$$
\begin{equation*}
h\left(K^{*}, u\right)=\frac{1}{\rho(K, u)} \text { and } \rho\left(K^{*}, u\right)=\frac{1}{h(K, u)} . \tag{2.1}
\end{equation*}
$$

The outer parallel set of K at the distance $\lambda>0, K_{\lambda}$, is given by

$$
K_{\lambda}=K+\lambda B .
$$

Then the volume $V\left(K_{\lambda}\right)$ is a polynomial in λ whose coefficients $W_{i}(K)$ are geometric invariants of K :

$$
V(K+\lambda B)=\sum_{i=1}^{n}\binom{n}{i} W_{i}(K) \lambda^{i} .
$$

The functionals $W_{i}(K)(i=0, \ldots, n)$ are called the $i-t h$ quermassintegrals of K. The following is true:

$$
\begin{equation*}
W_{0}(K)=V(K) ; n W_{1}(K)=S(K) ; \quad W_{n}(K)=\omega_{n} \tag{2.2}
\end{equation*}
$$

where $V(K)$ and $S(K)$ are the volume and surface area of K, respectively and ω_{n} is the volume of the unit ball B in \mathbb{R}^{n}.

For $u \in S^{n-1}$,

$$
\begin{equation*}
b(K, u):=\frac{1}{2}(h(K, u)+h(K,-u)) \tag{2.3}
\end{equation*}
$$

is defined to be half the width of K in the direction u. Two convex bodies K and L are said to have similar width if there exists a constant $\lambda>0$ such that $b(K, u)=\lambda b(L, u)$ for all $u \in S^{n-1}$. Width-integrals were first considered by Blaschke (see [3]). The width-integral of index i is defined by Lutwak [20]. For $K \in \mathcal{K}^{n}, i \in \mathbb{R}$

$$
\begin{equation*}
B_{i}(K)=\frac{1}{n} \int_{S^{n-1}} b(K, u)^{n-i} d S(u) . \tag{2.4}
\end{equation*}
$$

The width-integral of index i is a map $B_{i}: \mathcal{K}^{n} \rightarrow \mathbb{R}$. It is positive, continuous, homogeneous of degree ($n-i$) and invariant under motion.

3 The lower bound for $B_{i}(K) B_{i}\left(K^{*}\right)$

Theorem 3.1 If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, then,

$$
\begin{equation*}
A\left(K_{1}, \ldots, K_{n}\right) A\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \omega_{n}^{2} \tag{3.1}
\end{equation*}
$$

with equality if and only if $K_{i}(i=1, \ldots, n)$ are n-balls.
Proof From (2.3) and in view of the definition of the mixed width-integrals, we have

$$
A\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{1}{2}\left(h\left(K_{i}, u\right)+h\left(K_{i},-u\right)\right) d S(u) .
$$

For any convex body K, in view of the following fact

$$
\begin{equation*}
\frac{h(K, u)+h(K,-u)}{2} \geq \frac{\rho(K, u)+\rho(K,-u)}{2} . \tag{3.2}
\end{equation*}
$$

Notes that for any convex body K

$$
h(K, u) \geq \rho(K, u)
$$

with equality for all u if and only if K is a ball centered at the origin. This follows that the equality in (3.2) holds if and only if K is n-ball (centered at the origin).

On the other hand, by using the Arithmetic-Harmonic means inequality (see [21, p.27]), we have

$$
\begin{equation*}
\frac{\rho(K, u)+\rho(K,-u)}{2} \geq \frac{2}{\rho(K, u)^{-1}+\rho(K,-u)^{-1}} \tag{3.3}
\end{equation*}
$$

with equality if and only if $\rho(K, u)=\rho(K,-u)$, it follows if and only if K is n-ball (centered at the origin).

Hence

$$
\begin{equation*}
A\left(K_{1}, \ldots, K_{n}\right) \geq \frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{2}{\rho\left(K_{i}, u\right)^{-1}+\rho\left(K_{i},-u\right)^{-1}} d S(u) \tag{3.4}
\end{equation*}
$$

On the other hand, from (2.1) and (2.3), we have

$$
\begin{align*}
& A\left(K_{1}^{*}, \ldots, K_{n}^{*}\right)=\frac{1}{n} \int_{S^{n-1}} b\left(K_{1}^{*}, u\right) \cdots b\left(K_{n}^{*}, u\right) d S(u) \\
& \quad=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{1}{2}\left(h\left(K_{i}^{*}, u\right)+h\left(K_{i}^{*},-u\right)\right) d S(u) \\
& \quad=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{\rho\left(K_{i}, u\right)^{-1}+\rho\left(K_{i},-u\right)^{-1}}{2} d S(u) \tag{3.5}
\end{align*}
$$

