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Abstract

New cyclic Brunn-Minkowski inequalities for dual quermassintegrals of
star bodies are established. These inequalities are obtained with respect to
radial Minkowski addition as well as radial Blaschke and harmonic Blaschke
addition.

1 Preliminaries

The setting for this paper is n-dimensional Euclidean space R
n. We reserve the

letter u for unit vectors, and the letter B for the unit ball centered at the origin.
The surface of B is Sn−1. We use V(K) for the n-dimensional volume of a body
K. Let | · |∞ denote the maximum-norm on the space of continuous functions
C(Sn−1) on Sn−1.

Associated with a compact subset K of R
n, which is star-shaped with respect

to the origin, is its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1, by

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn denote
the set of star bodies in R

n. Let δ̃ denote the radial Hausdorff metric, i.e., for
K, L ∈ Sn, δ̃(K, L) = |ρK − ρL|∞ (see e.g. [9] or [24]). In the following we recall
some basic notions and results from the dual Brunn-Minkowski inequality (see,
e.g., [12], [14], [15], [18], [22], [25] and the references therein).
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1.1 Radial Minkowski addition and dual mixed volumes

For K1, . . . , Kr ∈ Sn and λ1, . . . , λr ∈ R, the radial Minkowski linear combination,
λ1K1+̃ · · · +̃λrKr, was defined by Lutwak by (see [19])

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki}.

It has the following important property, for K, L ∈ Sn and λ, µ ≥ 0,

ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·) (1.1).

For K1, . . . , Kr ∈ Sn and λ1, . . . , λr ≥ 0, the volume of the radial Minkowski
linear combination λ1K1+̃ . . . +̃λrKr is a homogeneous polynomial of degree n in
the λi,

V(λ1K1+̃ . . . +̃λrKr) = ∑ Ṽi1,...,in
λi1 · · · λin

, (1.2)

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are positive
integers not exceeding r. If we require the coefficients of the polynomial in (1.2)
to be symmetric in their argument, then they are uniquely determined. The co-
efficient Ṽi1,...,in

is nonnegative and depends only on the bodies Ki1 , . . . , Kin
. It

is written as Ṽ(Ki1 , . . . , Kin
) and is called the dual mixed volume of Ki1 , . . . , Kin

.
If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = B, the dual mixed volumes
Ṽ(K1, . . . , Kn) is written as W̃i(K) (see e.g. [8]).

For Ki ∈ Sn, the dual mixed volumes satisfy (see [20])

Ṽ(K1, . . . , Kn) =
1

n

∫

Sn−1
ρ(K1, u) · · · ρ(Kn, u)dS(u). (1.3)

For K, L ∈ Sn and i ∈ R, the ith dual mixed volume of K and L, Ṽi(K, L), is
defined by,

Ṽi(K, L) =
1

n

∫

Sn−1
ρ(K, u)n−iρ(L, u)idS(u). (1.4)

From (1.4) and in view of ρ(B, u) = 1, we have

W̃i(K) =
1

n

∫

Sn−1
ρ(K, u)n−idS(u), i ∈ R. (1.5)

1.2 Radial Blaschke addition

If K, L ∈ Sn and λ, µ ≥ 0, then λ · K+̆µ · L is the star body whose radial function
is given by

ρ(λ · K+̆µ · L, ·)n−1 = λρ(K, ·)n−1 + µρ(L, ·)n−1. (1.6)

This addition is called radial Blaschke addition (see e.g. [19]).
Lutwak established the following dual Brunn-Minkowski inequality for radial

Blaschke addition.
If K, L ∈ Sn, then

V(K+̆L)(n−1)/n ≤ V(K)(n−1)/n + V(L)(n−1)/n, (1.7)

with equality if and only if K and L are dilates.
This inequality is dual to the Kneser-Süss inequality (see [19]).
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1.3 Harmonic Blaschke addition

Another addition called harmonic Blaschke addition was defined by Lutwak [21].
Suppose K, L ∈ Sn and λ, µ ≥ 0 (not both zero). In order to define the harmonic
Blaschke linear combination, λK+̂µL, first let ξ > 0 be defined by

ξ1/(n+1) =
1

n

∫

Sn−1
[λV(K)−1ρ(K, u)n+1 + µV(L)−1ρ(L, u)n+1]n/(n+1)dS(u).

