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Abstract

We give simple upper bounds for rational sectional category and use
them to compute invariants of the type of Farber’s topological complexity
of rational spaces. In particular we show that the sectional category of for-
mal morphisms reaches its cohomological lower bound and give a method
to compute higher topological complexity of formal spaces in terms of their
cohomology.

Introduction

This paper concerns the rational sectional category of a continuous map
f : X → Y and, in particular, the rational topological complexity of a space X. All
the spaces considered will be supposed simply connected CW-complexes with
finite Betti numbers.

Recall, [15], that the sectional category of f , secat( f ), is the least integer m
for which there is an open cover {U0, . . . , Um} of Y and maps si : Ui → X such
that f ◦ si is homotopic to the inclusion of Ui in Y. When X is contractible, the
sectional category of f is the usual LS category of Y, see [1].

We give special attention to the particular case, introduced by Y.B. Rudyak in
[14], of higher topological complexity of a space X, TCn(X), defined as the sectional
category of the n-diagonal map ∆n : X → Xn. The case n = 2 yields M. Farber’s
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well known topological complexity, TC(X), introduced in [3]. Explicit computa-
tions for topological complexity of rational spaces can be found in [11] and [12],
for instance.

Denote by H∗(X; R) the cohomology ring of X with coefficients in a ring R. It
is well known, [1], that

nil ker(H∗( f ; R)) ≤ secat( f ),

where nil denotes the nilpotency of an ideal, nil I := min
{

k : Ik+1 = 0
}

.

We will denote X0 the rationalisation of X and f0 : X0 → Y0 the rationalisa-
tion of f . Following the scheme of Jessup-Murillo-Parent in [11], the following
approximation to rational sectional category can easily be deduced:

Let ϕ : A → B be a surjective cdga morphism. Define sc(ϕ) as the smallest
integer m such that the quotient map

ρm : (A, d) →

(

A

Km+1
, d

)

admits a homotopy retraction, where K denotes the kernel of ϕ. If f is a continu-
ous map, define sc( f ) as the least sc(ϕ) with ϕ a surjective model for f .

Observe that, for rational LS category, the main theorem of [5] asserts that
cat(X0) = sc(∗ →֒ X). Inspired on this, the obvious questions to ask whether
secat( f0) = sc( f ). Although one of these inequalities is not known in general,
the other one holds:

Proposition 1. For any continuous map f , secat( f0) ≤ sc( f ).

This proposition is used to establish results regarding higher topological com-
plexity including generalizations of [12, Theorem 1.2] and [11, Theorem 1.4].
Namely, we prove that if X is a formal space then

TCn(X0) = nil ker
(

µn : H∗(X, Q)⊗n → H∗(X, Q)
)

,

being µn the multiplication. We also prove that if X is a space such that π∗(X)⊗Q

is finite dimensional and concentrated in odd degrees, then

TCn(X0) = (n − 1)cat(X0).

Finally, we introduce the concept of homology nilpotency, Hnil, as an
improvement of the upper bound nil ker ϕ. We also study the case that H∗( f , Q)
is surjective, giving a dimensional upper bound for secat( f0) and establishing

nil H(K) ≤ secat( f0) ≤ Hnil K.
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1 Rational sectional category

Throughout this paper we will often use rational homotopy theory techniques
for which much more than needed can be found in [6]. We now present some
basic facts. To every simply connected CW-complex of finite type X one can as-
sociate a rationalisation map ρ : X → X0 where π∗(X0) is a rational vector space
and π∗(ρ) ⊗ Q is an isomorphism. The space X0 is called the rationalisation of
X. This construction is functorial in the sense that a map f : X → Y can also be
rationalized to a map f0 : X0 → Y0 commuting with rationalisations.

