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Abstract

In this paper, we establish the greatest lower bound for the product
B;(K)B;(K*) of the width-integrals of index i of convex body K. Further, the
greatest lower bound for the product of the mixed width-integrals
A, i(K)Apy ;(K*) for the mixed width-integrals is given.

1 Introduction

Throughout the paper all convex bodies are assumed to contain the origin in
their interior. Polar dual convex bodies are useful in geometry of numbers [16],
Minkowski geometry [9, 10] and differential equations [11]. Chakerian [5] uses
polar duals to discuss self-circumference of unit circles in a Minkowski plane.
The upper bound for the product of volumes of a convex body and its polar dual
is the well-known The Blaschke-Santalo inequality as follows.

If K is a convex body, then

V(K)V(K*) < wy, (1.1)

with equality if and only if K is an ellipsoid, where K* is polar dual of K and wj,
is the volume of the unit ball.

The Blaschke-Santal6 inequality is due to Blaschke [2] for n = 2,3 and Santal6
[22] for n > 2 (See also the comments of Schneider [23]). For a good discussion of
the Blaschke-Santal6 inequality and a further list of references, see Lutwak [17].
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On the lower bound, Steinhardt [24] showed that for planar convex bodies,
Wi (K)Wq (K*) > w3 or S(K)S(K*) > 4w3,

where, K is a convex body in R? and S(K) is the surface area of K. Chai and
Lee [4] also found a lower bound of W;(K)W;(K*) for all convex bodies K. On
the other hand, Lutwak [18] (also see Ghandehari [14]) found a lower bound of
W, —1(K)W,,_1 (K*) for all convex bodies K as follows

Wy_1(K)W,_1(K*) > w?, (1.2)

with equality if and only if K is a ball (centered at the origin).

This was obtained by Firey [8] for dimensions 2 and 3.

However, the problem of finding the lower bound of the product W; (K)W;(K*)
for all convex bodies, for each i, is not solved completely yet. This is a open prob-
lem in Lutwak [18] and Ghandehari [14]. Also see Bambah [1], Dvoretzky and
Rogers [6], Firey [7], Guggenheimer [12, 13], Heil [15], and Steinhardt [24] for
partial results.

Lutwak [19] defined the mixed width-integral

AKy, . Ky) = 2 /5“ b(Ky, 1) - - - b(Ky, u)dS(0),

n

where b(K, -) is half the width of convex body K in the direction u.

Just as the cross-sectional measures W;(K) are defined to be the special mixed
volumes V(K,...,K,B,...,B), the width-integrals of index i, B;(K) (see Sec. 2)

n—i i
can be defined as the special mixed width-integrals A(K,...,K,B,...,B).
n—i i

In the paper, for the width-integrals of index i, we discuss a problem similar to
above open question: we first establish the greatest lower bound of the product
B;(K)B;(K*) as follows.

For a convex body K and its polar dual K*,and 0 <i <n

Bi(K)B;(K*) > wy, (1.3)

with equality if and only if K is a n-ball.
For a real number, Lutwak [19] also defined the mixed width-integral of order

p (p # 0) by

1 1/p

nwy,

Ap(Ky, ..., Ky) = wy [ /Sn_l b(Ky, u)? - b(Ky, u)PdS(u)

For p equal to —oo, 0 or co the mixed width-integral of order p was defined by

AP(Kll' . .,Kn) — limAs(Kll. . .,Kn).

s—p

The width-integral of order A, ;(K) is defined as the special mixed width-
integral A,(K,...,K,B,...,B), and called the i-th width-integral of order p.
————

n—i i
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Another aim of the paper is to establish the greatest lower bound of the
product Ay ;(K)A, ;(K*).

For a convex body K and its polar dual K*, if 0 < i < n, and the conjugate
exponent p’ = % and p > 1, then

Api(K)Ay (K*) > w?, (1.4)

with equality if and only if K is a n-ball.

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space R"(n > 2). Let K"
denote set of all convex bodies (compact, convex subsets and contain the origin
in their interior) in IR"”. We reserve the letter u for unit vectors, and the letter B is
reserved for the unit ball centered at the origin. The surface of B is 5" L.

A set A is said to be centered if —x € A whenever x € A, and centrally
symmetric if there is a vector c such that the translate A — c of A by —c is centered.
For each direction u € S"~1, we define the support function i(K, u) on S"~1 of
the convex body K by

h(K,u) = max{u - x|x € K},
and the radial function p(K, ) on S"~1 of the convex body K is
p(K,u) = max{A > 0|Au € K}.
Let 6 denote the Hausdorff metric on K"; i.e., for K, L € K",
(K, L) = |hg — hi|eo,

where | - | denotes the sup-norm on the space of continuous functions, C(5"~1).
The polar dual of a convex body K that contains the origin in its interior,
denoted by K*, is another convex body defined by

K*={ylx-y <1, forall x € K}.
The polar dual has the following well known property:

and p(K*,u) = ——— 2.1)

h(K*,u) = WK

_ L
p(K,u)
The outer parallel set of K at the distance A > 0, K}, is given by
Ky = K+ AB.