Then λK+̂µL ∈ Sn is defined as the body whose radial function is given by

ξ−1ρ(λK+̂µL, ·)n+1 = λV(K)−1ρ(K, ·)n+1 + µV(L)−1ρ(L, ·)n+1.

It follows immediately that ξ = V(λK+̂µl), and hence

ρ(λK+̂µL, ·)n+1

V(λK+̂µL)
= λ

ρ(K, ·)n+1

V(K)
+ µ

ρ(L, ·)n+1

V(L)
. (1.8)

Lutwak established the following dual Brunn-Minkowski inequality for har-
monic Blaschke addition (see [21]). If K, L ∈ Sn and λ, µ > 0, then

V(λK+̂µL)1/n ≥ λV(K)1/n + µV(L)1/n, (1.9)

with equality if and only if K and L are dilates.
For more information and characterizations of additions and related binary

operations on convex and star bodies we refer to [6], [10], [11] and [13].

2 Statements of main results

The dual Brunn-Minkowski inequality for radial Minkowski addition was estab-
lished in [20]. If K, L ∈ Sn, then

V(K+̃L)
1
n ≤ V(K)

1
n + V(L)

1
n , (2.1)

with equality if and only if K and L are dilates.
A general version of the dual Brunn-Minkowski inequality is the following

(see [27]):

Theorem A If K, L ∈ Sn and i < n − 1, then

W̃i(K+̃L)
1

n−i ≤ W̃i(K)
1

n−i + W̃i(L)
1

n−i , (2.2)

with equality if and only if K and L are dilates.
The following cyclic inequality for dual mixed volumes was established in

[20].

Theorem B If K, L ∈ Sn and j < i < k, then

W̃i(K)
k−j ≤ W̃j(K)

k−iW̃k(K)
i−j (2.3)
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with equality if and only if K is an n-ball centered at the origin.
The first aim of the present paper is to establish the following new dual cyclic

Brunn-Minkowski inequality for radial Minkowski addition, which has inequal-
ities (2.1), (2.2) and (2.3), as special cases!

Theorem 2.1 Let K, L ∈ Sn and i, j, k ∈ R. If j ≤ i ≤ k and i < n− 1, or k ≤ i ≤ j
and i < n − 1, then

W̃i(K+̃L)
1

n−i ≤ W̃j(K)
k−i

(n−i)(k−j)W̃k(K)
i−j

(n−i)(k−j) + W̃j(L)
k−i

(n−i)(k−j)W̃k(L)
i−j

(n−i)(k−j) (2.4)

with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and n − 1 < i < n, or k ≤ j ≤ i and
n − 1 < i < n.

Remark 2.1 Taking i = j = 0 or k = i = 0 in (2.4), (2.4) reduces to (2.1).
Taking i = j or k = i in (2.4), (2.4) changes to the dual Brunn-Minkowski

inequality (2.2). If K or L is a single point in (2.4), (2.4) becomes the cyclic inequal-
ity inequality (2.3). This shows that inequality (2.4) is not only a generalization of
inequalities (2.2) and (2.3), but also a perfect fusion of inequalities (2.2) and (2.3).

Another aim of the present paper is to establish the following new cyclic
Brunn-Minkowski inequalities for radial Blaschke addition and harmonic
Blaschke addition, respectively.

Theorem 2.2 Let K, L ∈ Sn and i, j, k ∈ R. If j ≤ i ≤ k and i < 1, or k ≤ i ≤ j
and i < 1, then

W̃i(K+̆L)
n−1
n−i ≤ W̃j(K)

(k−i)(n−1)
(n−i)(k−j)W̃k(K)

(i−j)(n−1)
(n−i)(k−j) + W̃j(L)

(k−i)(n−1)
(n−i)(k−j)W̃k(L)

(i−j)(n−1)
(n−i)(k−j) (2.5)

with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and 1 < i < n, or k ≤ j ≤ i and 1 < i < n.