On the other hand, every such X has a (Sullivan) minimal model (ΛV, d). This
is a commutative differential graded algebra over Q (cdga for short), where ΛV
denotes the free graded commutative algebra on a graded vector space V and
where d(V) ⊂ Λ≥2V, see [6, Chapter 12]. This correspondence yields an equiva-
lence between the homotopy categories of rational 1-connected CW-complexes of
finite type and 1-connected cdga’s of finite type. Moreover, every cdga morphism
ϕ : (A, d) → (B, d) admits a minimal relative model

(A, d) ))

i ))❙❙❙
❙❙❙

❙❙
❙❙❙

❙❙❙
❙

ϕ
// (B, d)

(A ⊗ ΛV, d)

≃ ψ

OO

where i is the canonical injection, ψ ◦ i = ϕ,

d(V) ⊂
(

A+ ⊗ ΛV
)

+
(

A ⊗ Λ≥2V
)

,

and ψ is a quasi-isomorphism.

Let i : X  Y be a cofibration, the m-fat-wedge of i is the subspace of Ym+1

defined as

Tm(i) :=
{

(x0, . . . , xm) ∈ Ym+1 : xj ∈ i(X) for some j = 0, . . . , m
}

,

with inclusion Wm(i) : Tm(i) → Ym+1.

Theorem 2. ([4]) Let f be a map and i : X → Y a cofibration replacement for f with
Y a paracompact space. Then secat( f ) is the smallest m such that there exists a map r
making the following diagram homotopy commutative:

Tm(i)

Wm(i)
��

Y

r
77♦

♦
♦

♦
♦

♦
♦

∆m+1

// Ym+1.

Remark 3. In order to take care of unnecessary technical conditions, we will consider the
statement of previous theorem as the definition for sectional category.
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Now let L be a simplicial complex on m vertices, then the polyhedral product of
the pair (Y, X) and L is defined as

(Y, X)L =
⋃

σ∈L

(

m

∏
j=1

A
j
σ

)

⊂ Xm,

where

A
j
σ :=

{

Y if j ∈ σ

X if j 6∈ σ.

The m-fat-wedge Tm(i) can be written in terms of the polyhedral product

(Y, X)∂∆m

. Therefore, if A → B is a surjective cdga model for i with kernel K,

then [8, Thm. 1] tells us that a model for the inclusion Wm(i) : Tm(i)  Ym+1 is
the projection

qm : A⊗m+1 −→
A⊗m+1

K⊗m+1
.

Recall also that if A is a cdga model for Y then the diagonal map ∆m+1 : Y → Ym+1

is modelled by the multiplication morphism µm+1 : A⊗m+1 → A. These remarks
lead us to

Definition 4. The sectional category of a surjective cdga morphism ϕ : A → B,
secat(ϕ), is the smallest m for which there exists a cdga morphism τ such that τ ◦ im =
µm+1,

A⊗m+1

µm+1

��

qm //
((

im

((PP
PP

PP
PP

PP
PP

PP
P

A⊗m+1

K⊗m+1

(A⊗m+1 ⊗ ΛWm, D)

≃

OO

τ
vv❧ ❧

❧
❧
❧
❧
❧
❧

A,

where K = ker ϕ and im is a relative Sullivan model for qm. The sectional category of
any morphism is defined as the sectional category of any of its surjective replacements.

Taking the pushout

A⊗m+1

µm+1

��

// im //
(

A⊗m+1 ⊗ ΛWm, D
)

��

A //
jm

//
(

A ⊗ ΛWm, D
)

one can easily check, thanks to pushout’s universal property, that secat(ϕ) ≤ m if
and only if jm admits a retraction. In fact, if ϕ models a map f then jm is a model
for the m-th Ganea map, Gm( f ).
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Definition 5. Let ϕ be a surjective cdga morphism and consider previous diagram.

(i) The module sectional category of ϕ, msecat(ϕ), is the smallest m such that jm
admits an A-module retraction,

(ii) the homology sectional category of ϕ, Hsecat(ϕ), as the smallest m such that
H(jm) is injective.

(iii) If a continuous map f is modelled by ϕ, define msecat( f ) := msecat(ϕ) and
Hsecat( f ) := Hsecat(ϕ).

The module sectional category of this paper coincides with the one introduced
in [9]. The expected cohomological lower bound follows:

Proposition 6. Let ϕ : A → B be a surjective cdga morphism. Then

nil ker H(ϕ) ≤ Hsecat(ϕ).

