A note on the norm of a basic elementary operator

Mohamed Boumazgour Mohamed Barraa

Abstract

Let $\mathcal{L}(E)$ be the algebra of all bounded linear operators on a Banach space E. For $A, B \in \mathcal{L}(E)$, define the basic elementary operator $M_{A, B}$ by $M_{A, B}(X)=A X B,(X \in \mathcal{L}(E))$. If \mathcal{S} is a symmetric norm ideal of $\mathcal{L}(E)$, we denote $M_{\mathcal{S}, A, B}$ the restriction of $M_{A, B}$ to \mathcal{S}. In this paper, the norm equality $\left\|I+M_{\mathcal{S}, A, B}\right\|=1+\|A\|\|B\|$ is studied. In particular, we give necessary and sufficient conditions on A and B for this equality to hold in the special case when E is a Hilbert space and \mathcal{S} is a Schatten p-ideal of $\mathcal{L}(E)$.

1 Introduction

Let E be a complex Banach space. We denote by $\mathcal{L}(E)$ the Banach algebra of all bounded linear operators on E. For A and B in $\mathcal{L}(E)$, define the operators L_{A} and R_{B} on $\mathcal{L}(E)$ by $L_{A}(X)=A X$ and $R_{B}(X)=X B(X \in \mathcal{L}(E))$, respectively. The basic elementary operator $M_{A, B}$ induced by the operators A and B is the multiplication defined by $M_{A, B}=L_{A} R_{B}$. An elementary operator on $\mathcal{L}(E)$ is a finite sum $R=\sum_{i=1}^{n} M_{A_{i}, B_{i}}$ of basic ones. A familiar example of elementary operators is the generalized derivation $\delta_{A, B}$ defined by $\delta_{A, B}=L_{A}-R_{B}$.

Let \mathcal{S} be a non-zero two-sided ideal of the algebra $\mathcal{L}(E)$. We say that \mathcal{S} is a symmetric norm ideal if it is equipped with a norm $\|.\|_{\mathcal{S}}$ satisfying the following conditions:

[^0](i) \mathcal{S} is a Banach space with respect to the norm $\|.\|_{S}$;
(ii) $\|X\|_{\mathcal{S}}=\|X\|$ for all $X \in \mathcal{S}$ with one-dimensional range;
(iii) $\|A X B\|_{\mathcal{S}} \leq\|A\|\|X\|_{\mathcal{S}}\|B\|$ for all $A, B \in \mathcal{L}(E)$ and $X \in \mathcal{S}$.

Familiar examples of symmetric norm ideals are the Schatten p-ideals $\left(C_{p}(H),\|\cdot\|_{p}\right)(1 \leq p \leq \infty)$ of operators on a Hilbert space H (see [20, 21]). Here we denote by $C_{\infty}(H)$ the ideal of all compact operators on H.

Let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(E)$, and let $A, B \in \mathcal{L}(E)$. Then $M_{A, B}(\mathcal{S}) \subset \mathcal{S}$, and we denote by $M_{\mathcal{S}, A, B}$ the restriction of $M_{A, B}$ to \mathcal{S}. Since $\|A X B\|_{\mathcal{S}} \leq\|A\|\|X\|_{\mathcal{S}}\|B\|$ for all $X \in \mathcal{S}$ then obviously $M_{\mathcal{S}, A, B} \in \mathcal{L}(\mathcal{S})$ and $\left\|M_{\mathcal{S}, A, B}\right\| \leq\|A\|\|B\|$. In the special case when \mathcal{S} is a Schatten ideal $\mathcal{C}_{p}(H)$, we denote $M_{\mathcal{S}, A, B}$ by $M_{p, A, B}$.

Many facts about the relation between the spectrum of the operator $R=\sum_{i=1}^{n} M_{A_{i}, B_{i}}$ and spectra of its coefficients A_{i} and B_{i} are known. This is not the case with the relation between the norm of R when restricted to a norm ideal and norms of A_{i} and B_{i}. Apparently, the only elementary operators on a norm ideal for which the norm is easily computed are the basic ones. For an intensive study of norms of elementary operators on Banach spaces we refer to [$3,4,5,9,13,15,16,19,22,23,24,25,26,27]$.