Remark 2.2 Taking for i = j = 0 or i = k = 0 in Theorem 2.2, (2.5) reduces to
(1.7).

Taking k = i or i = j in (2.5), (2.5) changes the following result: If K, L ∈ Sn

and i < 1, then

W̃i(K+̆L)
n−1
n−i ≤ W̃i(K)

n−1
n−i + W̃i(L)

n−1
n−i ,

with equality if and only if K and L are dilates. This inequality is reversed if
1 < i < n.

This Brunn-Minkowski type inequality for radial Blaschke addition was pre-
viously established in [28].

Moreover, if K or L is a single point, then (2.5) reduces to (2.3).

Theorem 2.3 Let K, L ∈ Sn, λ, µ ≥ 0, and i, j, k ∈ R. If j ≤ i ≤ k and i < −1, or
k ≤ i ≤ j and i < −1, then

W̃i(λK+̂µL)
n+1
n−i

V(λK+̂µL)
≤ λ

W̃j(K)
(k−i)(n+1)
(n−i)(k−j)W̃k(K)

(i−j)(n+1)
(n−i)(k−j)

V(K)
+ µ

W̃j(L)
(k−i)(n+1)
(n−i)(k−j)W̃k(L)

(i−j)(n+1)
(n−i)(k−j)

V(L)
(2.6)
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with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and −1 < i < n, or k ≤ j ≤ i and
−1 < i < n.

Remark 2.3 Taking i = j = 0 or i = k = 0 in Theorem 2.3, (2.6) reduces to
(1.9).

Taking i = j or k = i in Theorem 2.3, (2.6) reduces to the following result. If
K, L ∈ Sn and i < −1, then

W̃i(λK+̂µL)
n+1
n−i

V(λK+̂µL)
≤ λ

W̃i(K)
n+1
n−i

V(K)
+ µ

W̃j(L)
n+1
n−i

V(L)
,

with equality if and only if K and L are dilates. This inequality is reversed if
−1 < i < n.

This is an inequality previously established in [28].
Taking λ = 1 and µ = 0, or µ = 1 and λ = 0 in Theorem 2.3 reduces to the

cyclic inequality (2.3).
For more information on Brunn-Minkowski type inequalities for different ge-

ometric functionals we refer to the recent articles [1], [2], [3], [5], [7], [23] and
[26].

3 Proofs of the main results

In order to prove our main results, we first derive a new norm inequality. In the
following let f , g ∈ C((Sn−1) and denote by ‖ · ‖q the usual Lq-norm for functions

on Sn−1.

Lemma 3.1 Let f , g ≥ 0 and r, s, t ∈ R. If s ≥ r ≥ t and r > 1, or t ≥ r ≥ s and
r > 1, then

‖ f (x) + g(x)‖r ≤ ‖ f (x)‖
s(r−t)
r(s−t)
s ‖ f (x)‖

t(s−r)
r(s−t)

t + ‖g(x)‖
s(r−t)
r(s−t)
s ‖g(x)‖

t(s−r)
r(s−t)

t , (3.1)

with equality for s 6= t if and only if f and g are constants, and for r = s or r = t if and
only if f and g are proportional.

The inequality is reversed if t ≤ s ≤ r and 0 < r < 1, or t ≥ s ≥ r and 0 < r < 1.
Proof We first suppose that s > r > t or t > r > s. Notice that

s > r > t or t > r > s implies
s − t

r − t
> 1.