Proof. Suppose Hsecat(ϕ) = m, then H(jm) is injective, where jm is as in previous
diagram. Let [x0], . . . , [xm] ∈ ker H(ϕ), since ϕ is surjective, there are a0, . . . , am ∈
A such that xi − dai ∈ K, for i = 0, . . . , m. We have constructed a cycle z :=
(x0 − da0)⊗ · · · ⊗ (xm − dam) ∈ K⊗m+1 therefore there exists ξ ∈ A⊗m+1 ⊗ ΛWm

such that Dξ = z. Thus H(jm)([x0] · · · [xm]) = [0] and since H(jm) is injective,
[x0] · · · [xm] = [0], proving that nil ker H(ϕ) ≤ m.

The following chain of inequalities is now clear for a surjective morphism ϕ,

nil ker H(ϕ) ≤ Hsecat(ϕ) ≤ msecat(ϕ) ≤ secat(ϕ).

We now prove:

Theorem 7. Let ϕ be a surjective cdga model for f , then

secat( f0) = secat(ϕ).

Proof. Transform f0 into a cofibration i : X → Y. Denote by α : (ΛV, d)
≃

−→ A be
a minimal model for A. By construction (ΛV, d) is a minimal model of Y, and as
explained at the beginning of this section, if K = ker ϕ, then the projection

qm : A⊗m+1 →
A⊗m+1

K⊗m+1

is a model for the map Wm(i) : Tm(i) → Ym+1. Denote by ((ΛV)⊗m+1 ⊗ ΛWm, D)
a relative model for qm. Then we have a commutative diagram

A⊗m+1 qm // A⊗m+1

K⊗m+1

(ΛV)⊗m+1

≃

OO

≃
��

// // ((ΛV)⊗m+1 ⊗ ΛWm, D)

≃

OO

≃
��

APL(Y
m+1)

APL(Wm(i))
// APL(T

m(i))
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Suppose secat( f0) = m, then, by Theorem 2, there is θ : Y → Tm(i) such that
the following diagram homotopy commutes

Tm(i)
Wm(i) // Ym+1

Y.
θ

bb❊❊❊❊❊❊❊❊ ∆

<<③③③③③③③③③

Then the relative lifting lemma gives a morphism γ making commutative the
upper triangle and homotopy commutative the lower triangle in

(ΛV)⊗m+1 µm+1 //
��

��

ΛV

≃
��

(ΛV)⊗m+1 ⊗ ΛWm

α

22❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

≃
// APL(T

m(i))
APL(θ)

// APL(Y).

The desired τ is given by pushout’s universal property:

(ΛV)⊗m+1

po

// //

≃
��

(ΛV)⊗m+1 ⊗ ΛWm

≃
��

α◦γ

��

A⊗m+1

µm+1 //

// // A⊗m+1 ⊗ ΛWm

τ

**❚❚❚❚❚❚❚❚❚❚

A.

This proves that secat(ϕ) ≤ secat( f0). For the second inequality, just apply spatial
realization functor, [6, Chapt. 17].

Previous theorem combined with [2, Thm. 23] gives

Corollary 8. Given f a continuous map, then

secat( f0) ≤ secat( f ).

Then we have for a map f that

nil ker H∗( f , Q) ≤ Hsecat( f ) ≤ msecat( f ) ≤ secat( f0) ≤ secat( f ).

2 The invariant sc(f)

Recall that a cdga morphism ψ : A → B admits a homotopy retraction if there
exists a map r : (A ⊗ ΛV, D) → A such that r ◦ i = IdA, where i : A  (A ⊗
ΛV, D) is a relative Sullivan model for ψ. We now introduce the following upper
bound to rational sectional category:

Definition 9. Let ϕ : A → B be a surjective cdga morphism with kernel K and consider
the projection

ρm : (A, d) →

(

A

Km+1
, d

)

.
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Define:

(i) sc(ϕ) as the smallest integer m such that ρm admits a homotopy retraction,

(ii) msc(ϕ) the smallest m such that ρm admits a homotopy retraction as A-modules,

(iii) Hsc(ϕ) the smallest m such that H(ρm) is injective.

If X is a space modelled by (ΛV, d) and ǫ : (ΛV, d) → Q is the augmenta-
tion then msc(ǫ) is the classical module category of X0 and Hsc(ǫ) is the rational
Toomer invariant of X. Also, if µ : (ΛV, d)⊗ (ΛV, d) → (ΛV, d) is the multipli-
cation, then sc(µ) = tc(X) and msc(µ) = mtc(X), as defined in [11].