Therefore, from (3.4) and (3.5), we obtain

$$
\begin{gathered}
A\left(K_{1}, \ldots, K_{n}\right) A\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \frac{1}{n^{2}} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{2}{\rho\left(K_{i}, u\right)^{-1}+\rho\left(K_{i},-u\right)^{-1}} d S(u) \\
\quad \times \int_{S^{n-1}} \prod_{i=1}^{n} \frac{\rho\left(K_{i}, u\right)^{-1}+\rho\left(K_{i},-u\right)^{-1}}{2} d S(u)
\end{gathered}
$$

In view of the well-known inequality: If $f \in C\left(S^{n-1}\right)$ and $f(u)>0$, then

$$
\begin{equation*}
\int_{S^{n-1}} f(u) d u \int_{S^{n-1}} f(u)^{-1} d u \geq n^{2} \omega_{n}^{2} \tag{3.6}
\end{equation*}
$$

with equality if and only if $f(u)$ is constant.
Hence

$$
\begin{equation*}
A\left(K_{1}, \ldots, K_{n}\right) A\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \omega_{n}^{2} . \tag{3.7}
\end{equation*}
$$

If equality holds in (3.7) then equality must hold in particular in (3.2) and hence K must be a ball centered at the origin.

Taking for $K_{1}=\cdots=K_{n-i}=K, K_{n-i+1}=\cdots=K_{n}=B$ in (3.1), (3.1) reduces to the following result stated in the introduction. If $K \in \mathcal{K}^{n}$ and $0 \leq i \leq n$, then

$$
B_{i}(K) B_{i}\left(K^{*}\right) \geq \omega_{n}^{2}
$$

with equality if and only if K is a n-ball.
Theorem 3.2 If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, then

$$
\begin{equation*}
A_{p}\left(K_{1}, \ldots, K_{n}\right) A_{p^{\prime}}\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \omega_{n}^{2} \tag{3.8}
\end{equation*}
$$

with equality if and only if $K_{i}(i=1, \ldots, n)$ are n-balls.
Proof From (2.1), (2.3) and the definition of the mixed width-integrals of index p, and in view of the Arithmetic-Harmonic means inequality, we obtain

$$
A_{p^{\prime}}\left(K_{1}^{*}, \ldots, K_{n}^{*}\right)=\omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{h\left(K_{i}^{*}, u\right)+h\left(K_{i}^{*},-u\right)}{2}\right)^{p^{\prime}} d S(u)\right)^{1 / p^{\prime}}
$$

$$
\begin{align*}
= & \omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{\rho\left(K_{i}, u\right)^{-1}+\rho\left(K_{i},-u\right)^{-1}}{2}\right)^{p^{\prime}} d S(u)\right)^{1 / p^{\prime}} \\
& \geq \omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{2}{\rho\left(K_{i}, u\right)+\rho\left(K_{i},-u\right)}\right)^{p^{\prime}} d S(u)\right)^{1 / p^{\prime}} \tag{3.9}
\end{align*}
$$

with equality if and only if $\rho\left(K_{i}, u\right)=\rho\left(K_{i},-u\right), i=1, \ldots, n$.
On the other hand, from (2.3), we have.

$$
\begin{align*}
& A_{p}\left(K_{1}, \ldots, K_{n}\right)=\omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} b^{p}\left(K_{1}, u\right) \cdots b^{p}\left(K_{n}, u\right) d S(u)\right)^{1 / p} \\
& =\omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{h\left(K_{i}, u\right)+h\left(K_{i},-u\right)}{2}\right)^{p} d S(u)\right)^{1 / p} \tag{3.10}
\end{align*}
$$

From (3.9), (3.10) and in view of Hölder's inequality, we obtain

$$
\begin{align*}
& A_{p}\left(K_{1}, \ldots, K_{n}\right) A_{p^{\prime}}\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \\
& \qquad \begin{array}{l}
\frac{\omega_{n}}{n}\left(\int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{h\left(K_{i}, u\right)+h\left(K_{i},-u\right)}{2}\right)^{p} d S(u)\right)^{1 / p} \\
\quad \times\left(\int_{S^{n-1}} \prod_{i=1}^{n}\left(\frac{2}{\rho\left(K_{i}, u\right)+\rho\left(K_{i},-u\right)}\right)^{p^{\prime}} d S(u)\right)^{1 / p^{\prime}} \\
\quad \geq \frac{\omega_{n}}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \frac{h\left(K_{i}, u\right)+h\left(K_{i},-u\right)}{\rho\left(K_{i}, u\right)+\rho\left(K_{i},-u\right)} d S(u) .
\end{array}
\end{align*}
$$