Using the Minkowski inequality ([4, p.21]) for r > 1 and followed by the Hölder
inequality ([4, p.22]) with exponents s−t

r−t > 1 and s−t
s−r , we obtain

‖ f (x) + g(x)‖r ≤ ‖ f (x)‖r + ‖g(x)‖r

= ‖ f (x)
s(r−t)
r(s−t) f (x)

t(s−r)
r(s−t)‖r + ‖g(x)

s(r−t)
r(s−t) g(x)

t(s−r)
r(s−t)‖r
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≤ ‖ f (x)‖
s(r−t)
r(s−t)
s ‖ f (x)‖

t(s−r)
r(s−t)

t + ‖g(x)‖
s(r−t)
r(s−t)
s ‖g(x)‖

t(s−r)
r(s−t)

t . (3.2)

In the following, we discuss the equality conditions. In view of the equality con-
ditions of the Minkowski and the Hölder inequalities, it follows that equality in
(3.1) holds if and only if f and g are proportional, f λ and f µ are proportional and
gλ and gµ are proportional, where λ = r−t

s−t and µ = s−r
s−t . Since s 6= t, it follows

that f and g have to be constant.
Next, consider the case r = t or r = s. If r = t or r = s, then using only the

Minkowski integral inequality for r > 1, we have

‖ f (x) + g(x)‖r ≤ ‖ f (x)‖r + ‖g(x)‖r

= ‖ f (x)‖
s(r−t)
r(s−t)
s ‖ f (x)‖

t(s−r)
r(s−t)

t + ‖g(x)‖
s(r−t)
r(s−t)
s ‖g(x)‖

t(s−r)
r(s−t)

t (3.3)

with equality if and only if f and g are proportional. This proves inequality (3.1)
in the case r = t or r = s and with equality if and only if f and g are proportional.

Theorem 3.1 Let K, L ∈ Sn and i, j, k ∈ R. If j ≤ i ≤ k and i < n− 1, or k ≤ i ≤ j
and i < n − 1, then

W̃i(K+̃L)
1

n−i ≤ W̃j(K)
k−i

(n−i)(k−j)W̃k(K)
i−j

(n−i)(k−j) + W̃j(L)
k−i

(n−i)(k−j)W̃k(L)
i−j

(n−i)(k−j) (3.4)

with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and n − 1 < i < n, or k ≤ j ≤ i and
n − 1 < i < n.

Proof We first consider the case that: j ≤ i ≤ k and i < n − 1, or k ≤ i ≤ j and
i < n − 1.

From (1.1), (1.5), and Lemma 3.1, it follows that s ≥ r ≥ t and r > 1, or
t ≥ r ≥ s and r > 1, then we have with r = n − i,

W̃i(K+̃L)
1
r =

(

1

n

∫

Sn−1
ρ(K+̃L, u)rdS(u)

)
1
r

=

(

1

n

∫

Sn−1
(ρ(K, u) + ρ(L, u))r dS(u)

)
1
r

≤

(

1

n

∫

Sn−1
ρ(K, u)sdS(u)

)
r−t

r(s−t)
(

1

n

∫

Sn−1
ρ(K, u)tdS(u)

)
s−r

r(s−t)

+

(

1

n

∫

Sn−1
ρ(L, u)sdS(u)

)
r−t

r(s−t)
(

1

n

∫

Sn−1
ρ(L, u)tdS(u)

)
s−r

r(s−t)

.

By (1.5), we have for K ∈ Sn and s, t ∈ R

W̃n−s(K) =
1

n

∫

Sn−1
ρ(K, u)sdS(u), W̃n−t(K) =

1

n

∫

Sn−1
ρ(K, u)

t
dS(u).

Hence,

(

W̃i(K+̃L)
)

1
r ≤ W̃n−s(K)

r−t
r(s−t)W̃n−t(K)

s−r
r(s−t) + W̃n−s(L)

r−t
r(s−t)W̃n−t(L)

s−r
r(s−t) . (3.5)
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If we take r = n − i, s = n − j and t = n − k in (3.5), then since r > 1 we have
i < n − 1 and

s ≥ r ≥ t or t ≥ r ≥ s implies j ≤ i ≤ k or k ≤ i ≤ j.

Thus, we obtain

(

W̃i(K+̃L)
)

1
n−i ≤ W̃j(K)

k−i
(n−i)(k−j)W̃k(K)

i−j
(n−i)(k−j) + W̃j(L)

k−i
(n−i)(k−j)W̃k(L)

i−j
(n−i)(k−j) .