Observe that sc(ϕ), msc(ϕ) and Hsc(ϕ) are not invariants of the weak homo-
topy type of ϕ. This can be seen explicitly in

Example 10. Consider A := (Λ(a, b)/(a2), d) the cdga defined as |a| = 4, |b| = 3,
db = a and ϕ : A → Q the augmentation. Since B := (Λv7, 0) is a minimal model
for A, the augmentation ψ : B → Q is weakly equivalent to ϕ. It is easy to see that
secat(ψ) = 1 while Hsc(ϕ) ≥ 2.

This definition extends to continuous maps:

Definition 11. Let f be a continuous map. Define:

(i) sc( f ) as the least sc(ϕ) with ϕ a surjective model for f ,

(ii) msc( f ) as the smallest msc(ϕ) with ϕ a surjective model for f ,

(iii) Hsc( f ) as the smallest Hsc(ϕ) with ϕ a surjective model for f .

Proposition 12. For any surjective cdga morphism ϕ, we have

(i) secat(ϕ) ≤ sc(ϕ),

(ii) msecat(ϕ) ≤ msc(ϕ),

(iii) Hsecat(ϕ) ≤ Hsc(ϕ).

Proof. Denote by (A ⊗ ΛZm, D)
≃

−→ A
Km+1 a relative Sullivan model for ρm. Since

multiplication induces a map

µ :
A⊗m+1

K⊗m+1
−→

A

Km+1
,

the relative lifting lemma gives a morphism α making commutative the diagram

A⊗m+1 µm+1 //
��

��

A // // A ⊗ ΛZm

≃
����

A⊗m+1 ⊗ ΛWm

α

44❤❤❤❤❤❤❤❤❤❤

≃
// A⊗m+1

K⊗m+1 µ
// A/Km+1,

If r : (A ⊗ ΛZm, D) → A is a homotopy retraction for ρm then the desired map τ
is given by r ◦ α.
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The following corollary includes Proposition 1.

Corollary 13. If f is a continuous map, then

(i) secat( f0) ≤ sc( f ),

(ii) msecat( f ) ≤ msc( f ),

(iii) Hsecat( f ) ≤ Hsc( f ).

We now prove that for computing sc( f ) we can restrict to models for f
between Sullivan algebras and the answer does not depend on the choice of the
model. The following lemma is straightforward.

Lemma 14. Consider the commutative cdga diagram where ω is a quasi-isomorphism,

A

ϕ
��

ω
≃

// B

��
ψ
��

C // D.

If ψ admits a homotopy retraction, then so does ϕ.

We can now prove

Lemma 15. Let ϕ : A → B be a surjective cdga morphism and ψ : (ΛT, d)
≃

−→ A a
surjective Sullivan model for A. Then sc(ϕ ◦ ψ) ≤ sc(ϕ), msc(ϕ ◦ ψ) ≤ msc(ϕ) and
Hsc(ϕ ◦ ψ) ≤ Hsc(ϕ).

Proof. The morphism ψ induces a diagram

ΛT ≃

ψ
//

��

A

��
ΛT
Lm

// A
Km ,

where L denotes the kernel of ϕ ◦ ψ. The result follows by previous lemma.

Lemma 16. Let ϕ : (ΛV, d) → B be a surjective cdga morphism and consider φ an
extension of ϕ,

(ΛV, d)
((

≃ ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

ϕ
// // B

(ΛV, d)⊗ (ΛW, d) .

φ

77 77♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Then sc(ϕ) = sc(φ), msc(ϕ) = msc(φ) and Hsc(ϕ) = Hsc(φ).