In this paper we shall study the equation

$$
\begin{equation*}
\left\|I+M_{\mathcal{S}, A, B}\right\|=1+\|A\|\|B\|, \tag{1.1}
\end{equation*}
$$

where I denotes the identity operator, A and B are bounded operators on a Banach space E and \mathcal{S} is a symmetric norm ideal of $\mathcal{L}(E)$. Here we note that we always have $\left\|I+M_{\mathcal{S}, A, B}\right\| \leq 1+\|A\|\|B\|$. In the particular case where $B=I$, the equation (1.1) is equivalent to the Daugavet equation

$$
\begin{equation*}
\|I+A\|=1+\|A\| \tag{1.2}
\end{equation*}
$$

For more results about the Daugavet equation and its applications we refer to $[1,11]$ and references therein.

In order to state our results in detail, we need to recall some notations.
Let E be a complex Banach space, and let E^{\prime} be its dual space. For $T \in \mathcal{L}(E)$, the spatial numerical range of T, denoted by $W(T)$, is defined to be the set

$$
W(T)=\{f(T x): x \in E,\|x\|=1 \text { and } f \in D(x)\}
$$

where

$$
D(x)=\left\{f \in E^{\prime}: f(x)=\|f\|=\|x\|\right\} .
$$

If H is a Hilbert space and $T \in \mathcal{L}(H)$, then the numerical range of T is given by

$$
W(T)=\{\langle T x, x\rangle: x \in H \text { and }\|x\|=1\} .
$$

Let $T \in \mathcal{L}(E)$. The algebraic numerical range of T is defined by

$$
V(T)=\left\{F(T): F \in(\mathcal{L}(E))^{\prime} \text { and }\|F\|=F(I)=1\right\} .
$$

It is well-known that $V(T)(T \in \mathcal{L}(E))$ is a compact convex subset of the plane, and that $V(T)$ contains the spectrum of T (see [6]). Furthermore, $V(T)$ coincides with the closed convex hull of $W(T)$ whenever T is a bounded operator on a Banach space. For basic facts about numerical ranges we refer to [6, 7].

For $T \in \mathcal{L}(E)$, let $\sigma(T), \sigma_{a p}(T), r(T)$ and $v(T)$ denote the spectrum, approximate point spectrum, spectral radius and numerical radius of T, respectively. Recall that when $v(T)=\|T\|$ then T is said to be a normaloid operator. Given $x \in E$ and $f \in E^{\prime}$, we write $x \otimes f$ to denote the rank-one bounded linear operator

$$
z \longmapsto f(z) x \quad(z \in E),
$$

whose norm is equal to $\|x\|\|f\|$. If λ is a complex number then we denote by $\bar{\lambda}$ its complex conjugate.

2 Main results

In this section, we shall study the Daugavet equation for a given multiplication operator when it is restricted to a symmetric norm ideal.

We begin with the following lemma.
Lemma 2.1. Let $A \in \mathcal{L}(E)$. Then

1. $\|I+A\|=1+\|A\|$ if and only if $\|A\| \in V(A)$,
2. $\sup \|I+\lambda A\|=1+\|A\|$ if and only if $v(A)=\|A\|$.

$$
|\lambda|=1
$$

Proof. (1): See [18, Corollary 1].
(2): By a compactness argument we can find a modulus one complex number λ_{0} such that $\sup _{|\lambda|=1}\|I+\lambda A\|=\left\|I+\lambda_{0} A\right\|$. The result then follows from Part (1).

Recall that a Banach space E is said to be uniformly convex whenever for each sequences $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ in $F,\left\|x_{n}\right\| \leq 1,\left\|y_{n}\right\| \leq 1$ for all n and $\lim _{n}\left\|x_{n}+y_{n}\right\|=2$ imply $\lim _{n}\left\|x_{n}-y_{n}\right\|=0$.