From that equality conditions of Lemma 3.1, it follows the equality in (3.4) holds
for j 6= k if and only if ρ(K, u) and ρ(L, u) are constants, it follows that equality
in (3.4) holds for j 6= k if and only if K and L are n-balls centered at the origin.
Moreover, if i = j or i = k, equality in (3.4) holds if and only if K and L are dilates.

Similar to the above proof, we can also establish the reverse inequality for
k ≥ j ≥ i and n − 1 < i < n, or k ≤ j ≤ i and n − 1 < i < n. Here, we omit the
details.

Theorem 3.2 Let K, L ∈ Sn and i, j, k ∈ R. If j ≤ i ≤ k and i < 1, or k ≤ i ≤ j
and i < 1, then

W̃i(K+̆L)
n−1
n−i ≤ W̃j(K)

(k−i)(n−1)
(n−i)(k−j)W̃k(K)

(i−j)(n−1)
(n−i)(k−j) + W̃j(L)

(k−i)(n−1)
(n−i)(k−j)W̃k(L)

(i−j)(n−1)
(n−i)(k−j) , (3.6)

with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and 1 < i < n, or k ≤ j ≤ i and 1 < i < n.
Proof From (1.5), (1.6), and Lemma 3.1, it follows that if s ≥ r ≥ t and r > 1,

or t ≥ r ≥ s and r > 1, we have with r = n−i
n−1

W̃i(K+̆L)
n−1
n−i =

(

1

n

∫

Sn−1
ρ(K+̆L, u)n−idS(u)

)
n−1
n−i

=

(

1

n

∫

Sn−1
(ρ(K, u)n−1 + ρ(L, u)n−1)rdS(u)

)
1
r

≤

(

1

n

∫

Sn−1
ρ(K, u)s(n−1)dS(u)

)
r−t

r(s−t)
(

1

n

∫

Sn−1
ρ(K, u)t(n−1)dS(u)

)
s−r

r(s−t)

+

(

1

n

∫

Sn−1
ρ(L, u)s(n−1)dS(u)

)
r−t

r(s−t)
(

1

n

∫

Sn−1
ρ(L, u)t(n−1)dS(u)

)
s−r

r(s−t)

.

By (1.5), we have

W̃n−s(n−1)(K) =
1

n

∫

Sn−1
ρ(K, u)s(n−1)dS(u), W̃n−t(n−1)(K) =

1

n

∫

Sn−1
ρ(K, u)t(n−1)dS(u).

Hence,

W̃i(K+̆L)
1
r ≤ W̃n−s(n−1)(K)

r−t
r(s−t)W̃n−t(n−1)(K)

s−r
r(s−t)+

W̃n−s(n−1)(L)
r−t

r(s−t)W̃n−t(n−1)(L)
s−r

r(s−t) . (3.7)
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Taking r = n−i
n−1 , s =

n−j
n−1 and t = n−k

n−1 in (3.7), then since r > 1 we have i < 1 and

s ≥ r ≥ t or t ≥ r ≥ s implies j ≤ i ≤ k or k ≤ i ≤ j,

Thus, we obtain

(

W̃i(K+̆L)
)

n−1
n−i ≤ W̃j(K)

(k−i)(n−1)
(n−i)(k−j)W̃k(K)

(i−j)(n−1)
(n−i)(k−j) + W̃j(L)

(k−i)((n−1))
(n−i)(k−j) W̃k(L)

(i−j)(n−1)
(n−i)(k−j) .

From that equality conditions of Lemma 3.1, it follows the equality in (3.6) holds
for j 6= k if and only if ρ(K, u) and ρ(L, u) are constants, it follows that equality
in (3.6) holds for j 6= k if and only if K and L are n-balls centered at the origin.
Moreover, if i = j or i = k, equality in (3.6) holds if and only if K and L are dilates.

Similar to the above proof, we can also establish the reverse inequality for
k ≥ j ≥ i and 1 < i < n, or k ≤ j ≤ i and 1 < i < n. Here, we omit the details.