Proof. Remark that W admits a basis of the form {vi, wi} with dvi = wi and that,
by a change of variable, one can suppose that φ(W) = 0. Now define on ΛW a
derivation s of degree −1 by s(wi) = vi and s(vi) = 0. For each l ≥ 1,

s ◦ d + d ◦ s : ΛlW → ΛlW
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is multiplication by l and thus H(ΛlW, d) = 0. Now, denoting K = ker ϕ and
L = ker φ, we have that L = K ⊕ ΛV ⊗ Λ+W and Lm = Km ⊕ I with

I =
m−1

∑
l=0

Kl ⊗ Λ≥m−lW,

with K0 := ΛV. Since, as a vector space,

I = Km−1 ⊗ Λ+W ⊕
Km−2

Km−1
⊗ Λ≥2W ⊕ · · · ⊕

K

K2
⊗ Λ≥m−1W ⊕

ΛV

K
⊗ Λ≥mW,

an inductive argument shows that H(I) = 0. As the five lemma gives a diagram

ΛV

��

// ≃ // ΛV ⊗ ΛW

��
ΛV
Km

≃ // ΛV⊗ΛW
Lm ,

the lemma follows.

Corollary 17. Let f be a continuous map and ϕ be a surjective model for f between
Sullivan algebras. Then sc( f ) = sc(ϕ), msc( f ) = msc(ϕ), Hsc( f ) = Hsc(ϕ).

3 The case H(ϕ) surjective

Suppose ϕ : A → B is a surjective morphism with H(ϕ) also surjective and write
K = ker ϕ. Then the short exact sequence

0 �
� // K �

� // A // // B // // 0

yields the short exact sequence

0 �
� // H(K) �

� // H(A) // // H(B) // // 0,

which tells us that nil ker H(ϕ) = nil H(ker ϕ). Moreover, the homology of the
projection

qm : A⊗m+1 −→
A⊗m+1

K⊗m+1

is given by

H(qm) : H(A)⊗m+1 −→
H(A)⊗m+1

H(K)⊗m+1
.

Example 18. Consider the surjective morphism

ϕ : (Λ(a3, b3, x5); dx = ab) −→ (Λ(a, b)/(ab), 0)
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whose kernel is K := (ab, x). We have that sc(ϕ) = 2 since the projection ρ1 : Λ(a, b, x)

→ Λ(a,b,x)
(abx)

is not injective in homology and nil K = 2. On the other hand, because of

previous remarks and the fact that H(K) = H≥8(K), we have a commutative diagram

(Λ(a, b, x))⊗2

µ2

��

//
))

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

(Λ(a,b,x))⊗2

K⊗2

(Λ(a, b, x; d)⊗2 ⊗ ΛW1, D)

≃

OO

τtt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

Λ(a, b, x; d)

with W1 = W≥15
1 and τ(W1) = 0. This shows that secat(ϕ) = 1 < 2 = sc(ϕ).

The idea for computing secat(ϕ) in the previous example can be generalized:

Proposition 19. Let ϕ : A → B be a surjective cdga morphism such that H(ϕ) is also
surjective, A = A<l and H(K) = H≥k(K). Then

secat(ϕ) ≤
l + 1

k
.

Proof. In this case, since Wm = W
≥(m+1)k−1
m , a morphism r making the diagram

A⊗m+1

µm+1

��

//
((

i

((PP
PP

PP
PP

PP
PP

PP
P

A⊗m+1

K⊗m+1

(A⊗m+1 ⊗ ΛWm, D)

≃

OO

τ
vv❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

A,

commute can be defined as r(a) := µm+1(a), for a ∈ A⊗m+1 and r(Wm) := 0.

4 Homology nilpotency of an ideal

Consider a surjective cdga morphism ϕ : A ։ B with K = ker ϕ, then, by Propo-
sition 12, secat(ϕ) ≤ nil K but when A is a Sullivan algebra then it is very likely
that nil K = ∞.

Definition 20. Let I be an ideal of a cdga A, the homology nilpotency of I is

Hnil I := min
{

k : Ik+1 ⊂ J, J acyclic ideal of A
}

.

Remark that if Km+1 is included in an acyclic ideal J of A then we have a
commutative diagram

A
ρm // //

≃
��❄

❄❄
❄❄

❄❄
❄❄

❄
A

Km+1

��
A
J



Computations in rational sectional category 465

which can be used to deduce a homotopy retraction of ρm. As a consequence we
have

Proposition 21. Let ϕ be a surjective cdga morphism with K := ker ϕ. Then,

nil ker H(ϕ) ≤ secat(ϕ) ≤ sc(ϕ) ≤ Hnil K ≤ nil K,

and, if H(ϕ) is surjective,

nil H(K) ≤ secat(ϕ) ≤ Hnil(K).