There is a concept that is dual to uniform convexity. A Banach space is said to be uniformly smooth whenever for each $\epsilon>0$, there exists some $\delta>0$ such that $\|x\| \leq 1,\|y\| \leq 1$, and $\|x-y\| \geq \delta$ imply $\|x+y\| \leq\|x\|+\|y\|-\epsilon\|x-y\|$.

A Banach space is uniformly smooth (respectively, uniformly convex) if and only if its norm dual is uniformly convex (respectively, uniformly smooth), (see [14]).

As a consequence of Lemma 2.1, we have the following corollary proved in [1].

Corollary 2.2. Suppose E is a uniformly convex or uniformly smooth Banach space. Then for $A \in \mathcal{L}(E)$, we have

1. $\|I+A\|=1+\|A\|$ if and only if $\|A\| \in \sigma_{\text {ap }}(A)$;
2. sup $\|I+\lambda A\|=1+\|A\|$ if and only if $r(A)=\|A\|$.

$$
|\lambda|=1
$$

Proof. This follows from Lemma 2.1 and the facts that: For every bounded linear operator T on a uniformly convex or uniformly smooth Banach space E (see for example [7]), we have
i) $\|T\| \in \sigma_{a p}(T)$ if and only of $\|T\| \in V(T)$;
ii) $r(T)=\|T\|$ if and only if $v(T)=\|T\|$.

Lemma 2.3. Let $A, B \in \mathcal{L}(E)$, and let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(E)$. Then

$$
\left\|M_{\mathcal{S}, A, B}\right\|=\|A\|\|B\| .
$$

Proof. Let $x, y \in E$ and $f \in E^{\prime}$ be such that $\|x\|=\|y\|=\|f\|=1$. Since $x \otimes f$ lies in \mathcal{S} (see [17, Lemma 4.1]), and

$$
|f(B y)|\|A x\|=\left\|M_{A, B}(x \otimes f)(y)\right\| \leq\left\|M_{\mathcal{S}, A, B}(x \otimes f)\right\|_{\mathcal{S}} \leq\left\|M_{\mathcal{S}, A, B}\right\| \leq\|A\|\|B\|,
$$

then it follows that

$$
\left\|M_{\mathcal{S}, A, B}\right\|=\|A\|\|B\| .
$$

Remark 2.4. Let $A, B \in \mathcal{L}(E)$, and let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(E)$. Since $\left\|M_{\mathcal{S}, A, B}\right\|=\|A\|\|B\|$ by the above lemma, then it follows from Lemma 2.1 that $M_{\mathcal{S}, A, B}$ is normaloid if and only if $\sup _{|\lambda|=1}\left\|I+\lambda M_{\mathcal{S}, A, B}\right\|=1+\|A\|\|B\|$.

In what follows H denotes a complex separable Hilbert space.
Theorem 2.5. Let $A, B \in \mathcal{L}(H)$, and suppose that $1<p<\infty$. Then the following are equivalent:

1. $\left\|I+M_{p, A, B}\right\|=1+\|A\|\|B\|$;
2. There exists $\lambda \in \mathbb{C}$ with $|\lambda|=1$ such that $\lambda\|A\| \in \sigma(A)$ and $\bar{\lambda}\|B\| \in \sigma(B)$;
3. There exists $\lambda \in \mathbb{C}$ with $|\lambda|=1$ such that $\lambda\|A\| \in V(A)$ and $\bar{\lambda}\|B\| \in V(B)$.

Proof. (1) $\Leftrightarrow(2)$: It is well-known that, for $1<p<\infty, \mathcal{C}_{p}(H)$ is a uniformly convex Banach space (see, e.g., [21, P. 23]). Therefore, Corollary 2.2 can be applied; it shows that $M_{p, A, B}$ satisfies the equality in (1.2) if and only if $\|A\|\|B\| \in \sigma\left(M_{p, A, B}\right)$. But $\sigma\left(M_{p, A, B}\right)=\sigma(A) \sigma(B)$ (see [8]); hence we derive that there exists $\lambda \in \mathbb{C}$ with $|\lambda|=1$ such that $\lambda\|A\| \in \sigma(A)$ and $\bar{\lambda}\|B\| \in \sigma(B)$.