Then the volume V(K,) is a polynomial in A whose coefficients W;(K) are
geometric invariants of K:

V(K +AB) = i (M) Wi (K)AL
i=1
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The functionals W;(K)(i = 0, ..., n) are called the i — th quermassintegrals of K.
The following is true:

Wo(K) = V(K); nW;1(K) = S(K); W,(K) = wy, (2.2)

where V(K) and S(K) are the volume and surface area of K, respectively and w;,
is the volume of the unit ball B in R".
For u € §"1,

b(K, u) = %(h(K,u) + (K, —u)) (2.3)

is defined to be half the width of K in the direction u. Two convex bodies K
and L are said to have similar width if there exists a constant A > 0 such that
b(K,u) = Ab(L,u) for all u € S"~!. Width-integrals were first considered by
Blaschke (see [3]). The width-integral of index i is defined by Lutwak [20]. For
KeK"ieR )

Bi(K) = - /S b(K,u)"as(u). (2.4)

The width-integral of index i is a map B; : K" — R. It is positive, continuous,
homogeneous of degree (n — i) and invariant under motion.

3 The lower bound for B;(K)B;(K*)
Theorem 3.1 IfKj,...,K, € K", then,
A(Ky,..., K)A(KS, ..., K > «?, (3.1)

with equality if and only if K;(i = 1, ..., n) are n-balls.
Proof From (2.3) and in view of the definition of the mixed width-integrals,
we have
1 Ly |

AKy, oK) = /Sn_l ]1 S (h(Ks, ) + h(Ky, —))dS (1),

For any convex body K, in view of the following fact

h(K,u) +h(K, —u) S (K, u) + p(K, —u)
2 - 2 '

Notes that for any convex body K
h(K,u) > p(K,u),

with equality for all u if and only if K is a ball centered at the origin. This follows
that the equality in (3.2) holds if and only if K is n-ball (centered at the origin).

On the other hand, by using the Arithmetic-Harmonic means inequality (see
[21, p.27]), we have

p(K,u) + p(K, —u) < 2

2 = oK, 1) T+ pK, —u) T’ (3.3)
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with equality if and only if p(K, u) = p(K, —u), it follows if and only if K is n-ball
(centered at the origin).

Hence
AKy, .. Ky) > 1/ - 2 ds(u) (3.4)
17 fn) = n Sn_l il p(Kl’u)_l +p(Kl’_u)—1 . .
On the other hand, from (2.1) and (2.3), we have
K, K = [, bl (K, w)ds(w)
_ 1 / TT2(00(K;, ) + h(KE, —u))dS ()
_n 5n71i212 i 17
n . -1 0\ —1
_1 [T oK, 1)+ p(Ki =1)™ 45, (35).
nJsn-1i 7 2
Therefore, from (3.4) and (3.5), we obtain
AKy . K AKS, .. K > i/ - 2 45 (u)
17« \n 177y ) nz 5”71 1 p(Kllu)_1+p(Kll_u)_l

n 1 1
p(Ki, )" + p(Ki, —u)
X /Snl i|_1| 5 ds(u).

In view of the well-known inequality: If f € C(S"~!) and f(u) > 0, then
-1 2,2
5;1—1f(u)du - (u) " du > n“wy, (3.6)

with equality if and only if f(u) is constant.
Hence
A(Ky,..., K)A(KS, ... K5 > w3 (3.7)
If equality holds in (3.7) then equality must hold in particular in (3.2) and
hence K must be a ball centered at the origin.
Taking for Ky = --- =K,,_; =K, K,,_j1+1 = - - - = K, = Bin (3.1), (3.1) reduces
to the following result stated in the introduction. If K € K" and 0 < i < n, then

B;(K)B;(K*) > w3,

with equality if and only if K is a n-ball.
Theorem 3.2 IfKy,...,K, € K", then

Ap(Ky, ..., Kn)Ay(KS, ..., K}) > wp, (3.8)

with equality if and only if K;(i = 1, ..., n) are n-balls.
Proof From (2.1), (2.3) and the definition of the mixed width-integrals of index
p, and in view of the Arithmetic-Harmonic means inequality, we obtain

n * * i\
Ap/(Ki‘,...,K:;):wn< | /S H(h(Kl,u)+2h(K1, u)) ds(u)>

I

1/p
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1 " (o(Ki,u) 7+ (K, —u) ! 4 vy
~ W, <nwn /5 11’{( . ) dS(u))

1 n ’ o 1/p
- (ﬂwn/sn1E<p<1<i,u>+p<f<i,—u>) ds(‘”) 69

with equality if and only if p(Kj, u) = p(K;, —u),i=1,...,n
On the other hand, from (2.3), we have.

1/
AP(KL. . .,Kn) = Wn (ni)n /5;1—1 bp(Kllu) ce bp(Kn/u)dS(u)) p
L : NP Vp
= Wy (nclun /S”_l E (h(Klz 1/[) +2h(K1/ 1/[)) dS(u)> . (310)

From (3.9), (3.10) and in view of Holder’s inequality, we obtain

Ap(Ky, ... Kn) A (K], ... K}) >

@ </S 7 1_[ (h(Ki,u) +2h(Ki,u))pdS(u)>1/P

n—1
i=1

Wy " h(K;,u) +h(K;, —u)
§ /5”‘1 E o(Ki, u) + p(Ki, —u) ds(u). (311)

For any convex body K
h(K,u) > p(K,u), (3.12)

with equality for all u if and only if K is a ball centered at the origin.
Hence
Ap(Ki, ..., Kn)Ay (K}, ..., K}) > wh. (3.13)

From the equality conditions of (3.9), (3.12) and Holder inequality, it follows
that the single of equahty of (3.13) holds if and only if Ki(i =1,...,n) are n-balls.

Taking for Ky = =K, i=KK,_j1= =K, = Bin (3 8) (3.8) changes
to the following result stated in the introduction

Api(K) Ay i(K*) = wy,

with equality if and only if K is a n-ball.
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