Theorem 3.3 Let K, L ∈ Sn, and λ, µ ≥ 0 and i, j, k ∈ R. If j ≤ i ≤ k and i < −1,
or k ≤ i ≤ j and i < −1, then

W̃i(λK+̂µL)
n+1
n−i

V(λK+̂µL)
≤ λ

W̃j(K)
(k−i)(n+1)
(n−i)(k−j)W̃k(K)

(i−j)(n+1)
(n−i)(k−j)

V(K)
+µ

W̃j(L)
(k−i)(n+1)
(n−i)(k−j)W̃k(L)

(k−j)(n+1)
(n−i)(k−j)

V(L)
,

(3.8)
with equality for j 6= k if and only if K and L are n-balls centered at the origin, and for
i = j or i = k if and only if K and L are dilates.

The inequality is reversed if k ≥ j ≥ i and −1 < i < n, or k ≤ j ≤ i and
−1 < i < n.

Proof From (1.5), (1.8), and Lemma 3.1, it follows that if s ≥ r ≥ t and r > 1,
or t ≥ r ≥ s and r > 1, we have with r = n−i

n+1

W̃i(λK+̂µL)
n+1
n−i =

(

1

n

∫

Sn−1
ρ(λK+̂µL, u)n−idS(u)

)
n+1
n−i

=

(

1

n

∫

Sn−1

(

ξλV(K)−1ρ(K, u)n+1 + ξµV(L)−1ρ(L, u)n+1
)r

dS(u)

)
1
r

≤

(

1

n

∫

Sn−1

(

ξλV(K)−1
)s

ρ(K, u)s(n+1)dS(u)

)
r−t

r(s−t)

(

1

n

∫

Sn−1

(

ξλV(K)−1
)t

ρ(K, u)t(n+1)dS(u)

)
s−r

r(s−t)

+

(

1

n

∫

Sn−1

(

ξµV(L)−1
)s

ρ(L, u)s(n+1)dS(u)

)
r−t

r(s−t)

(

1

n

∫

Sn−1

(

ξµV(L)−1
)t

ρ(L, u)t(n+1)dS(u)

)
s−r

r(s−t)

.
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By (1.5), we have

W̃n−s(n+1)(K) =
1

n

∫

Sn−1
ρ(K, u)s(n+1)dS(u), W̃n−t(n+1)(K) =

1

n

∫

Sn−1
ρ(K, u)t(n+1)dS(u).

Hence,

W̃i(K+̂L)
1
r ≤

[

(ξλV(K)−1)sW̃n−s(n+1)(K)
]

r−t
r(s−t)

[

(ξλV(K)−1)tW̃n−t(n+1)(K)
]

s−r
r(s−t)

+
[

(ξµV(L)−1)sW̃n−s(n+1)(L)
]

r−t
r(s−t)

[

(ξµV(L)−1)tW̃n−t(n+1)(L)
]

s−r
r(s−t)

.

(3.9)

Taking r = n−i
n+1 , s = n−j

n+1 and t = n−k
n+1 in (3.9), then since r > 1 we have i < −1

and
s ≥ r ≥ t or t ≥ r ≥ s implies j ≤ i ≤ k or j ≥ i ≥ k.

Thus, we obtain

W̃i(λK+̂µL)
n+1
n−i ≤ ξλV(K)−1W̃j(K)

(k−i)(n+1)
(n−i)(k−j)W̃k(K)

(i−j)(n+1)
(n−i)(k−j)

+ ξµV(L)−1W̃j(L)
(k−i)(n+1)
(n−i)(k−j)W̃k(L)

(i−j)(n+1)
(n−i)(k−j) ,

where ξ = V(λK+̂µL).
From that equality conditions of Lemma 3.1, it follows the equality in (3.8)

holds for j 6= k if and only if ρ(K, u) and ρ(L, u) are constants, it follows that
equality in (3.8) holds for j 6= k if and only if K and L are n-balls centered at the
origin. Moreover, if i = j or i = k, equality in (3.8) holds if and only if K and L are
dilates.

Similar to the above proof, we we can also establish the reverse inequality for
k ≥ j ≥ i and −1 < i < n, or k ≤ j ≤ i and −1 < i < n. Here, we omit the details.
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