The equivalence $(2) \Leftrightarrow(3)$ follows from the general fact: For any bounded operator T on $H,\|T\|$ lies in $V(T)$ if and only if $\|T\|$ lies in $\sigma_{a p}(T)$, (see [12]). This completes the proof.

Remark 2.6. Let $A, B \in \mathcal{L}(H)$, and suppose that and $1<p<\infty$. From the above theorem, it follows that $\left\|I+M_{p, A, B}\right\|=1+\|A\|\|B\|$ if and only if $\left\|I+M_{p, B, A}\right\|=$ $1+\|A\|\|B\|$.

Lemma 2.7. Let $A, B \in \mathcal{L}(E)$, and let \mathcal{S} be a norm ideal of $\mathcal{L}(E)$. Then

1. $V(A) V(B) \subseteq V\left(M_{\mathcal{S}, A, B}\right)$,
2. $V(A B) \subseteq V\left(M_{A, B}\right)$.

Proof. (1) Let $x, y \in E$ be such that $\|x\|=\|y\|=1$, and let $f, g \in E^{\prime}$ be such that $f(x)=\|f\|=g(y)=\|g\|=1$. Define a linear functional Φ on \mathcal{S} by $\Phi(X)=g(X x)$. We easily check that Φ is continuous with $\|\Phi\|=\Phi(y \otimes f)=1$. Hence

$$
\Phi\left(M_{\mathcal{S}, A, B}(y \otimes f)\right)=f(B x) g(A y) \in V\left(M_{\mathcal{S}, A, B}\right)
$$

From this we derive that

$$
V(A) V(B) \subseteq V\left(M_{\mathcal{S}, A, B}\right)
$$

(2) Let $x \in E$ and $f \in E^{\prime}$ be such that $f(x)=1$. Define a linear functional Φ on $\mathcal{L}(E)$ by $\Phi(X)=f(X x)$. Then Φ is continuous with $\|\Phi\|=\Phi(I)=1$. Hence

$$
\Phi\left(M_{A, B}(I)\right)=f(A B x) \in V\left(M_{A, B}\right) .
$$

Consequently,

$$
V(A B) \subseteq V\left(M_{A, B}\right)
$$

Remark 2.8. It follows from Lemma 2.7 that, for two operators $A, B \in \mathcal{L}(E)$, $v(A) v(B) \leq v\left(M_{\mathcal{S}, A, B}\right) \leq\|A\|\|B\|$, for every norm ideal \mathcal{S}. Hence $M_{\mathcal{S}, A, B}$ is normaloid whenever A and B are normaloid.

Theorem 2.9. Let $A, B \in \mathcal{L}(H)$, and suppose that $1<p<\infty$. Then $M_{p, A, B}$ is normaloid if and only if A and B are normaloid.

Proof. To prove that the condition is sufficient recall that, for $1<p<\infty$, the space $\mathcal{C}_{p}(H)$ is uniformly convex. Hence, by virtue of Corollary 2.2, (2) and Lemma 2.3, we have $r\left(M_{p, A, B}\right)=\left\|M_{p, A, B}\right\|=\|A\|\|B\|$. But $r\left(M_{p, A, B}\right)=r(A) r(B)$ see ([8]), and $r(A) \leq v(A) \leq\|A\|$ and $r(B) \leq v(B) \leq\|B\|$. Then we get $v(A)=\|A\|$ and $v(B)=\|B\|$.

The necessary condition follows from Remark 2.8.
Let us give an example showing that the equivalences in Theorem 2.5 and Theorem 2.9 do not hold when $\mathcal{S}=\mathcal{L}(H)$.