Example 22. Consider A = (Λa2, x; dx = a2) and ǫ the augmentation on A. Then,
since K2 ⊂ (a2, x), cat(A) = secat(ǫ) = sc(ǫ) = Hnil(K) = 1, and nil(K) = ∞.

5 Sectional category of formal morphisms

As the LS category of formal spaces, the sectional category of formal maps is very
easy to compute.

Definition 23. A cdga morphism ϕ is said to be formal if it is weakly equivalent to
H(ϕ). A continuous map is said to be formal if it admits a formal cdga model.

For more on formal morphisms the reader is referred to [7] and [16]. It is
obvious from this definition that if ϕ : A → B is formal then both A and B are
formal as well.

Theorem 24. Let ϕ : A → B be a formal morphism with H(ϕ) surjective. Then

secat(ϕ) = nil(ker H(ϕ)).

Proof. By formality, secat(ϕ) = secat(H(ϕ)). Write m := nil(ker H(ϕ)), we must
prove that secat(H(ϕ)) ≤ m but this is direct consequence of Proposition 12 and

the fact that (ker H(ϕ))m+1 = {0}.

6 Applications

As a direct consequence of Theorem 7 we have a rational model for topological
complexity:

Proposition 25. Let A be a cdga model for a space X and µn : A⊗n → A the n-
multiplication. Then

TCn(X0) = secat(µn).

Proof. Since rationalisation commutes with limits, we have

TCn(X0) = secat(∆n
X0
) = secat((∆n

X)0) = secat(µn).

We extend this proposition to

Definition 26. Let X be a space, then define
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(i) mTCn(X) := msecat(∆n),

(ii) HTCn(X) := Hsecat(∆n).

It was proven by L. Lechuga and A. Murillo in [12] that the topological com-
plexity of formal spaces equals the nilpotency of the kernel of the multiplication
H∗(X, Q)⊗ H∗(X, Q) → H∗(X, Q). We extend this result:

Theorem 27. If X is a formal space, then

TCn(X0) = nil ker
(

µn : H∗(X, Q)⊗n → H∗(X, Q)
)

,

and thus TCn(X0) = mTCn(X0) = HTCn(X0).

Proof. If X is a formal space, ∆n
X is a formal map modelled by µn. The result

follows from Theorem 24.

Observe now that if G is a subset of a cdga A and I the ideal of A generated
by G then nil I is the largest m for which there exist x1, . . . , xm ∈ G such that
x1 · · · xm 6= 0. Also, if A+ is generated by {xi}i∈I, then Kn, the kernel of the
n-multiplication morphism µn : A⊗n → A, is generated by

{

xi,j − xi,1 : i ∈ I,
2 ≤ j ≤ n} where

xi,j = 1 ⊗ · · · ⊗ 1 ⊗ xi ⊗ 1 ⊗ · · · ⊗ 1 ∈ A⊗j−1 ⊗ A+ ⊗ A⊗n−j.

This is consequence of the fact that an element x1 ⊗ · · · ⊗ xn can be written in the
form

(x1,1 · · · xn−1,n−1) · (xn,n − xn,n−1) +

(x1,1 · · · xn−2,n−2) · (xn−1,n−1xn,n−1 − xn−1,n−2xn,n−2) +

...

(x1,1) · (x2,2 · · · xn,2 − x2,1 · · · xn,1) +

(x1,1 · · · xn,1).

Proposition 28. Let A be a cdga and Kn the kernel of the n-multiplication morphism
A⊗n → A. Then for n ≥ 3,

nil Kn ≥ nil Kn−1 + nil A+.

Proof. Write r = nil Kn−1 and s = nil A+. Consider ω 6= 0 a product of r fac-
tors in Kn−1 and α = a1 · · · as 6= 0 with ai ∈ A+. Then the element (ω ⊗ 1)
(a1,n − a1,1) · · · (as,n − as,1) = (ω ⊗ α) + ξ with ξ ∈ A⊗n−1 ⊗ A<|α| must be non-
zero. This proves that nil Kn ≥ r + s.