For any convex body K

$$
\begin{equation*}
h(K, u) \geq \rho(K, u) \tag{3.12}
\end{equation*}
$$

with equality for all u if and only if K is a ball centered at the origin.
Hence

$$
\begin{equation*}
A_{p}\left(K_{1}, \ldots, K_{n}\right) A_{p^{\prime}}\left(K_{1}^{*}, \ldots, K_{n}^{*}\right) \geq \omega_{n}^{2} \tag{3.13}
\end{equation*}
$$

From the equality conditions of (3.9), (3.12) and Hölder inequality, it follows that the single of equality of (3.13) holds if and only if $K_{i}(i=1, \ldots, n)$ are n-balls.

Taking for $K_{1}=\cdots=K_{n-i}=K, K_{n-i+1}=\cdots=K_{n}=B$ in (3.8), (3.8) changes to the following result stated in the introduction

$$
A_{p, i}(K) A_{p^{\prime}, i}\left(K^{*}\right) \geq \omega_{n}^{2}
$$

with equality if and only if K is a n-ball.

References

[1] R. P. Bambah, Polar reciprocal convex bodies, Proc. Camb. Philos. Soc. 51 (1955) 377-378.
[2] W. Blaschke, Über Affine Geometric VII: Neue Extremeigenschaften von Ellipse und Ellipsoid, Leipziger Berichte 69 (1917) 306-318.
[3] W. Blaschke, Vorlesungen über Integralgeometrie, I. Chelsea Publishing, New York, 1949.
[4] Y. D. Chai, Y. S. Lee, Mixed volumes of a convex body and its polar dual, Bull. Korean Math. Soc. 36 (1999) 771-778.
[5] G. D. Chakerian, Mixed areas and the self-circumference of a plane convex body, Arch. Math. 34 (1980) 81-83.
[6] A. Dvoretzky, C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. USA 36 (1950) 192-197.
[7] W. J. Firey, Support flats to convex bodies, Geom. Dedicata 2 (1973) 225-248.
[8] W. J. Firey, The mixed area of a convex body and its polar reciprocal, Israel J. Math. 1 (1963) 201-202.
[9] H. Guggenheimer, The analytic geometry of the unsymmetric Minkowski plane, Lecture Notes, University of Minnesota, Minneapolis, 1967.
[10] H. Guggenheimer, The analytic geometry of the Minkowski plane. I, A universal isoperimetric inequality, Notices Amer. Math. Soc. 14 (1967) 121-128.
[11] H. Guggenheimer, Hill equations with coexisting periodic solutions, J. Diff. Еqu. 5 (1969) 159-166.
[12] H. Guggenheimer, Polar reciprocal convex bodies, Israel J. Math. 14 (1973) 309-316.
[13] H. Guggenheimer, Corrections to Polar reciprocal convex bodies, Israel J. Math. 29 (1978) 312-318.
[14] M. Ghandehari, Polar duals of convex bodies, Proc. Amer. Math. Soc. 113 (1991) 799-808.
[15] E. Heil, Ungleichungen für die Quermassintegrale Polarer Körper, Manuscripta Math. 19 (1976) 143-149.
[16] C. G. Lekkerkerker, Geometry of numbers, Wolters-Noordhoff, Groningen, 1969.
[17] E. Lutwak, Blaschke-Santaló inequality, discrete geometry and convexity, Ann. New York Acad. Sci. 440 (1985) 106-112.
[18] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975) 529-538.
[19] E. Lutwak, Mixed width-integrals of convex bodies, Israel J. Math. 28 (1977) 249-253.
[20] E. Lutwak, Width-integrals of bodies, Proc. Amer. Math. Soc. 53 (1975) 435-439.
[21] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg, New York, 1970.
[22] L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math. 8 (1949) 155-161.
[23] R. Schneider, Random polytopes generated by anisotropic hyperplanes, Bull. Lond. Math. Soc. 14 (1982) 549-553.
[24] F. Steinhardt,On distance functions and on polar series of convex bodies, PhD. Columbia Univ., 1951.

Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China
Email: chjzhao@163.com chjzhao@aliyun.com

[^0]: *Research is supported National Natural Science Foundation of China (11371334). Received by the editors in September 2014. Communicated by J. Thas. 2010 Mathematics Subject Classification : Primary: 52A40; Secondary: 53A15.
 Key words and phrases : Blaschke-Santaló inequality, width-integrals of index i, mixed widthintegrals of index p.