Example 2.10. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Then $\left\|M_{A, B}\right\|=\|A\|=\|B\|=$ 1. Since $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, it follows from Lemma 2.7, (2) that $1 \in V\left(M_{A, B}\right)$. Thus $v\left(M_{A, B}\right)=1$, and $\left\|I+M_{A, B}\right\|=2$ because $1+V(A B)=V(I+A B) \subseteq$ $V\left(I+M_{A, B}\right)$. However $v(A)=v(B)=\frac{1}{2}$.

Proposition 2.11. Let $A, B \in \mathcal{L}(H)$. Then

$$
\left\|I+M_{1, B, A}\right\|=\left\|I+M_{\infty, A, B}\right\|=\left\|I+M_{A, B}\right\| .
$$

Proof. Recall that if E is a Banach space and $T \in \mathcal{L}(E)$, then $\|T\|=\left\|T^{*}\right\|$ (T^{*} : the adjoint of T). By [10, Theorem 3.13], we have $\left(M_{\infty, A, B}\right)^{* *}=M_{A, B}$, so $\left\|I+M_{\infty, A, B}\right\|=\left\|I+M_{A, B}\right\|$. From [10], we also have $\left(M_{\infty, A, B}\right)^{*}=M_{1, B, A}$, so that

$$
\left\|I+M_{1, B, A}\right\|=\left\|\left(I+M_{\infty, A, B}\right)^{*}\right\|=\left\|I+M_{\infty, A, B}\right\|=\left\|I+M_{A, B}\right\| .
$$

Let $T \in \mathcal{L}(H)$. Following [24], the maximal numerical range $W_{0}(T)$ of T is defined by
$W_{0}(T)=\left\{\lambda \in \mathbb{C}:\right.$ there exists $\left\{x_{n}\right\} \subseteq H,\left\|x_{n}\right\|=1$ such that

$$
\left.\lim _{n}<T x_{n}, x_{n}>=\lambda \text { and } \lim _{n}\left\|T x_{n}\right\|=\|T\|\right\} .
$$

The normalized maximal numerical range of T is given by

$$
W_{N}(T)= \begin{cases}W_{0}\left(\frac{T}{\|T\|}\right) & \text { if } T \neq 0 \\ 0 & \text { if } T=0\end{cases}
$$

Theorem 2.12. If $A, B \in \mathcal{L}(\mathcal{H})$ then the following conditions are equivalent:

1. $\left\|I+M_{1, A, B}\right\|=1+\|A\|\|B\|$;
2. $\left\|I+M_{\infty, A, B}\right\|=1+\|A\|\|B\|$;
3. $\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|$;
4. $W_{N}\left(A^{*}\right) \cap W_{N}(B) \neq \varnothing$.

Proof. The equivalences (1) $\Leftrightarrow(2) \Leftrightarrow(3)$ follow from Proposition 2.11. The equivalence (3) $\Leftrightarrow(4)$ follows from [4, Theorem 1].

In connection with Lemma 2.1 and Corollary 2.2, it is natural to ask when a given multiplication $M_{\mathcal{S}, A, B}$ is spectraloid, that is, when its spectral radius and its numerical radius coincide. The next proposition gives necessary and sufficient conditions for the multiplication $M_{\mathcal{S}, A, B}$ to be spectraloid.
Proposition 2.13. Let $A, B \in \mathcal{L}(H)$, and let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(H)$. Then $M_{\mathcal{S}, A, B}$ is spectraloid if and only if A and B are spectraloid operators in H and $v\left(M_{\mathcal{S}, A, B}\right)=v(A) v(B)$.

Proof. If $M_{\mathcal{S}, A, B}$ is spectraloid then

$$
v\left(M_{\mathcal{S}, A, B}\right)=r\left(M_{\mathcal{S}, A, B}\right)=r(A) r(B) \leq v(A) v(B) .
$$

Since by Lemma 2.7, $v(A) v(B) \leq v\left(M_{\mathcal{S}, A, B}\right)$, then it follows that

$$
r(A) r(B)=v(A) v(B)=v\left(M_{\mathcal{S}, A, B}\right) .
$$

Thus $r(A)=v(A)$ and $r(B)=v(B)$.
The converse is obvious.