As pointed out by Bárbara Gutiérrez, [10], the inverse inequality does not
hold:
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Example 29. Consider the cdga A = Λ(a, b, c, d, e)/I generated by elements of odd
degree where I is the ideal generated by ad, ae, bcd, bce. The only non-zero products of
length 3 of A are abc, bde and cde and there are no non-zero products of length 4, then
we have that nil A = 3 nil K2 = 5. But nil K3 = 9, since

ω :=
e

∏
x=a

(x ⊗ 1 ⊗ 1 − 1 ⊗ x ⊗ 1)
e

∏
x=b

(x ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ x),

is a non-zero element of K9
3 because the non-zero summand bde ⊗ abc ⊗ cde appears only

once when we develop ω.

Corollary 30. Suppose A is a cdga satisfying A = Aeven. Then

nil Kn = n(nil A+).

Proof. For n = 2, choose elements x1, . . . , xr ∈ A+ with r = nil A+ such that the
product x1 · · · xr is non-zero. Then ∏

r
i=1(xi ⊗ 1 − 1 ⊗ xi)

2 is a non-zero element
in K2r

2 . Since nil K2 ≤ nil (A ⊗ A)+ = 2(nil A+), we get nil K2 = 2(nil A+). The
result now follows by induction and Proposition 28.

Since for formal spaces X, cat(X0) = nil H+(X, Q) (apply Theorem 27 to
∗ →֒ X), Proposition 28 combined with Theorem 27 directly implies

Theorem 31. Let X be a formal space, then for n ≥ 2,

TCn(X0) ≥ TC(X0) + (n − 2)cat(X0).

Recall that the wedge of two formal spaces remains a formal space.

Proposition 32. Let X and Y be formal spaces, then

TC(X ∨ Y) ≥ cat(X) + cat(Y).

Proof. Let w1 and w2 be monomials in H∗(X) and H∗(Y) of maximal length n and
m, w1 = a1 · · · an and w2 = b1 · · · bm. Then, using the notation a− = 1⊗ a − a ⊗ 1,
the identity

a−1 · · · a−n b−1 · · · b−m = w1 ⊗ w2 ± w2 ⊗ w1

shows that TC(X ∨ Y) ≥ n + m.

Example 33. Let X be the wedge (S3 × S3) ∨ (S3 × S3). Then TC(S3 × S3) = 2 but
TC(X) = 4.

The cohomology of X is Λ(x, y, z, t)/(xz, xt, yz, yt), with x, y, z, t in degree 3.
Then writing x− = 1 ⊗ x − x ⊗ 1 and so on, we see that x−y−z−t− = xy ⊗ zt +
zt ⊗ xy. This shows that nil ker µ2 = 4 and TC(X) ≥ 4. On the other hand,
TC(X) ≤ cat(X × X) = 4.

We now generalize Theorem 1.4 in [11].

Theorem 34. If π∗(X)⊗ Q is finite dimensional and concentrated in odd degrees. Then
TCn(X0) = (n − 1)cat(X0).
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Proof. Let (A, d) = (Λ (x1, . . . , xr) , d) be a model of X with xi in odd degree. Then

(A, d)⊗n = (Λ (x1,1, . . . , xr,1, x1,2, . . . , x2,r, . . . , x1,n, . . . , xr,n) , d)

and K the kernel of the n multiplication is generated by the elements
{

xi,j − xi,1 : 1 ≤ i ≤ r, 2 ≤ j ≤ n
}

.

Since the square of these elements is zero, we have that Kr(n−1)+1 = 0 and so
TCn(X) ≥ r(n − 1).

Now consider the pullback diagram

PX

pb

//

q
��

X[0,1]

p
��

Xn−1 × ∗ // Xn

where p(ω) =
(

ω(0), ω( 1
n−1 ), ω( 2

n−1), . . . , ω(1)
)

. Since TCn(X) = secat(p)

(Proposition 12), cat(Xn−1) = secat(q) and secat(q) ≤ secat(p), we have

TCn(X0) ≤ r(n − 1) = nil(A⊗n−1) = cat(Xn−1
0 ) ≤ TCn(X0).

A similar result can be found in [13] for integral H-spaces.
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