Acknowledgement

The research of the first author was supported by the Deanship of Scientific Research at Sattam bin Abdulaziz University under the Research Project 1787/01/ 2014.

References

[1] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Func. Anal. 97(1991), 215-230.
[2] M. Barraa, A formula for the numerical range of elementary operators, ISRN Math. Anal. 2014, Art. ID 246301, 4 pp.
[3] M. Barraa and M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130(2002), 471-476.
[4] M. Barraa and M. Boumazgour, Norm equality for the basic elementary operator, J. Math. Anal. Appl. 286(2003), 359-362.
[5] A. Blanco, M. Boumazgour and T.J. Ransford, On the norm of elementary operators, J. London Math. Soc. 70 (2004), 479-498.
[6] F.F. Bonsall and J. Duncan, Numerical Ranges I, Cambridge: Cambridge university press, 1973.
[7] F.F. Bonsall and J. Duncan, Numerical Ranges, II, Cambridge: Cambridge university press, 1973.
[8] M. Embry and M. Rosenblum, Spectra, tensor products and linear operator equations, Pacific J. Math. 53(1974), 95-107.
[9] L. Fialkow, Structural properties of elementary operators, in Elementary operators and applications (M. Mathieu, ed), (Proc. Int. Workshop, Blaubeurn 1991), World Scientific, Singapore, 1992, pp. 55-113.
[10] L. Filkow, A note on the operator $X \rightarrow A X-X B$, Trans. Amer. Math. Soc. 243(1978), 147-168.
[11] C. L. Lin, The unilateral shift and norm equality for bounded linear operators, Proc. Amer. Math. Soc. 127(1999), 1693-1696.
[12] P.R. Halmos, A Hilbert Space problem Book, Van Nostrand, Princeton, 1970.
[13] B. E. Johnson, Norms of derivations on $\mathcal{L}(X)$, Pacific. J. Math. 38(1971), 465-469.
[14] G. Köthe, Topological vector spaces I, Springer-Verlag, New York/Heidelberg, 1969.
[15] M. Mathieu, The norm problem for elementary operators, in Recent progress in functional analysis (Valencia, 2000), 363-368, North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001.
[16] M. Mathieu, Elementary operators on Calkin algebras, Ir. Math. Soc. Bull. 46(2001), 33-42.
[17] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Cambridge Philos. Soc. 96(1984), no. 3, 483-493.
[18] R. Nakamoto and S.E. Takahasi, Norm equality condition in triangular inequality, Sci. Math. Jpn. 55(2002), no. 3, 463-466.
[19] E. Saksman and H.-O. Tylli, Multiplications and elementary operators in the Banach space setting. Methods in Banach space theory, 253-292, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006.
[20] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
[21] B. Simon, Trace ideals and their applications, Cambridge Univ. Press, Cambridge, UK, 1979.
[22] L. L. Stacho and B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen. 49(1996), 127-134.
[23] L. L. Stacho and B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc. 126(1998), 2241-2247.
[24] J. Stampfli, The norm of a derivation, Pac. J. Math., 33(1970), 737-747.
[25] R. M. Timoney, Norms of elementary operators, Ir. Math. Soc. Bull. 46(2001), 13-17.
[26] R. M. Timoney, Computing the norm of elementary operators, Illinois J. Math. 47(2003), 1207-1226.
[27] R. M. Timoney, Some formulae for norms of elementary operators, J. Operator Theory 57(2007), no. 1, 121-145.

Department of Mathematics, Faculty of Science and Humanitarian Studies, Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942, Saudi Arabia.
email: boumazgour@hotmail.com
Department of Mathematics,
Faculty of Sciences
Semlalia, P.O. Box 2390, Marrakesh, Morocco.
email :barraa@hotmail.com

[^0]: Received by the editors in March 2015.
 Communicated by F. Bastin.
 2010 Mathematics Subject Classification : 47A12, 47A30, 47B47.
 Key words and phrases : Norms, elementary operators, norm ideals, numerical range.

